Rosemary Extract and Essential Oil as Drink Ingredients: An Evaluation of Their Chemical Composition, Genotoxicity, Antimicrobial, Antiviral, and Antioxidant Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oils and Extracts
2.2. Gas Chromatography–Mass Spectrometry
2.3. Liquid Chromatography–Mass Spectrometry
2.4. Antioxidant Activity
2.4.1. DPPH Radical Scavenging Assay
2.4.2. FRAP Assay
2.4.3. ABTS Decolorization Assay
2.5. Mutagenicity Assay
2.6. Antibacterial and Antifungal Assay
2.7. Antiviral Assay
2.8. Data Analysis
3. Results and Discussion
3.1. Chemical Analysis
3.2. Antioxidant Activity
3.3. Antimutagenesis
3.4. Antimicrobial and Antiviral Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajalan, I.; Rouzbahani, R.; Pirbalouti, A.G.; Maggi, F. Antioxidant and antibacterial activities of the essential oils obtained from seven Iranian populations of Rosmarinus officinalis. Ind. Crops Prod. 2017, 107, 305–311. [Google Scholar] [CrossRef]
- Al-Megrin, W.A.; Al Sadhan, N.A.; Metwally, D.M.; Al-Talhi, R.A.; El-Khadragy, M.F.; Abdel-Hafez, L.J.M. Potential antiviral agents of Rosmarinus officinalis extract against herpes viruses 1 and 2. Biosci. Rep. 2020, 40, BSR20200992. [Google Scholar] [CrossRef]
- Altinier, G.; Sosa, S.; Aquino, R.P.; Mencherini, P.; Loggia, R.D.; Tubaro, A. Characterization of Topical Antiinflammatory Compounds in Rosmarinus officinalis L. J. Agric. Food Chem. 2007, 55, 1718–1723. [Google Scholar] [CrossRef] [PubMed]
- Malvezzi de Macedo, L.; Mendes dos Santos, E.; Militão, L.; Tundisi, L.L.; Ataide, J.A.; Souto, E.B.; Mazzola, P.G. Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.) and Its Topical Applications: A Review. Plants 2020, 9, 651. [Google Scholar] [CrossRef] [PubMed]
- Lamponi, S.; Baratto, M.C.; Miraldi, E.; Baini, G.; Biagi, M. Chemical Profile, Antioxidant, Anti-Proliferative, Anticoagulant and Mutagenic Effects of a Hydroalcoholic Extract of Tuscan Rosmarinus officinalis. Plants 2021, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Pangcong, D.; Liu, H. Research on the biological activity of rosemary extracts and its application in food. E3S Web Conf. 2021, 251, 02034–02041. [Google Scholar]
- Guo, Y.; Xie, J.; Li, X.; Yuan, Y.; Zhang, L.; Hu, W.; Luo, H.; Yu, H.; Zhang, R. Antidepressant Effects of Rosemary Extracts Associate with Anti-inflammatory Effect and Rebalance of Gut Microbiota. Front. Pharmacol. 2018, 9, 1126–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlemi, A.V.; Katsikoudi, A.; Kontogianni, V.G.; Kellici, T.F.; Iatrou, G.; Lamari, F.N.; Tzakos, A.G.; Margarity, M. Rosemary tea consumption results to anxiolytic- and anti-depressant like behavior of adult male mice and inhibits all cerebral area and livercholinesterase activity; phytochemical investigation and in silico studies. Chem. Biol. Interact. 2015, 237, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Moss, M.; Smith, E.; Milner, M.; McCready, J. Acute ingestion of rosemary water: Evidence of cognitive and cerebrovascular effects in healthy adults. J. Psychopharmacol. 2018, 32, 1319–1329. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/food/food-additives-petitions/food-additive-status-list#ftnR (accessed on 9 November 2021).
- EFSA Panel on Food Additives and Nutrient Sources Added to Food (EFSA ANS Panel); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; et al. Refined Exposure Assessment of Extracts of Rosemary (E 392) from Its Use as Food Additive. EFSA J. 2018, 16, e05373. [Google Scholar]
- Industry ARC “Rosemary Extracts Market—Industry Analysis, Market Size, Share, Trends, Application Analysis, Growth and Forecast 2021–2026”. Available online: https://www.industryarc.com/Research/Rosemary-Extracts-Market-Research-504501 (accessed on 13 October 2021).
- Tzima, K.; Makris, D.; Nikiforidis, C.V.; Mourtzinos, I. Potential use of Rosemary, Propolis and Thyme as Natural Food Preservatives. J. Nutri. Health 2015, 1, 6–12. [Google Scholar]
- Kaur, R.; Gupta, T.B.; Bronlund, J.; Kaur, L. The potential of rosemary as a functional ingredient of meat products—A review. Food Rev. Int. 2021, 16, 1–21. [Google Scholar] [CrossRef]
- Tonutti, I.; Liddle, P. Aromatic plants in alcoholic beverages. A review. Flavour Fragr. J. 2010, 25, 341–350. [Google Scholar] [CrossRef]
- Ojeda-Sana, A.M.; van Baren, C.M.; Elechosa, M.A.; Juárez, M.A.; Moreno, S. New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control 2013, 31, 189–195. [Google Scholar] [CrossRef]
- Pitarokili, D.; Tzakou, O.; Loukis, A. Composition of the Essential oil of Spontaneous Rosmarinus officinalis from Greece and Antifungal Activity Against Phytopathogenic Fungi. J. Essent. Oil Res. 2007, 20, 457–459. [Google Scholar] [CrossRef]
- Jianga, Y.; Wua, N.; Fua, Y.J.; Wanga, W.; Luo, M.; Zhao, C.J.; Zua, Y.G.; Liua, X.L. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ. Toxicol. Pharmacol. 2011, 32, 63–68. [Google Scholar] [CrossRef]
- Moreno, S.; Scheyer, T.; Romano, C.S.; Vojnov, A.A. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic. Res. 2005, 40, 223–231. [Google Scholar] [CrossRef]
- Oreopoulou, A.; Papavassilopoulou, E.; Bardouki, H.; Vamvakias, M.; Bimpilas, A.; Oreopoulou, V. Antioxidant recovery from hydrodistillation residues of selected Lamiaceae species by alkaline extraction. J. Appl. Res. Med. 2018, 8, 83–89. [Google Scholar] [CrossRef]
- Ekambaram, S.P.; Perumal, S.S.; Balakrishnan, A.; Marappan, N.; Srinivasan, S.; Viswanathan, G.V. Antibacterial synergy between rosmarinic acid and antibiotics against methicillin-resistant Staphylococcus aureus. J. Intercult. Ethnopharmacol. 2016, 5, 358–363. [Google Scholar] [CrossRef]
- Kontogianni, V.G.; Tomic, G.; Nikolic, I.; Nerantzaki, A.A.; Sayyad, N.; Stosic-Grujicic, S.; Stojanovic, I.; Gerothanassis, I.P.; Tzakos, A.P. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 2013, 136, 120–129. [Google Scholar] [CrossRef]
- Lemos, M.F.; Lemos, M.F.; Pacheco, H.P.; Endringer, D.C.; Scherer, R. Seasonality modifies rosemary’s composition and biological activity. Ind. Crops Prod. 2015, 70, 41–47. [Google Scholar] [CrossRef]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2012; Volume 4. [Google Scholar]
- National Institute of Standards and Technology. NIST WebBook. Available online: http://webbook.nist.gov/chemistry/ (accessed on 9 September 2021).
- Tzima, K.; Brunton, N.P.; Rai, D.K. Evaluation of the impact of chlorophyll removal techniques on polyphenols in rosemary and thyme by-products. J. Food Biochem. 2020, 44, 13148–13169. [Google Scholar] [CrossRef] [PubMed]
- Berenice, M.; Mendoza, P.; Llorens-Escobar, L.; Vanegas-Espinoza, P.E.; Cifuentes, A.; Ibanez, E.; Del Villar-Martınez, A.A. Chemical characterization of leaves and calli extracts of Rosmarinus officinalis by UHPLC-MS. Electrophoresis 2019, 41, 1776–1783. [Google Scholar]
- Kristien, M.; Zeiger, E. The Ames Salmonella/microsome mutagenicity assay, Fundamental and Molecular Mechanisms of Mutagenesis. Mutat. Res. 2000, 455, 29–60. [Google Scholar]
- Taherkhami, T.; Zakaria, R.A.; Taherkharni, M. Mutagenic and Anti-mutagenic properties of the essential oil of Jurinea leptoloba DC by Ames Test. Cumhur. Univ. Fac. Sci. Sci. J. 2015, 36, 1682–1687. [Google Scholar]
- Androutsopoulou, C.; Christopoulou, S.D.; Hahalis, P.; Kotsalou, C.; Lamari, F.N.; Vantarakis, A. Evaluation of Essential oils and Extracts of Rose Geranium and Rose Petals as Natural Preservatives in Terms of Toxicity, Antimicrobial, and Antiviral Activity. Pathogens 2021, 10, 494. [Google Scholar] [CrossRef]
- Mudyiwa, M.; Muredzi, P.; Nyati, H. Isolation of Citric Acid Producing Asp. niger Strains; Lap Lambert Academic Publishing: Chisinau, Republic of Moldova, 2013. [Google Scholar]
- Horieh, S.; Abbasi, M. Evaluation of anti-adenovirus activity of some plants from Lamiaceae family grown in Iran in cell culture. Afr. J. Biotechnol. 2011, 10, 17546–17550. [Google Scholar]
- Lakusic, D.V.; Ristic, M.S.; Slavkovska, V.N.; Sinzar-Sekulic, J.B.; Lakusic, B.S. Environment-Related Variations of the Composition of the Essential Oils of Rosemary (Rosmarinus officinalis L.) in the Balkan Peninsula. Chem. Biodivers. 2012, 9, 1286–1302. [Google Scholar] [CrossRef] [PubMed]
- Borrás-Linares, I.; Stojanović, Z.; Quirantes-Piné, R.; Arráez-Román, D.; Švarc-Gajić, J.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Rosmarinus officinalis Leaves as a Natural Source of Bioactive Compounds. Int. J. Mol. Sci. 2014, 15, 20585–20606. [Google Scholar] [CrossRef]
- Mena, P.; Cirlini, M.; Tassotti, M.; Herrlinger, K.A.; Dall’Asta, C.; Del Rio, D. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules 2016, 21, 1576. [Google Scholar] [CrossRef] [PubMed]
- Santana-Méridas, O.; Polissiou, M.; Izquierdo-Melero, M.E.; Astraka, K.; Tarantilis, P.A.; Herraiz-Peñalver, D.; Sánchez-Vioque, R. Polyphenol composition, antioxidant and bioplaguicide activities of the solid residue from hydrodistillation of Rosmarinus officinalis L. Ind. Crops Prod. 2014, 59, 125–134. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Regueiro, J.; Martínez-Huélamo, M.; Rinaldi Alvarenga, J.F.; Neto Leal, L.; Lamuela-Raventos, R.M. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: Rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem. 2014, 154, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Beretta, G.; Artali, R.; Maffei Facino, R.; Gelmini, F. An analytical and theoretical approach for the profiling of the antioxidant activity of essential oils: The case of Rosmarinus officinalis L. J. Pharm. Biomed. Anal. 2011, 55, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Insawang, S.; Pripdeevech, P.; Tanapichatsakul, C.; Khruengsai, S.; Monggoot, S.; Nakham, T.; Artrod, A.; D’Souza, P.E.; Panuwete, P. Essential Oil Compositions and Antibacterial and Antioxidant Activities of Five Lavandula stoechas Cultivars Grown in Thailand. Chem. Biodivers. 2019, 16, e1900371–e1900383. [Google Scholar] [CrossRef] [PubMed]
- Göze, I.; Vural, N.; Ercan, N. Characterization of Essential oil and Antioxidant Activities of Some Species of Salvia in Turkey. Nat. Volatiles Essent. Oils 2016, 3, 1–7. [Google Scholar]
- Rašković, A.; Milanović, I.; Pavlović, N.; Ćebović, T.; Vukmirović, S.; Mikov, M. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Complement. Altern. Med. 2014, 14, 225. [Google Scholar] [CrossRef] [Green Version]
- El-Demerdash, F.M.; El-Sayed, R.A.; Abdel-Daim, M.M. Hepatoprotective potential of Rosmarinus officinalis essential oil against hexavalent chromium-induced hematotoxicity, biochemical, histological, and immunohistochemical changes in male rats. Environ. Sci. Pollut. Res. 2021, 28, 17445–17456. [Google Scholar] [CrossRef]
- Yeddes, W.; Chalghoum, A.; Aidi-Wannes, W.; Ksouri, R.; Tounsi, M.S. Effect of bioclimatic area and season on phenolics and antioxidant activities of rosemary (Rosmarinus officinalis L.) leaves. J. Essent. Oil Res. 2019, 31, 432–443. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, J.; Yang, S.; Cuic, S.W.; Wang, M.; Haob, W. Rosemary extract reverses oxidative stress through activation of Nrf2 signaling pathway in hamsters fed on high fat diet and HepG2 cells. J. Funct. Foods 2020, 74, 1–10. [Google Scholar] [CrossRef]
- Dabaghzadeh, F.; Mehrabani, M.; Abdollahi, H.; Karami-Mohajeri, S. Antioxidant and anticholinergic effects of rosemary (Salvia rosmarinus) extract: A double-blind randomized controlled trial. Adv. Integr. Med. 2021, 3. in press. [Google Scholar] [CrossRef]
- Contini, A.; Di Bello, D.; Azzarà, A.; Giovanelli, S.; D’Urso, G.; Piaggi, S.; Pinto, B.; Pistelli, L.; Scarpatoa, R.; Testi, S. Assessing the cytotoxic/genotoxic activity and estrogenic/antiestrogenic potential of essential oils from seven aromatic plants. Food Chem. Toxicol. 2020, 138, 1112052–1112063. [Google Scholar] [CrossRef]
- De Oliveira, J.F.; de Jesus, D.; Figueira, L.W.; De Oliveira, F.D.; Soares, C.P.; Camargo, S.C.A.; Jorge, A.O.C.; De Oliveira, L.D. Biological activities of Rosmarinus officinalis L. (rosemary) extract as analyzed in microorganisms and cells. Exp. Biol. Med. 2017, 242, 625–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razavi-Azarkhiavi, K.; Behravan, J.; Mosaffa, F.; Sehatbakhsh, S.; Shirani, K.; Karimi, G. Protective effects of aqueous and ethanol extracts of rosemary on H2O2-induced oxidative DNA damage in human lymphocytes by comet assay. J. Complement. Integr. Med. 2014, 11, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Lazalde-Ramos, B.P.; Zamora-Perez, A.L.; Ortega-Guerrero, A.I.; Quintero-Fraire, S.Z.; Palacios-Lara, O.; Quirarte-Báez, S.M.; Galaviz-Hernández, C.; Sosa-Macías, M.; Ortiz-García, Y.M.; Morales-Velazquez, G. Genomic Instability Decreases in HIV Patient by Complementary Therapy with Rosmarinus officinalis Extracts. J. Med. Food 2020, 23, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
- Salih, T.F.M.; Mohammed, L.M.A.; Qadar, K.O. Chemical Analysis and Growth Inhibitory Effect of Rosemary Plant on Aspergillus niger. Kurd. J. Appl. Res. (KJAR) 2017, 2, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Battistini, R.; Rossini, I.; Ercolini, C.; Goria, M.; Callipo, M.R.; Maurella, C.; Pavoni, E.; Serracca, L. Antiviral Activity of Essential Oils Against Hepatitis A Virus in Soft Fruits. Food Environ. Virol. 2018, 11, 90–95. [Google Scholar] [CrossRef]
- Asif, M.; Saleem, M.; Saadullah, M.; Yaseen, H.S.; Al Zarzour, R. COVID 19 and therapy with essential oils having antiviral, antiinflammatory, and immunomodulatory properties. Inflammopharmacology 2020, 28, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Schnitzler, P.; Astani, A.; Reichling, J. Antiviral Effects of Plant-Derived Essential Oils and Pure Oil Components. In Lipids and Essential Oils as Antimicrobial Agents; Thormar, H., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2011; pp. 239–254. [Google Scholar]
- Mahmood, H.M.; Khudhair, I.A.; Nasir, G.A.; Abdulla, A.S.; Shujairi, A. In vitro Scavenging Activity of Rosemary Extract and its Activity against Some Pathogenic Microorganisms. Ann. Trop. Med. Public Health 2020, 23, 232–239. [Google Scholar] [CrossRef]
- Swari, D.A.M.A.; Santika, I.W.M.; Aman, I.G.M. Antifungal activities of ethanol extract of rosemary leaf (Rosmarinus officinalis L.) against Candida albicans. J. Pharm. Sci. Appl. 2020, 2, 28–35. [Google Scholar]
Number | Volatile Compounds | AIcal | AΙlit | % Peak Area/IS Area |
---|---|---|---|---|
1 | Tricyclene | 918 | 921 | 0.22 ± 0.00 |
2 | α-Pinene st | 929 | 932 | 12.94 ± 0.49 |
3 | Camphene | 945 | 946 | 6.38 ± 0.12 |
4 | β-Pinene | 974 | 974 | 8.94 ± 0.19 |
5 | Myrcene | 991 | 988 | 1.37 ± 0.02 |
6 | 3-Carene | 1008 | 1008 | 0.32 ± 0.00 |
7 | p-Cymene | 1022 | 1020 | 0.17 ± 0.00 |
8 | Eucalyptol (1,8-cineole) st | 1032 | 1026 | 40.10 ± 0.65 |
9 | Terpinolene | 1085 | 1086 | 0.08 ± 0.00 |
10 | Linalool st | 1092 | 1095 | 1.41 ± 0.05 |
11 | Camphor st | 1151 | 1141 | 12.40 ± 0.27 |
12 | Borneol | 1170 | 1165 | 5.31 ± 0.21 |
13 | Terpinen-4-ol | 1179 | 1174 | 1.31 ± 0.08 |
14 | α-terpineol | 1195 | 1186 | 3.07 ± 0.15 |
15 | Myrtenol | 1195 | 1194 | nq |
16 | Carvone | 1249 | 1239 | nq |
17 | Bornyl acetate | 1288 | 1284 | 1.54 ± 0.06 |
18 | E-Caryophyllene | 1414 | 1417 | 3.45 ± 0.07 |
19 | α-Humulene | 1461 | 1452 | 0.13 ± 0.01 |
20 | Caryophyllene oxide | 1578 | 1582 | 0.66 ± 0.11 |
number of components | 20 | |||
% total identified | 99.81 ± 2.50 |
Peak No. | Rt (min) | Negative Ionization (m/z) | Positive Ionization (m/z) | M.W. | Molecular Formula | Tentative Identification | Concentration (μg/mL) |
---|---|---|---|---|---|---|---|
1 | 2.1 | 341 [M − H]− 387 [M + FA−H]− 179 [caffeic − H]− 683 [2M − H]− | 365 [M + Na]+ | 342 | C15H18O9 | Caffeic acid hexoside [39] | 14.47 ± 0.44 |
2 | 16.6 | 325 [M − H]− 651 [2M − H]− 163 [p-coumaric − H]− | 349 [M + Na]+ 365 [M + K]+ 691 [2M + K]+ 183 [M + H + K]2+ | 326 | C15H18O8 | Coumaric acid hexoside [39] | nq |
3 | 17.8 | 305 [M − H]− | 307 [M + H]+ 329 [M + Na]+ 345 [M + K]+ | 306 | C15H14O7 | Gallocatechin [29,36] | 163.77 ± 0.83 |
4 | 27.8 | 477 [M − H]− 955 [2M − H]− 315 [M – H − 162(hexose)]− | 479 [M + H]+ 501 [M + Na]+ 979 [2M + Na]+ | 478 | C22H22O12 | Isorhamnetin 3-O-hexoside [35,36] | 43.47 ± 1.22 |
5 | 32.4 | 461 [M − H]− 923 [2M − H]− 299 [M – H – 162 (hexose)]− | 463 [M + H]+ 485 [M + Na]+ 947 [2M + Na]+ | 462 | C22H22O11 | Homoplantaginin (Hispidulin-7-glucoside) [23,36,37] | nq |
6 | 33.7 | 359 [M − H]− 719 [2M − H]− | 383 [M + Na]+ 743 [2M + Na]+ | 360 | C18H16O8 | Rosmarinic acid st | 111.75 ± 1.24 |
7 | 34.5 | 461 [M − H]− 923 [2M − H]− 285 [luteolin − H]− | 463 [M + H]+ | 462 | C21H18O12 | Luteolin -3-O-acetyl-O- glucuronide [37] | 88.57 ± 1.85 |
8 | 41.0 | 503 [M − H]− 1007 [2M − H]− 285 [luteolin − H]− 390 443 | 505 [M + H]+ | 504 | C23H20O13 | Luteolin-3-O-(O-acetyl)-β-D-glucuronide isomer I [36,37] | 16.27 ± 2.94 |
9 | 41.8 | 623 [M − H]− | 625 [M + H]+ 647 [M + Na]+ | 624 | C28H32O16 | Isorhamnetin-rutinoside | nq |
10 | 42.3 | 285 [M − H]− 571 [2M − H]− | 287 [M + H]+ | 286 | C15H10O6 | Luteolin [37,38] | 5.02 ± 2.23 |
11 | 42.6 | 315 [M − H]− | 317 [M + H]+ | 316 | C16H12O7 | Isorhamnetin [29,37] | nq |
12 | 43.0 | 207 [M − H]− | 209 [M + H]+ 231 [M + Na]+ | 208 | Trihydroxy cinnamic acid derivative [29] | 35.06 ± 0.06 | |
13 | 46.7 | 329 [M − H]− | 353 [M + Na]+ 683 [2M + Na]+ | 330 | C17H14O7 | Cirsiliol | 11.77 ± 1.2 |
14 | 49.7 | 345 [M − H]− 691 [2M − H]− | 347 [M + H]+ 715 [2M + Na]+ | 346 | C20H26O5 | Rosmanol [23,29,36,37,38] | 6.52 ± 0.1 |
15 | 51.0 | 345 [M−H]− 691 [2M − H]− | 347 [M + H]+ 715 [2M + Na]+ | 346 | C20H26O5 | Rosmanol isomer [23,36,37] | 40.25 ± 0.11 |
16 | 52.4 | 345 [M − H]− 691 [2M − H]− | 369 [M + Na]+ 715 [2M + Na]+ | 346 | C20H26O5 | Epirosmanol [23,36,37] | 14.05 ± 0.1 |
17 | 52.6 | 359 [M − H]− | 393 [M + Na]+ | 360 | C18H16O8 | Epirosmanol methyl ether [36,37] | nq |
18 | 53.7 | 343 [M − H]− 389 [M + FA − H]− | 367 [M + Na]+ 711 [2M + Na]+ | 344 | C20H24O5 | Rosmadial [23,36,38] | 15.77 ± 0.12 |
19 | 54.2 | 359 [M − H]− | 361 [M + H]+ 383 [M + Na]+ | 360 | C18H16O8 | Epirosmanol methyl ether [37] | 1.31 ± 0.12 |
20 | 55.0 | 329 [M − H]− 375 [M + FA − H]− | 331 [M + H]+ 353 [M + Na]+ 683 [2M + Na]+ | 330 | C20H26O4 | Carnosol [37,39] | nq |
21 | 55.5 | 359 [M − H]− | 361 [M + H]+ 383 [M + Na]+ | 360 | C18H16O8 | Rosmanol methyl ether isomer [37] | 9.72 ± 0.13 |
22 | 60.7 | 403 [M + H]− | 427 [M + Na]+ 831 [2M + Na]+ | 404 | Unknown | 27.97 ± 0.34 # | |
23 | 63.7 | 373 [M − H]− | 375 [M + H]+ 397 [M + Na]+ | 374 | C22H30O5 | 11,12-Dimethyl rosmanol [37] | 12.66 ± 3.83 |
24 | 75.2 | 345 [M − H]− | 369 [M + Na]+ 715 [2M + Na]+ | 346 | C20H26O5 | 12-O-Methyl carnosic acid [37] | 3.1 ± 0.11 |
Rosemary | DPPH | ABTS | FRAP |
---|---|---|---|
Sample | mg BHT/mL | mg Trolox/mL | mg FeSO4 × 7H2O/mL |
Essential Oil | 15.10 ± 4.75 | 2.21 ± 0.11 | 22.84 ± 2.32 |
Extract | 1.04 ± 0.06 | 0.25 ± 0.02 | 0.52 ± 0.05 |
Essential Oil Concentration | Effect | Extract Concentration | Effect |
---|---|---|---|
100% | Cytotoxic | 100% | Non-cytotoxic |
5% | Non-cytotoxic | 90% | Non-cytotoxic |
Essential Oil | AdV 109 PFU/mL | AdV 108 PFU/mL | AdV 107 PFU/mL | AdV 106 PFU/mL | AdV 105 PFU/mL | Adv 104 PFU/mL |
---|---|---|---|---|---|---|
5% | + | + | + | + | + | + |
Extract | ||||||
90% | + | + | + | + | + | + |
50% | + | + | + | + | + | + |
25% | + | + | + | + | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christopoulou, S.D.; Androutsopoulou, C.; Hahalis, P.; Kotsalou, C.; Vantarakis, A.; Lamari, F.N. Rosemary Extract and Essential Oil as Drink Ingredients: An Evaluation of Their Chemical Composition, Genotoxicity, Antimicrobial, Antiviral, and Antioxidant Properties. Foods 2021, 10, 3143. https://doi.org/10.3390/foods10123143
Christopoulou SD, Androutsopoulou C, Hahalis P, Kotsalou C, Vantarakis A, Lamari FN. Rosemary Extract and Essential Oil as Drink Ingredients: An Evaluation of Their Chemical Composition, Genotoxicity, Antimicrobial, Antiviral, and Antioxidant Properties. Foods. 2021; 10(12):3143. https://doi.org/10.3390/foods10123143
Chicago/Turabian StyleChristopoulou, Spyridoula D., Chrysa Androutsopoulou, Panagiotis Hahalis, Chrysoula Kotsalou, Apostolos Vantarakis, and Fotini N. Lamari. 2021. "Rosemary Extract and Essential Oil as Drink Ingredients: An Evaluation of Their Chemical Composition, Genotoxicity, Antimicrobial, Antiviral, and Antioxidant Properties" Foods 10, no. 12: 3143. https://doi.org/10.3390/foods10123143
APA StyleChristopoulou, S. D., Androutsopoulou, C., Hahalis, P., Kotsalou, C., Vantarakis, A., & Lamari, F. N. (2021). Rosemary Extract and Essential Oil as Drink Ingredients: An Evaluation of Their Chemical Composition, Genotoxicity, Antimicrobial, Antiviral, and Antioxidant Properties. Foods, 10(12), 3143. https://doi.org/10.3390/foods10123143