Analysis of Physicochemical Parameters of Congress Worts Prepared from Special Legume Seed Malts, Acquired with and without Use of Enzyme Preparations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Legume Seeds
2.3. Malt
2.4. Enzyme Preparations
2.5. Malting Procedure
2.5.1. Steeping and Germination
2.5.2. Kilning and Grinding
2.6. Mashing—Congress Wort Production
2.6.1. Congress Wort Production from 100% Legume Malt
2.6.2. Congress Wort Production with Addition of 30% Gelatinised Legume Malt
2.7. Analyses of the Acquired Worts
2.7.1. Saccharification Time
2.7.2. Wort pH
2.7.3. Wort Extract Content
2.7.4. Wort Volume
2.7.5. Wort Viscosity
2.7.6. Simplified Brewhouse Efficiency
- BE—simplified brewhouse efficiency (%);
- E—extract content of the wort (°Plato);
- Vk—final volume of the wort (mL);
- Vk—maximal volume of the wort—for 2.6.1 set at 200 mL, for 2.6.2 set at 400 mL.
2.8. Analyses of Phenolic Components and Antioxidant Activity of Legume Seed Malts and Legume Seed Malt Worts
2.8.1. Preparation of the Worts
2.8.2. Preparation of the Methanol Extracts from Legume Seeds, Legume Seed Malts, and Barley Malt
2.8.3. Concentration of Phenolic Compounds
2.8.4. ABTS•+ Assay
2.8.5. DPPH• Assay
2.8.6. FRAP Assay
2.9. Statistical Analysis
3. Results
3.1. Analyses of Physicochemical Parameters of the Congress Worts Produced from Legume Seed Malts
3.1.1. Saccharification Time of the Worts
3.1.2. pH of the Worts
3.1.3. Extract of the Worts
3.1.4. Volume of the Worts
3.1.5. Viscosity of the Worts
3.1.6. Simplified Brewhouse Efficiency
3.2. Analyses of the Phenolic Components and Antioxidant Activity of Legume Seed Malts and Legume Seed Malt Worts
3.2.1. Concentration of Phenolic Components and Antioxidant Activity of the Legume Seeds, Legume Seed Malts, and in Barley Malt
3.2.2. Concentration of the Phenolic Components and Antioxidant Activity in Legume Seed Malt Worts and Worts Prepared from Gelatinised Legume Seed Malts
4. Discussion
4.1. Analyses of Physicochemical Parameters of the Congress Worts Produced from Legume Seed Malts
4.1.1. Saccharification Time
4.1.2. Wort pH
4.1.3. Wort Extract
4.1.4. Wort Volume
4.1.5. Wort Viscosity
4.1.6. Brewhouse Efficiency
4.2. Analyses of the Phenolic Components and Antioxidant Activity of Legume Seed Malts and Legume Seed Malt Worts
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Meena, R.S.; Lal, R. Legumes and Sustainable Use of Soils. In Legumes for Soil Health and Sustainable Management, 1st ed.; Meena, R.S., Das, A., Yadav, G.S., Lal, R., Eds.; Springer Nature: Singapore, 2018; pp. 1–32. [Google Scholar]
- Sparvoli, F.; Bollini, R.; Cominelli, E. Nutritional Value. In Grain Legumes, 1st ed.; De Ron, A.M., Ed.; Springer Science + Business: New York, NY, USA, 2015; pp. 291–326. [Google Scholar]
- Graça, J.; Godinho, C.A.; Truninger, M. Reducing meat consumption and following plant-based diets: Current evidence and future directions to inform integrated transitions. Trend Food Sci. Technol. 2019, 91, 380–390. [Google Scholar] [CrossRef] [Green Version]
- De La Peña, T.C.; Pueyo, J.J. Legumes in the reclamation of marginal soils, from cultivar and inoculant selection to transgenic approaches. Agron. Sustain. Dev. 2011, 32, 65–91. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Meena, R.S.; Lal, R.; Yadav, G.S.; Mitran, T.; Meena, B.L.; Mohan Lal Dotaniya, M.L.; El-Sabagh, A. Role of Legumes in Soil Carbon Sequestration. In Legumes for Soil Health and Sustainable Management, 1st ed.; Meena, R.S., Das, A., Yadav, G.S., Lal, R., Eds.; Springer Nature: Singapore, 2018; pp. 109–138. [Google Scholar]
- Dhital, S.; Bhattarai, R.R.; Gorham, J.; Gidley, M.J. Intactness of cell wall structure controls the in vitro digestion of starch in legumes. Food Funct. 2016, 7, 1367–1379. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Wang, Y.; Wang, M.; Jane, J.; Du, S. Physicochemical properties and in vitro digestibility of legume starches. Food Hydrocoll. 2017, 63, 249–255. [Google Scholar] [CrossRef]
- Kaushik, G.; Singhal, P.; Chaturvedi, S. Food Processing for Increasing Consumption: The Case of Legumes. In Food Processing for Increased Quality and Consumption, 1st ed.; Grumezescu, A., Holban, A.M., Eds.; Academic Press: London, UK, 2018; pp. 1–28. [Google Scholar]
- Zander, P.; Amjath-Babu, T.S.; Preissel, S.; Reckling, M.; Bues, A.; Schläfke, N.; Kuhlman, T.; Bachinger, J.; Uthes, S.; Stoddard, F.; et al. Grain legume decline and potential recovery in European agriculture: A review. Agron. Sustain. Dev. 2016, 36, 26. [Google Scholar] [CrossRef]
- Bathgate, G.N. A review of malting and malt processing for whisky distillation. J. Inst. Brew. 2016, 122, 197–211. [Google Scholar] [CrossRef]
- Briggs, D.E. Malts and Malting, 1st ed.; Blackie Academic & Professional: London, UK, 1998; pp. 133–218. [Google Scholar]
- Ma, M.; Zhang, H.; Xie, Y.; Yang, M.; Tang, J.; Wang, P.; Yang, R.; Gu, Z. Response of nutritional and functional composition, anti-nutritional factors and antioxidant activity in germinated soybean under UV-B radiation. LWT 2020, 118, 108709. [Google Scholar] [CrossRef]
- Chavan, M.; Gat, Y.; Harmalkar, M.; Wagnmare, R. Development of non-dairy fermented probiotic drink based on germinated and ungerminated cereals and legume. LWT 2018, 91, 339–344. [Google Scholar] [CrossRef]
- Aisyah, S.; Vincken, J.P.; Andini, S.; Mardiah, Z.; Gruppen, H. Compositional changes in (iso)flavonoids and estrogenic activity of three edible Lupinus species by germination and Rhizopus-elicitation. Phytochemistry 2016, 122, 65–75. [Google Scholar] [CrossRef]
- Gąsior, J.; Kawa-Rygielska, J.; Kucharska, A.Z. Carbohydrates Profile, Polyphenols Content and Antioxidative Properties of Beer Worts Produced with Different Dark Malts Varieties or Roasted Barley Grains. Molecules 2020, 25, 3882. [Google Scholar] [CrossRef]
- EBC—Analytica 1.1—Care and Adjustment of Apparatus: Bühler Miag Disc Mill, DLFU; Experimental Station for Variety Assessment, Chemical and Technology Laboratory: Nürnberg, Germany, 1998.
- EBC—Analytica 4.5.1 Extract of Malt: Congress Mash; Experimental Station for Variety Assessment, Chemical and Technology Laboratory: Nürnberg, Germany, 1998.
- EBC—Analytica 8.4 Viscosity of Wort; Experimental Station for Variety Assessment, Chemical and Technology Laboratory: Nürnberg, Germany, 1998.
- Liszewski, M. Wpływ wybranych nawozów mikroelementowych firmy ADOB na plon i wartość browarną ziarna jęczmienia jarego. Pol. J. Agron. 2018, 35, 83–88. [Google Scholar]
- Szwed, Ł.P.; Tomaszewska-Ciosk, E.; Błażewicz, J. Simplified Mashing Efficiency. Novel Method for Optimization of Food Industry Wort Production with the Use of Adjuncts. Pol. J. Chem. Technol. 2014, 16, 36–39. [Google Scholar] [CrossRef] [Green Version]
- Nowak, A.; Klimowicz, A.; Duchnik, W.; Kucharski, Ł.; Florkowska, K.; Muzykiewicz, A.; Wira, D.; Zielonkabrzezicka, J.; Siedłowska, A.; Nadarzewska, K. Application of green-extraction technique to evaluate of antioxidative capacity of wild population of fireweed (Epilobium angustifolium). Herba Pol. 2019, 65, 18–30. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Yen, G.C.; Chen, H.Y. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, K.S.; Lim, S.T. Digestibility of legume starches as influenced by their physical and structural properties. Carbohydr. Polym. 2008, 71, 245–252. [Google Scholar] [CrossRef]
- Narziß, L.; Back, W. Die Bierbrauerei: Band 2: Die Technologie der Würzebereitung, 9th ed.; John Wiley & Sons: Weinheim, Germany, 2012; pp. 234–251. [Google Scholar]
- Salimi, E.; Saragas, K.; Taheri, M.E.; Novakovic, J.; Barampouti, E.M.; Mai, S.; Moustakas, K.; Malamis, D.; Loizidou, M. The Role of Enzyme Loading on Starch and Cellulose Hydrolysis of Food Waste. Waste Biomass Valorization 2019, 10, 3753–3762. [Google Scholar] [CrossRef]
- Kunze, W. Technology Brewing and Malting, 6th ed.; VLB Berlin: Berlin, Germany, 2019; pp. 214–366. [Google Scholar]
- Klose, C.; Mauch, A.; Wunderlich, S.; Thiele, F.; Zarnkow, M.; Jacob, F.; Arendt, E.K. Brewing with 100% Oat Malt. J. Inst. Brew. 2011, 117, 411–421. [Google Scholar] [CrossRef]
- Mayer, H.; Marconi, O.; Regnicoli, G.F.; Perretti, G.; Fantozzi, P. Production of a saccharifying rice malt for brewing using different rice varieties and malting parameters. J. Agric. Food Chem. 2014, 62, 5369–5377. [Google Scholar] [CrossRef] [PubMed]
- Krstanović, V.; Habschied, K.; Lukinac, J.; Jukić, M.; Mastanjević, K. The Influence of Partial Substitution of Malt with Unmalted Wheat in Grist on Quality Parameters of Lager Beer. Beverages 2020, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Cornaggia, C.; Evans, D.E.; Draga, A.; Mangan, D.; McCleary, B.V. Prediction of potential malt extract and beer filterability using conventional and novel malt assays. J. Inst. Brew. 2019, 125, 294–309. [Google Scholar] [CrossRef]
- Makinen, O.E.; Arendt, E.K. Oat malt as a baking ingredient—A comparative study of the impact of oat, barley and wheat malts on bread and dough properties. J. Cereal Sci. 2012, 56, 747–753. [Google Scholar] [CrossRef]
- Carvalho, D.O.; Gonçalves, L.M.; Guido, L.F. Overall antioxidant properties of malt and how they are influenced by the individual constituents of barley and the malting process. Compr. Rev. Food Sci. Food Saf. 2016, 15, 927–943. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, J.; Hu, J.; Yan, R.; Ma, X. Comparative study on the phytochemical profiles and cellular antioxidant activity of phenolics extracted from barley malts processed under different roasting temperatures. Food Funct. 2019, 10, 2176–2185. [Google Scholar] [CrossRef]
- Schuck, P.; Jeantet, R.; Tanguy, G.; Méjean, S.; Gac, A.; Lefebvre, T.; Labussière, E.; Martineau, C. Energy Consumption in the Processing of Dairy and Feed Powders by Evaporation and Drying. Dry Technol. 2015, 33, 176–184. [Google Scholar] [CrossRef]
- Hernandez-Aguirre, A.I.; Téllez-Pérez, C.; San Martín-Azócar, A.; Cardador-Martínez, A. Effect of Instant Controlled Pressure-Drop (DIC), Cooking and Germination on Non-Nutritional Factors of Common Vetch (Vicia sativa spp.). Molecules 2020, 25, 151. [Google Scholar] [CrossRef] [Green Version]
- Pittman, K.B.; Barney, J.N.; Cahoon, C.W.; Flessner, M.L. Influence of hairy vetch seed germination and maturation on weediness in subsequent crops. Weed Res. 2019, 59, 427–436. [Google Scholar] [CrossRef]
- Xu, J.; Kang, J.; Wang, D.; Qin, Q.; Liu, G.; Lin, Z.; Pavlovic, M.; Dostalek, P. Mathematical Model for Assessing Wort Filtration Performance Based on Granularity Analysis. J. Am. Soc. Brew Chem. 2016, 74, 191–199. [Google Scholar] [CrossRef]
- Ambriz-Vidal, T.N.; Mariezcurrena-Berasain, M.D.; Heredia-Olea, E.; Martinez, D.L.P.; Gutierrez-Ibañez, A.T. Potential of Triticale (X Triticosecale Wittmack) Malts for Beer Wort Production. J. Am. Soc. Brew Chem. 2019, 77, 282–286. [Google Scholar] [CrossRef]
- Saarni, A.; Miller, K.V.; Block, D.E. A Multi-Parameter, Predictive Model of Starch Hydrolysis in Barley Beer Mashes. Beverages 2020, 6, 60. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Ertop, M.H.; Bektaş, M. Enhancement of bioavailable micronutrients and reduction of antinutrients in foods with some processes. Food Health 2020, 4, 159–165. [Google Scholar]
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 2015, 52, 676–684. [Google Scholar] [CrossRef] [Green Version]
- Nhkata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar]
- Gharachorloo, M.; Ghiassi, B.T.; Baharinia, M. The Effect of Germination on Phenolic Compounds and Antioxidant Activity of Pulses. J. Am. Oil Chem. Soc. 2013, 90, 407–411. [Google Scholar] [CrossRef]
- Khang, D.T.; Dung, T.N.; Elzaawely, A.A.; Xuan, T.D. Phenolic Profiles and Antioxidant Activity of Germinated Legumes. Foods 2016, 5, 27. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Shevkani, K.; Singh, N.; Kaur, A. Bioactive constituents in pulses and their health benefits. J. Food Sci. Technol. 2013, 54, 858–870. [Google Scholar] [CrossRef] [Green Version]
Sample 1 | Saccharification Time 2 | pH | Extract (°Plato) | Wort Volume (mL) | Wort Viscosity (mPa∙s) | Brewhouse Efficiency (%) |
---|---|---|---|---|---|---|
C | X | 5.44 ± 0.03 cd | 2.39 ± 0.11 ef | 80 ± 5 d | n.d. | 9.53 ± 0.16 d |
C-FBR | X | 6.15 ± 0.07 a | 2.60 ± 0.05 d | 115 ± 5 b | 1.39 ± 0.06 b | 14.97 ± 0.94 c |
C-FNL | X | 5.55 ± 0.07 bc | 2.46 ± 0.04 def | 122.5 ± 2.5 ab | 1.35 ± 0.07 b | 15.07 ± 0.07 c |
C-MAX | X | 5.50 ± 0.04 bc | 5.51 ± 0.03 b | 95 ± 5 c | n.d. | 26.18 ± 1.52 b |
C-MLC | X | 5.51 ± 0.02 bc | 2.30 ± 0.06 f | 95 ± 5 c | 1.39 ± 0.03 b | 10.94 ± 0.86 d |
C-MLV | X | 5.63 ± 0.02 b | 2.80 ± 0.02 c | 35 e | n.d. | 4.91 ± 0.04 e |
C-BC | X | 5.51 ± 0.03 bc | 2.54 ± 0.03 de | 110 ± 5 b | 1.37 ± 0.02 b | 13.98 ± 0.80 c |
C-AM | X | 5.51 ± 0.01 bc | 2.53 ± 0.02 de | 110 ± 5 b | 1.37 ± 0.03 b | 13.95 ± 0.75 c |
M | 10 | 5.31 ± 0.05 d | 6.84 ± 0.07 a | 130 a | 1.75 ± 0.03 a | 44.47 ± 0.46 a |
Sample 1 | Saccharification Time 2 | pH | Extract (°Plato) | Wort Volume (mL) | Wort Viscosity (mPa∙s) | Brewhouse Efficiency (%) |
---|---|---|---|---|---|---|
L | X | 5.51 ± 0.05 d | 1.59 ± 0.04 f | 100 c | n.d. | 7.95 ± 0.20 f |
L-FBR | X | 6.12 ± 0.03 a | 2.60 ± 0.04 c | 100 c | 1.39 ± 0.03 c | 13.00 ± 0.20 de |
L-FNL | X | 5.57 ± 0.02 cd | 2.41 ± 0.03 de | 130 ± 5 ab | 1.32 ± 0.01 cd | 15.66 ± 0.41 c |
L-MAX | X | 5.64 ± 0.03 bc | 2.33 ± 0.03 e | 125 ± 5 b | 1.39 ± 0.01 c | 14.57 ± 0.77 cd |
L-MLC | 25 | 5.25 ± 0.04 e | 3.4 ± 0.02 b | 140 ± 5 a | 1.51 ± 0.03 b | 23.80 ± 0.71 b |
L-MLV | 10 | 5.6 ± 0.03 bcd | 2.39 ± 0.04 e | 130 ± 5 ab | n.d. | 15.55 ± 0.86 c |
L-BC | X | 5.55 ± 0.02 cd | 2.4 ± 0.07 de | 130 ab | 1.37 ± 0.03 c | 15.61 ± 0.46 c |
L-AM | X | 5.69 ± 0.03 b | 2.55 ± 0.04 cd | 100 c | 1.29 ± 0.03 d | 12.75 ± 0.2 e |
M | 10 | 5.31 ± 0.05 e | 6.84 ± 0.07 a | 130 ab | 1.75 ± 0.03 a | 44.47 ± 0.46 a |
Sample 1 | Saccharification Time 2 | pH | Extract (°Plato) | Wort Volume (mL) | Wort Viscosity (mPa∙s) | Brewhouse Efficiency (%) |
---|---|---|---|---|---|---|
P | X | 5.7 ± 0.06 b | 2.80 ± 0.08 c | 110 ± 10 b | 1.50 ± 0.05 b | 15.44 ± 1.84 c |
P-FBR | X | 6.37 ± 0.06 a | 3.10 ± 0.08 b | 130 ± 15 ab | 1.46 ± 0.03 b | 20.10 ± 1.81 b |
P-FNL | X | 5.75 ± 0.1 b | 2.74 ± 0.03 c | 145 ± 5 a | 1.33 ± 0.04 cd | 19.86 ± 0.47 b |
P-MAX | X | 5.86 ± 0.03 b | 2.76 ± 0.04 c | 130 ± 5 ab | 1.47 ± 0.03 b | 17.95 ± 0.95 bc |
P-MLC | 25 | 5.34 ± 0.03 c | 2.10 ± 0.05 d | 150 ± 10 a | 1.45 ± 0.04 b | 15.78 ± 1.43 c |
P-MLV | X | 5.76 ± 0.01 b | 2.77 ± 0.02 c | 135 ± 5 ab | 1.42 ± 0.01 bc | 18.7 ± 0.56 bc |
P-BC | X | 5.77 ± 0.01 b | 2.92 ± 0.04 c | 130 ab | 1.43 ± 0.02 bc | 18.98 ± 0.26 bc |
P-AM | 40 | 5.87 ± 0.02 b | 2.81 ± 0.03 c | 135 ± 5 ab | 1.31 ± 0.01 d | 18.98 ± 0.91 bc |
M | 10 | 5.31 ± 0.05 c | 6.84 ± 0.07 a | 130 ab | 1.75 ± 0.03 a | 44.47 ± 0.46 a |
Sample 1 | Saccharification Time 2 | pH | Extract (°Plato) | Wort Volume (mL) | Wort Viscosity (mPa∙s) | Brewhouse Efficiency (%) |
---|---|---|---|---|---|---|
V | 20 | 5.53 ± 0.04 bc | 2.40 ± 0.05 c | 115 ± 5 bc | 1.63 ± 0.03 b | 13.82 ± 0.89 b |
V-FBR | X | 6.08 ± 0.07 a | 1.80 ± 0.06 d | 90 ± 5 e | n.d. | 8.12 ± 0.72 c |
V-FNL | X | 5.40 ± 0.04 cd | 1.66 ± 0.03 de | 70 f | n.d. | 5.82 ± 0.11 d |
V-MAX | 10 | 5.55 ± 0.04 bc | 1.71 ± 0.03 de | 100 de | n.d. | 8.56 ± 0.15 c |
V-MLC | 25 | 5.11 ± 0.06 e | 2.80 ± 0.08 b | 100 ± 5 de | 1.09 ± 0.05 e | 14.02 ± 1.10 b |
V-MLV | X | 5.57 ± 0.03 b | 1.60 ± 0.06 e | 125 ± 5 ab | 1.48 ± 0.03 c | 10.02 ± 0.78 c |
V-BC | 20 | 5.47 ± 0.02 bc | 1.58 ± 0.03 e | 105 ± 5 cd | 1.28 ± 0.04 d | 8.29 ± 0.24 c |
V-AM | 30 | 5.58 ± 0.02 b | 1.79 ± 0.01 d | 115 ± 5 bc | 1.28 ± 0.03 d | 10.30 ± 0.51 c |
M | 10 | 5.31 ± 0.05 d | 6.84 ± 0.07 a | 130 a | 1.75 ± 0.03 a | 44.47 ± 0.46 a |
Sample 1 | Saccharification Time | pH | Extract (°Plato) | Wort Volume (mL) | Wort Viscosity (mPa∙s) | Brewhouse Efficiency (%) |
---|---|---|---|---|---|---|
GC30 | 10 | 5.42 ± 0.04 a | 6.98 ± 0.07 a | 270 ± 10 bc | 1.62 ± 0.03 b | 47.14 ± 2.22 b |
GL30 | 10 | 5.34 ± 0.03 ab | 6.69 ± 0.05 bc | 215 ± 5 d | 1.58 ± 0.03 b | 35.96 ± 0.57 d |
GV30 | 10 | 5.38 ± 0.02 ab | 6.71 ± 0.04 bc | 270 ± 5 bc | 1.62 ± 0.02 b | 45.30 ± 1.11 bc |
GC30-MAX | 10 | 5.37 ± 0.02 ab | 6.76 ± 0.04 b | 250 ± 5 c | 1.61 ± 0.01 b | 42.26 ± 1.10 c |
GL30-MAX | 10 | 5.32 ± 0.01 b | 6.64 ± 0.04 bc | 205 ± 5 d | 1.54 ± 0.02 b | 34.03 ± 0.63 d |
GV30-MAX | 10 | 5.37 ± 0.03 ab | 6.58 ± 0.04 c | 280 ± 10 b | 1.55 ± 0.03 b | 46.08 ± 1.93 bc |
M2 | 10 | 5.32 ± 0.03 b | 7.08 ± 0.04 a | 325 ± 5 a | 1.77 ± 0.03 a | 57.49 ± 1.17 a |
Sample 1 | Concentration of Phenolic Compounds (mg GAE 2/100 g) | ABTS+• Assay (µmol TE 3/g) | DPPH• Assay (µmol TE/g) | FRAP Assay (µmol TE/g) |
---|---|---|---|---|
CS | 44.09 ± 0.60 f | 4.40 ± 0.04 g | 1.05 ± 0.03 f | 3.46 ± 0.02 g |
CSM | 112.14 ± 1.29 b | 7.09 ± 0.06 d | 1.22 ± 0.03 e | 4.84 ± 0.02 e |
LS | 46.50 ± 0.98 f | 5.66 ± 0.08 f | 1.61 ± 0.03 d | 4.77 ± 0.04 e |
LSM | 84.81 ± 1.53 c | 6.06 ± 0.13 e | 2.12 ± 0.05 b | 5.78 ± 0.04 b |
PS | 21.21 ± 1.42 g | 5.46 ± 0.14 f | 0.86 ± 0.03 g | 3.96 ± 0.03 f |
PSM | 85.59 ± 1.24 c | 6.83 ± 0.09 d | 1.66 ± 0.05 d | 5.19 ± 0.02 c |
VS | 50.33 ± 0.68 e | 9.85 ± 0.11 a | 1.87 ± 0.02 c | 4.77 ± 0.04 e |
VSM | 61.04 ± 0.64 d | 8.43 ± 0.11 b | 1.81 ± 0.02 c | 4.97 ± 0.04 d |
BM | 128.62 ± 1.27 a | 7.94 ± 0.10 c | 4.28 ± 0.04 a | 7.26 ± 0.04 a |
Sample 1 | Concentration of Phenolic Compounds (mg GAE 2/100 mL) | ABTS+• Assay (µmol TE 3/mL) | DPPH• Assay (µmol TE/mL) | FRAP Assay (µmol TE/mL) |
---|---|---|---|---|
C | 13.90 ± 0.17 f | 0.47 ± 0.01 e | 0.26 ± 0.01 f | 0.23 ± 0.01 h |
L | 12.70 ± 0.10 g | 0.58 ± 0.01 d | 0.37 ± 0.02 d | 0.35 ± 0.01 f |
P | 16.59 ± 0.38 e | 0.59 ± 0.01 d | 0.27 ± 0.01 f | 0.30 ± 0.01 g |
V | 38.48 ± 0.30 a | 1.21 ± 0.03 b | 0.92 ± 0.02 b | 0.71 ± 0.03 b |
GC30 | 20.82 ± 0.24 c | 0.61 ± 0.02 d | 0.42 ± 0.01 c | 0.43 ± 0.01 d |
GL30 | 16.31 ± 0.12 e | 0.62 ± 0.01 d | 0.31 ± 0.02 e | 0.39 ± 0.01 e |
GV30 | 23.01 ± 0.24 b | 0.74 ± 0.02 c | 0.38 ± 0.01 d | 0.52 ± 0.02 c |
M | 19.01 ± 0.14 d | 1.44 ± 0.03 a | 1.09 ± 0.03 a | 1.08 ± 0.02 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasiński, A.; Błażewicz, J.; Kawa-Rygielska, J.; Śniegowska, J.; Zarzecki, M. Analysis of Physicochemical Parameters of Congress Worts Prepared from Special Legume Seed Malts, Acquired with and without Use of Enzyme Preparations. Foods 2021, 10, 304. https://doi.org/10.3390/foods10020304
Gasiński A, Błażewicz J, Kawa-Rygielska J, Śniegowska J, Zarzecki M. Analysis of Physicochemical Parameters of Congress Worts Prepared from Special Legume Seed Malts, Acquired with and without Use of Enzyme Preparations. Foods. 2021; 10(2):304. https://doi.org/10.3390/foods10020304
Chicago/Turabian StyleGasiński, Alan, Józef Błażewicz, Joanna Kawa-Rygielska, Joanna Śniegowska, and Maciej Zarzecki. 2021. "Analysis of Physicochemical Parameters of Congress Worts Prepared from Special Legume Seed Malts, Acquired with and without Use of Enzyme Preparations" Foods 10, no. 2: 304. https://doi.org/10.3390/foods10020304
APA StyleGasiński, A., Błażewicz, J., Kawa-Rygielska, J., Śniegowska, J., & Zarzecki, M. (2021). Analysis of Physicochemical Parameters of Congress Worts Prepared from Special Legume Seed Malts, Acquired with and without Use of Enzyme Preparations. Foods, 10(2), 304. https://doi.org/10.3390/foods10020304