Se-O Bond Is Unique to High Se Enriched Sweet Potato Stem Protein with Better Antioxidant Ability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Se-Enriched Sweet Potato Stem
2.2. Extraction of SSP
2.3. Determination of the Total Se Contents in Stem Powder and SSP
2.4. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) of SSP
2.5. Fourier Transform Infrared (FT-IR) Spectroscopy
2.6. Morphological Analysis
2.7. Differential Scanning Calorimetry (DSC) Analysis
2.8. Se Speciation by High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS)
2.9. Determination of Free Radical Scavenging Activity
2.9.1. Determination of the DPPH Radical Scavenging Activity
2.9.2. Determination of the Hydroxyl Radical Scavenging Activity
2.9.3. Determination of the Superoxide Radical Scavenging Activity
2.10. Determination of Reducing Power
2.11. Ferric Thiocyanate (FTC) Test
2.12. Statistical Analysis
3. Results and Discussion
3.1. Total Se and Protein Se Contents in Sweet Potato Stems
3.2. Molecular Weight Distribution of SSPs (SDS-PAGE)
3.3. FT-IR Analysis
3.4. SEM-EDS Analysis
3.5. DSC Analysis
3.6. Se Speciation in SSPs
3.7. Free Radical Scavenging Activities of SSPs
3.7.1. DPPH Radical Scavenging Activity
3.7.2. Hydroxyl Radical Scavenging Activity
3.7.3. Superoxide Anion Radical Scavenging Activity
3.8. Reducing Power and Ferric Thiocyanate (FTC) Test for SSPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roman, M.; Jitaru, P.; Barbante, C. Selenium biochemistry and its role for human health. Metallomics 2014, 6, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.C.; Nancharaiah, Y.V.; van Hullebusch, E.D.; Lens, P.N.L. Selenium: Environmental significance, pollution, and biological treatment technologies. Biotechnol. Adv. 2016, 34, 886–907. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, M.; da Silva, F.M.; Muccillo-Baisch, A.L. Selenium content of Brazilian foods: A review of the literature values. J. Food Compos. Anal. 2017, 58, 10–15. [Google Scholar] [CrossRef]
- Pyrzynska, K. Selenium speciation in enriched vegetables. Food Chem. 2009, 114, 1183–1191. [Google Scholar] [CrossRef]
- Tie, M.; Li, B.R.; Zhuang, X.H.; Han, J.; Liu, L.; Hu, Y.Y.; Li, H.W. Selenium speciation in soybean by high performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS). Microchem. J. 2015, 123, 70–75. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Malagoli, C.; Violi, F.; Mandrioli, J.; Consonni, D.; Rothman, K.J.; Wise, L.A. Amyotrophic lateral sclerosis incidence following exposure to inorganic selenium in drinking water: A long-term follow-up. Environ. Res. 2019, 179, 6. [Google Scholar] [CrossRef]
- Pezzarossa, B.; Rosellini, I.; Borghesi, E.; Tonutti, P.; Malorgio, F. Effects of Se-enrichment on yield, fruit composition and ripening of tomato (Solanum lycopersicum) plants grown in hydroponics. Sci. Hortic. 2014, 165, 106–110. [Google Scholar] [CrossRef]
- Lee, G.J.; Kang, B.K.; Kim, T.I.; Kim, T.J.; Kim, J.H. Effects of Different Selenium Concentrations of the Nutrient Solution on the Growth and Quality of Tomato Fruit in Hydroponics. In Proceedings of the International Symposium on Advances in Environmental Control, Automation and Cultivation Systems for Sustainable, High-Quality Crop Production under Protected Cultivation; Cantliffe, D.J., Ed.; International Society Horticultural Science: Leuven, Belgium, 2007; pp. 443–448. [Google Scholar]
- Pezzarossa, B.; Remorini, D.; Gentile, M.L.; Massai, R. Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. J. Sci. Food Agric. 2012, 92, 781–786. [Google Scholar] [CrossRef]
- Agbemafle, R.; Owusu-Sekyere, J.D.; Otchere, J.; Acquaye, A.; Diabor, E.; Asi, J. Effect of Different Storage Methods on the Proximate Composition and Functional Properties of Cream-Skinned Sweet Potato(Ipomeabatatas Lam). Food Sci. 2014, 2, 33–44. [Google Scholar]
- Johnson, M.; Pace, R.D. Sweet potato leaves: Properties and synergistic interactions that promote health and prevent disease. Nutr. Rev. 2010, 68, 604–615. [Google Scholar] [CrossRef]
- Van An, L.; Frankow-Lindberg, B.E.; Lindberg, J.E. Effect of harvesting interval and defoliation on yield and chemical composition of leaves, stems and tubers of sweet potato (Ipomoea batatas L. (Lam.)) plant parts. Field Crop. Res. 2003, 82, 49–58. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, Z.H.; Wu, J.L.; Geng, Y.; Zhang, Q.; Tie, M.; Gu, X.J.; Tanokura, M.; Xue, Y.L. Foliar application is an effective method for incorporating selenium into peanut leaf proteins with antioxidant activities. Food Res. Int. 2019, 126, 8. [Google Scholar] [CrossRef]
- Ming, D.; Lei, Z.; Chaorui, L.; Guanghua, Z.; Xiaosong, H. Purification and characterization of a novel fungi Se-containing protein from Se-enriched Ganoderma lucidum mushroom and its Se-dependent radical scavenging activity. Eur. Food Res. Technol. 2007, 224, 659–665. [Google Scholar] [CrossRef]
- Vanamsterdam, F.T.M.; Roveri, A.; Maiorino, M.; Ratti, E.; Ursini, F. Lacidipine: A dihydropyridine calcium antagonist with antioxidant activity. Free Radic. Biol. Med. 1992, 12, 183–187. [Google Scholar] [CrossRef]
- Dantas, T.L.P.; Mendonca, V.P.; Jose, H.J.; Rodrigues, A.E.; Moreira, R. Treatment of textile wastewater by heterogeneous Fenton process using a new composite Fe2O3/carbon. Chem. Eng. J. 2006, 118, 77–82. [Google Scholar] [CrossRef]
- Balavigneswaran, C.K.; Sujin Jeba Kumar, T.; Moses Packiaraj, R.; Veeraraj, A.; Prakash, S. Anti-oxidant activity of polysaccharides extracted from Isocrysis galbana using RSM optimized conditions. Int. J. Biol. Macromol. 2013, 60, 100–108. [Google Scholar] [CrossRef]
- Alka, C.; Raj, K.; Bihari Srivastava, R.; Kumar Surapaneni, S.; Kulbhushan, T.; Inderpal, S. Isolation and characterization of phenolic compounds from Rhodiola imbricata, a Trans-Himalayan food crop having antioxidant and anticancer potential. J. Funct. Foods 2015, 16, 183–193. [Google Scholar] [CrossRef]
- Gulcin, I.; Elmastas, M.; Aboul-Enein, H.Y. Antioxidant activity of clove oil—A powerful antioxidant source. Arab. J. Chem. 2012, 5, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Yalong, G.; Hui, H.; Qiang, W.; Hongzhi, L. A novel process for peanut tofu gel: Its texture, microstructure and protein behavioral changes affected by processing conditions. LWT-Food Sci. Technol. 2018, 96, 140–146. [Google Scholar] [CrossRef]
- Dekok, L.J.; Kuiper, P.J.C. Effect of short-term dark incubation with sulfate, chloride and selenate on the glutathione content of spinach leaf discs. Physiol. Plant. 1986, 68, 477–482. [Google Scholar]
- Jiang, C.; Shen, J.; Xu, J.; Shao, F.; Li, T.; Zu, C. Effects of Se-enriched Soils on the Plant Growth, Selenium Uptake and Transport in Flue-cured Tobacco. Acta Bot. Boreali-Occident. Sin. 2014, 34, 2303–2308. [Google Scholar] [CrossRef]
- Niu, Q.; Dong, R.; Messia, M.C.; Ren, T.; Hu, X. Selenium in Se-enriched tartary buckwheat (Fagopyrum tataricum L. Gaertn.): Its molecular form and changes during processing. J. Cereal Sci. 2020, 95. [Google Scholar] [CrossRef]
- Ari, B.; Oz, E.; Can, S.Z.; Bakirdere, S. Bioaccessibility and bioavailability of selenium species in Se-enriched leeks (Allium Porrum) cultivated by hydroponically. Food Chem. 2021, 372, 131314. [Google Scholar] [CrossRef] [PubMed]
- Mu, T.H.; Sun, Y.L.; Liu, L.L.; Chang, H.R.; Xue, Y.L.; Wei, Y.M. Analysis of major soluble protein abstraction and purification from sweet potato roots. Food Res. Dev. 2005, 26, 17–20. [Google Scholar]
- Eustice, D.C.; Foster, I.; Kull, F.J.; Shrift, A. In vitro incorporation of selenomethionine into protein by vigna radiata polysomes. Plant Physiol. 1980, 66, 182–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.Q.; Zhao, W.; Yang, R.J. Steam Flash Explosion Assisted Dissolution of Keratin from Feathers. ACS Sustain. Chem. Eng. 2015, 3, 2036–2042. [Google Scholar] [CrossRef]
- Feng, H.B.; Fan, J.; Bo, H.Q.; Tian, X.; Bao, H.; Wang, X.H. Selenylation modification can enhance immune-enhancing activity of Chuanminshen violaceum polysaccharide. Carbohydr. Polym. 2016, 153, 302–311. [Google Scholar] [CrossRef]
- Chong, K.; Xiaoling, G.U.O.; Yongzhong, Z.; Xueying, C. Research on preparation of protein of Selenium-enriched soybean. Sci. Technol. Food Ind. 2008, 29, 192–194. [Google Scholar]
- Ren, G.M.; Li, K.K.; Hu, Y.; Yu, M.; Qu, J.J.; Xu, X.H. Optimization of selenizing conditions for Seleno-Lentinan and its characteristics. Int. J. Biol. Macromol. 2015, 81, 249–258. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, Q.; Chen, H.; Xiong, H. Distribution and effects of natural selenium in soybean proteins and its protective role in soybean β-conglycinin (7S globulins) under AAPH-induced oxidative stress. Food Chem. 2019, 272, 201–209. [Google Scholar] [CrossRef]
- Plaza, L.; Duvetter, T.; Van der Plancken, I.; Meersman, F.; Van Loey, A.; Hendrickx, M. Influence of environmental conditions on thermal stability of recombinant Aspergillus aculeatus pectinmethylesterase. Food Chem. 2008, 111, 912–920. [Google Scholar] [CrossRef]
- Byler, D.; Brouillette, J.N.; Susi, H. Quantitative studies of protein structure by FTIR deconvolution and curve fitting. Spectroscopy 1986, 1, 29–332. [Google Scholar]
- Li, Y.; Wang, Z.; Wang, R.; Sui, X.; Qi, B.; Han, F.; Bi, S.; Jiang, L. Fourier transform infrared spectroscopic analysis of soybean isolate protein at different heat treatment conditions. Sci. Technol. Food Ind. 2016, 37, 104–109. [Google Scholar]
- Kamal, M.Z.; Ahmad, S.; Molugu, T.R.; Vijayalakshmi, A.; Deshmukh, M.V.; Sankaranarayanan, R.; Rao, N.M. In Vitro Evolved Non-Aggregating and Thermostable Lipase: Structural and Thermodynamic Investigation. J. Mol. Biol. 2011, 413, 726–741. [Google Scholar] [CrossRef]
- Kim, M.S.; Lei, X.G. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR. Appl. Microbiol. Biotechnol. 2008, 79, 69–75. [Google Scholar] [CrossRef]
- Yuen, C.M.; Liu, D.R. Dissecting protein structure and function using directed evolution. Nat. Methods 2007, 4, 995–997. [Google Scholar] [CrossRef]
- Tie, M.; Sun, J.; Gao, Y.; Yao, Y.; Wang, T.; Zhong, H.; Li, H. Identification and quantitation of seleno-amino acids in mung bean sprouts by high-performance liquid chromatography coupled with mass spectrometry (HPLC–MS). Eur. Food Res. Technol. 2017, 244, 491–500. [Google Scholar] [CrossRef]
- Schrauzer, G.N. Selenomethionine: A review of its nutritional significance, metabolism and toxicity. J. Nutr. 2000, 130, 1653–1656. [Google Scholar] [CrossRef] [Green Version]
- Lingling, H.; Chunyang, L.; Xiaoxiong, Z.; Jiansu, W. Antioxidant activity of selenium-enriched germinated brown rice protein. Food Sci. China 2016, 37, 99–103. [Google Scholar] [CrossRef]
Sample Composition of the Secondary Structure (%) | ||||
---|---|---|---|---|
α-Helixes | β-Sheets | β-Turns | Random Coils | |
SSP | 31.94 ± 1.90 a | 15.63 ± 0.25 c | 32.52 ± 0.95 a | 19.90 ± 0.91 a |
Low-Se SSP | 8.34 ± 0.15 c | 54.53 ± 0.35 a | 35.49 ± 0.15 b | 1.74 ± 0.16 c |
High-Se SSP | 15.00 ± 0.18 b | 34.8 ± 0.72 b | 36.80 ± 1.07 b | 13.40 ± 1.9 b |
Element | SSP | Low-Se SSP | High-Se SSP | |||
---|---|---|---|---|---|---|
at% | ±SD | at% | ±SD | at% | ±SD | |
C K | 72.00 | 4.16 a | 61.00 | 5.73 b | 58.80 | 5.11 b |
O K | 16.10 | 1.06 b | 23.10 | 2.42 a | 25.70 | 1.55 a |
N K | 2.78 | 0.40 b | 11.80 | 1.97 a | 10.80 | 1.60 a |
P K | 0.87 | 0.21 a | 0.56 | 0.11 ab | 0.51 | 0.10 b |
S K | 0.87 | 0.11 a | 0.73 | 0.11 a | 0.41 | 0.06 b |
Se K | 0.04 | 0.02a | 0.06 | 0.02a | 0.09 | 0.04b |
Na K | 3.46 | 0.89a | 2.09 | 0.23c | 3.00 | 0.26ab |
Cl K | 3.92 | 0.40a | 0.75 | 0.13b | 0.72 | 0.05b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Q.; Wu, J.-L.; Jiang, L.-P.; Sun, S.-Q.; Gu, X.-J.; Tie, M.; Tanokura, M.; Xue, Y.-L. Se-O Bond Is Unique to High Se Enriched Sweet Potato Stem Protein with Better Antioxidant Ability. Foods 2021, 10, 3064. https://doi.org/10.3390/foods10123064
Gao Q, Wu J-L, Jiang L-P, Sun S-Q, Gu X-J, Tie M, Tanokura M, Xue Y-L. Se-O Bond Is Unique to High Se Enriched Sweet Potato Stem Protein with Better Antioxidant Ability. Foods. 2021; 10(12):3064. https://doi.org/10.3390/foods10123064
Chicago/Turabian StyleGao, Qi, Jia-Le Wu, Lan-Ping Jiang, Su-Qi Sun, Xue-Jun Gu, Mei Tie, Masaru Tanokura, and You-Lin Xue. 2021. "Se-O Bond Is Unique to High Se Enriched Sweet Potato Stem Protein with Better Antioxidant Ability" Foods 10, no. 12: 3064. https://doi.org/10.3390/foods10123064
APA StyleGao, Q., Wu, J. -L., Jiang, L. -P., Sun, S. -Q., Gu, X. -J., Tie, M., Tanokura, M., & Xue, Y. -L. (2021). Se-O Bond Is Unique to High Se Enriched Sweet Potato Stem Protein with Better Antioxidant Ability. Foods, 10(12), 3064. https://doi.org/10.3390/foods10123064