Functional Components and Anti-Nutritional Factors in Gluten-Free Grains: A Focus on Quinoa Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Study Selection Process and Including and Excluding Criteria
2.3. Data Extraction Criteria
3. Results and Discussion
3.1. PRISMA Flow Diagram of the Search Strategy and Selection Process
3.2. Distribution of Included Studies by Functional/Anti-Nutritional Component Class and Sample Geographical Origin
3.3. Functional Components in Quinoa Seeds
3.3.1. Phenolic Compounds
Quantitation of Phenolic Compounds by Spectrophotometric Assays
Analyte | Analyte Content | Quinoa Sample Origin | Reference |
---|---|---|---|
TPC | TPC (Titicaca, raw): 105.85 1 TPC (Puno, raw): 31.67 1 TPC (Titicaca, polished): 67.86 1 TPC (Puno, polished): 26.31 1 | Africa, Morocco | Mhada et al. [15] |
TPC | TPC: 66–202 1 | Africa, Egypt | Saad-Allah et al. [14] |
FPC, BPC | FPC (raw): 162.90 1 BPC (raw): 73.50 1 TPC (raw): 200.40 1 FPC (milled): 111.51 1 BPC (milled): 25.85 1 TPC (milled): 137.36 1 | Asia, China | Han et al. [16] |
FPC, BPC | FPC: 205 1 BPC: 1180 1 | Asia, China | Li et al. [17] |
FPC, BPC, TPC | FPC (white quinoa): ≈380 1 FPC (red quinoa): 609.74 1 FPC (black quinoa): 506.70 1 BPC (white quinoa): ≈70 1 BPC (red quinoa): 799.80 1 BPC (black quinoa): 563.07 1 TPC (white quinoa): ≈515 1 TPC (red quinoa): 1409.54 1 TPC (black quinoa): 1069.77 1 | Asia, China | Liu et al. [18] |
TPC | TPC (raw): 43.2 1 TPC (soaked): 31.1 1 TPC (dehulled): 34.6 1 TPC (germinated): 101.2 1 | Asia, India | Kaur et al. [19] |
TPC | TPC: 14.37 1 | Asia, Korea | Lim et al. [20] |
TPC | TPC (unpearled, FC): 181 1 TPC (pearled, FC): 20 1 TPC (unpearled, PB): 597 1 TPC (pearled, PB): 62 1 | Europe, Finland | Mattila et al. [21] |
FPC, BPC | FPC: 3.47 1 BPC: 29.7 1 | Europe, Finland | Multari et al. [22] |
FPC, BPC | FPC: 56.627–67.856 1 BPC: 25.354–26.667 1 | Europe, Serbia | Stikić et al. [23] |
FPC, BPC | FPC: 123–341 2 BPC: 128–452 2 | South America, Peru | Abderrahim et al. [24] |
FPC | FPC: 358 1 | South America, Peru | Drzewiecki et al. [26] |
FPC, BPC | FPC: 97–164 1 BPC: 16–53 1 | South America, Chile | Vega-Gálvez et al. [25] |
TPC | TPC: 489.78 1 | South America, Peru | Paucar-Menacho et al. [27] |
TPC | TPC (raw): 97.60 1 TPC (washed): 116.77 1 TPC (washed, hydrated): 96.32 1 TPC (washed, cooking): 110.65 1 TPC (washed, cooking pressure): 127.54 1 TPC (washed, toasting): 58.63 1 | South America, Brazil | Nickel et al. [28] |
TPC | TPC (raw): 40.15 1 TPC (roasted): ↑ 18–60% | South America, Argentina | Carciochi et al. [29] |
TPC | TPC (raw): 39.3 1 TPC (fermented): ↑ 46% | South America, Argentina | Carciochi et al. [30] |
TPC | TPC (raw): 39.29 1 TPC (malted): 79.04 1 | South America, Argentina | Carciochi et al. [31] |
TPC | TPC (freeze-dried samples): 1500 1 TPC (air-dried samples): 700 1 | South America, Colombia | Buitrago et al. [32] |
TPC | TPC (Peru): 500 1 TPC (USA): 470 1 TPC (Korea): 384 1 | Multi-country (Peru, USA and Korea) | Lee et al. [34] |
TPC | TPC (Peru): 15.33 1 TPC (USA): 16.28 1 TPC (Korea): 14.50 1 | Multi-country (Peru, USA and Korea) | Park et al. [35] |
TPC | TPC: 710–1060 1 | Multi-country (Argentina, Chile, Denmark, Poland, and USA) | Sobota et al. [36] |
FPC | FPC (ethanol:water): 2.62 1 FPC (ethanol): 0.76 1 FPC (water): 0.75 1 | Commercial | Navarro del Hierro et al. [40] |
FPC | FPC (white): 226.1 1 FPC (red): 97.3 1 FPC (black): 100.5 1 | Commercial | Škrovánková et al. [37] |
FPC | FPC (white): 75.297–87.584 2 FPC (red): 85.353 2 FPC (black): 79.097 2 | Commercial | Pellegrini et al. [38] |
FPC | FPC (white): ≈200 1 FPC (red): ≈490 1 FPC (black): ≈510 1 | Commercial | Tang et al. [39] |
FPC | FPC (white): 59.6–66.4 1 FPC (red): 61.1–65.4 1 FPC (black): 55.5–95.9 1 | Multi-origin (Commercial + South America, Peru) | Diaz-Valencia et al. [41] |
TPC | TPC: 1.37 1 | Commercial | Balakrishnan et al. [42] |
TPC | TPC: ≈1.8 3 | Commercial | Laus et al. [43] |
TPC | TPC: 67.7 1 | Commercial | Rocchetti et al. [44] |
TPC | TPC: 4.1 1 | Commercial | Hur et al. [45] |
TFC | TFC: 127.1–288.8 4 | Africa, Egypt | Saad-Allah et al. [14] |
TFC | TFC: 45.88 5 | Asia, Korea | Lim et al. [20] |
FFC, BFC, TFC | FFC: 147.95 6 BFC: 76.61 6 TFC: 224.56 6 | Asia, China | Han et al. [16] |
FFC, BFC, TFC | FFC (white): ≈140 5 FFC (red): ≈240 5 FFC (black): ≈200 5 BFC (white): ≈35 5 BFC (red): ≈160 5 BFC (black): ≈140 5 TFC (white): ≈175 5 TFC (red): ≈400 5 TFC (black): ≈350 5 | Asia, China | Liu et al. [18] |
TFC | TFC (raw): 11.4 7 | Asia, India | Kaur et al. [19] |
FFC, BFC, TFC | FFC (Puno): 78.49 7 FFC (Titicaca): 87.32 7 BFC (Puno): 11.21 7 BFC (Titicaca): 7.04 7 TFC (Puno): 89.71 7 TFC (Titicaca): 93.45 7 | Europe, Serbia | Stikić et al. [23] |
TFC | TFC (Peru): 218 7 TFC (USA): 176 7 TFC (Korea): 160 7 | Multi-country (Peru, USA and Korea) | Lee et al. [34] |
TFC | TFC (Peru): 11.51 7 TFC (USA): 13.24 7 TFC (Korea): 20.91 7 | Multi-country (Peru, USA and Korea) | Park et al. [35] |
TFC | TFC: 109.4–211.0 6 | South America, Chile | Vega-Gálvez et al. [25] |
TFC | TFC: 6.0 6 | South America, Peru | Drzewiecki et al. [26] |
TFC | TFC (raw): 11.21 7 TFC (roasted): 29.96 7 | South America, Argentina | Carciochi et al. [29] |
TFC | TFC (raw): 11.06 7 TFC (malted): 17.65 7 | South America, Argentina | Carciochi et al. [31] |
TFC | TFC (freeze-dried samples): 504 7 TFC (air-dried samples): 154 7 | South America, Colombia | Buitrago et al. [32] |
TFC | TFC: 1.3 7 | Commercial | Hur et al. [45] |
FFC, BFC | FFC (white): ≈60 6 FFC (red): ≈175 6 FFC (black): ≈150 6 BFC (acd hdl): 40–150 6 BFC (akl hdl): 65–160 6 | Commercial | Tang et al. [39] |
Free flavonols Bound flavonols | Free flavonols: 30–113 8 Bound flavonols: 16–147 8 | South America, Peru | Abderrahim et al. [24] |
Profiling of Phenolic Compounds
3.3.2. Betalains
3.3.3. Carotenoids
3.3.4. Tocols
3.3.5. Phytoecdysteroids
3.4. Antinutritional Factors
3.4.1. Saponins
3.4.2. Tannins
3.4.3. Phytic Acid
Anti-Nutritional Factors | Analytical Method | Analyte Content | Quinoa Sample Origin | Reference |
---|---|---|---|---|
Saponins | Spectrophotometry | TSC: 2.76–4.12 1 | Africa, Egypt | Saad-Allah et al. [14] |
Saponins | Spectrophotometry | TSC: 15.50 3 | Asia, China | Han et al. [16] |
Saponins | Spectrophotometry | TSC: 6.6–30.9 1 | USA | Medina-Meza et al. [70] |
Saponins | Spectrophotometry | TSC (ethanol:water): 44.3 1 TSC (ethanol): 55.1 1 TSC (water): 2.6 1 | Commercial | Navarro del Hierro et al. [40] |
Saponins | Afrosimetric method | TSC: 0.0–3.5 1 | Europe, Germany | Präger et al. [71] |
Saponins | Afrosimetric method | TSC: 0.0–3.4 1 | Multi-origin (South America, Peru and Brazil + Commercial) | Diaz-Valencia et al. [41] |
Saponins | HPLC | TS (extract): 78.6 1 TS (hydrolyzed extract): 20 1 SC (extract): nd SC (hydrolyzed extract): 56.3 1 Oleanolic acid (hydrolyzed extract): 15.5 1 Hederagenin (hydrolyzed extract): 8.2 1 Serjanic acid (hydrolysed extract): 18.3 1 Phytolaccagenic acid (hydrolyzed extract): 14.4 1 | Commercial | Navarro del Hierro et al. [50] |
Saponins | HPLC GC-MS | TS: 15.2 1 Identified sapogenins: oleanolic acid, serjanic acid, and phytolaccagenic acid, hederagenin | Commercial | Herrera et al. [72] |
Saponins | HPLC | Saponin A: 1.4–10 4 Saponin B: 0.86–10 4 Saponin C: 10–30 4 | South America, Argentina | Bonfiglio et al. [73] |
Saponins | GC-MS | Phytolaccagenic acid: 16.72 1 Hederagenin: 4.22 1 | USA | Medina-Meza et al. [70] |
Saponins | GC-MS LC–MS/MS | Identification of 24 saponins Identification of three main aglycones | Multi-country (South America, Bolivia + Europe, Denmark) | Ruiz et al. [74] |
Saponins | Afrosimetric method HPLC-TOF/Q-TOF | TSC: 2–83 5 Identification of 28-O-β-D-glucopyranosyl esters of oleanolic acid, serjanic acid, and phytolaccagenic acid, hederagenin differently substituted in C3 | South America, Peru | Escribano et al. [56] |
Saponins | GC | TS: 0.05–2.00 6 Identified sapogenins: oleanolic acid, hederagenin and phytolaccagenic acid | Multi-country (South America, Chile + USA) | De Santis et al. [67] |
Saponin | Spectrophotometry | TSC: 8–13 1 | Multi-country (Spain, Peru, Chile) | Reguera et al. [75] |
Tannins | Spectrophotometry | TNC: 0.88 2 | South America, Peru | Drzewiecki et al. [26] |
Tannins | Spectrophotometry | TNC: 0.23–0.31 1 | Africa, Egypt | Saad-Allah et al. [14] |
Phytic acid | Spectrophotometry | Phytate content: 2–4 1 | Multi-country (Spain, Peru, Chile) | Reguera et al. [75] |
Phytic acid | HPLC | Phytate (raw seeds): 8.80 1 Phytate (fermented seeds): 2.24 1 | Commercial | Castro-Alba et al. [78] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Food and Agriculture Organization; World Health Organization. Sustainable Healthy Diets–Guiding Principles; Food and Agriculture Organization: Rome, Italy; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Bazile, D.; Jacobsen, S.-E.; Verniau, A. The Global Expansion of Quinoa: Trends and Limits. Front. Plant Sci. 2016, 7, 622. [Google Scholar] [CrossRef] [Green Version]
- Vilcacundo, R.; Hernández-Ledesma, B. Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Curr. Opin. Food Sci. 2017, 14, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bedoya-Perales, N.S.; Pumi, G.; Mujica, A.; Talamini, E.; Padula, A.D. Quinoa Expansion in Peru and Its Implications for Land Use Management. Sustainability 2018, 10, 532. [Google Scholar] [CrossRef] [Green Version]
- Graf, B.L.; Rojas-Silva, P.; Rojo, L.E.; Delatorre-Herrera, J.; Baldeón, M.E.; Raskin, I. Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium quinoa Willd.). Compr. Rev. Food Sci. Food Saf. 2015, 14, 431–445. [Google Scholar] [CrossRef] [Green Version]
- Melini, V.; Melini, F. Gluten-free diet: Gaps and needs for a healthier diet. Nutrients 2019, 11, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Kamp, J.W.; Poutanen, K.; Seal, C.J.; Richardson, D.P. The HEALTHGRAIN definition of “whole grain”. Food Nutr. Res. 2014, 58, 22100. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, M.; Lucas-Gonzales, R.; Ricci, A.; Fontecha, J.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodium quinoa Willd) seeds. Ind. Crops Prod. 2018, 111, 38–46. [Google Scholar] [CrossRef]
- Filho, A.M.M.; Pirozi, M.R.; Borges, J.T.D.S.; Pinheiro Sant’Ana, H.M.; Chaves, J.B.P.; Coimbra, J.S.D.R. Quinoa: Nutritional, functional, and antinutritional aspects. Crit. Rev. Food Sci. Nutr. 2017, 57, 1618–1630. [Google Scholar] [CrossRef] [PubMed]
- Oude Groeniger, J.; van Lenthe, F.J.; Beenackers, M.A.; Kamphuis, C.B.M. Does social distinction contribute to socioeconomic inequalities in diet: The case of “superfoods” consumption. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 40. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Yeo, J.D. Insoluble-bound phenolics in food. Molecules 2016, 21, 1216. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
- Koch, W. Dietary Polyphenols-Important Non-Nutrients in the Prevention of Chronic Noncommunicable Diseases. A Systematic Review. Nutrients 2019, 11, 1039. [Google Scholar] [CrossRef] [Green Version]
- Saad-Allah, K.M.; Youssef, M.S. Phytochemical and genetic characterization of five quinoa (Chenopodium quinoa Willd.) genotypes introduced to Egypt. Physiol. Mol. Biol. Plants 2018, 24, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Mhada, M.; Metougui, M.L.; El Hazzam, K.; El Kacimi, K.; Yasri, A. Variations of Saponins, Minerals and Total Phenolic Compounds Due to Processing and Cooking of Quinoa (Chenopodium quinoa Willd.) Seeds. Foods 2020, 9, 660. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Chi, J.; Zhang, M.; Zhang, R.; Fan, S.; Dong, L.; Huang, F.; Liu, L. Changes in saponins, phenolics and antioxidant activity of quinoa (Chenopodium quinoa willd) during milling process. LWT 2019, 114, 108381. [Google Scholar] [CrossRef]
- Li, S.; Chen, C.; Ji, Y.; Lin, J.; Chen, X.; Qi, B. Improvement of nutritional value, bioactivity and volatile constituents of quinoa seeds by fermentation with Lactobacillus casei. J. Cereal Sci. 2018, 84, 83–89. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, K.; Yao, Y.; Chen, Y.; Guo, H.; Ren, G.; Yang, X.; Li, J. Antioxidant, anti-inflammatory, and antitumor activities of phenolic compounds from white, red, and black Chenopodium quinoa seed. Cereal Chem. 2020, 97, 703–713. [Google Scholar] [CrossRef]
- Kaur, I.; Tanwar, B.; Reddy, M.; Chauhan, A. Vitamin C, total polyphenols and antioxidant activity in raw, domestically processed and industrially processed Indian Chenopodium quinoa seeds. J. Appl. Pharm. Sci. 2016, 6, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.G.; Park, H.; Yoon, K.S. Analysis of saponin composition and comparison of the antioxidant activity of various parts of the quinoa plant (Chenopodium quinoa Willd.). Food Sci. Nutr. 2020, 8, 694–702. [Google Scholar] [CrossRef] [Green Version]
- Mattila, P.H.; Pihlava, J.M.; Hellström, J.; Nurmi, M.; Eurola, M.; Mäkinen, S.; Jalava, T.; Pihlanto, A. Contents of phytochemicals and antinutritional factors in commercial protein-rich plant products. Food Qual. Saf. 2018, 2, 213–219. [Google Scholar] [CrossRef]
- Multari, S.; Marsol-Vall, A.; Keskitalo, M.; Yang, B.; Suomela, J.P. Effects of different drying temperatures on the content of phenolic compounds and carotenoids in quinoa seeds (Chenopodium quinoa) from Finland. J. Food Compos. Anal. 2018, 72, 75–82. [Google Scholar] [CrossRef]
- Stikić, R.I.; Milinčić, D.D.; Kostić, A.Ž.; Jovanović, Z.B.; Gašić, U.M.; Tešić, Ž.L.; Djordjević, N.Z.; Savić, S.K.; Czekus, B.G.; Pešić, M.B. Polyphenolic profiles, antioxidant, and in vitro anticancer activities of the seeds of Puno and Titicaca quinoa cultivars. Cereal Chem. 2020, 97, 626–633. [Google Scholar] [CrossRef]
- Abderrahim, F.; Huanatico, E.; Segura, R.; Arribas, S.; Carmen Gonzalez, M.; Condezo-Hoyos, L. Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food Chem. 2015, 183, 83–90. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Zura, L.; Lutz, M.; Jagus, R.; Victoria Agüero, M.; Pastén, A.; Di Scala, K.; Uribe, E. Assessment of dietary fiber, isoflavones and phenolic compounds with antioxidant and antimicrobial properties of quinoa (Chenopodium quinoa Willd.). Chil. J. Agric. Anim. Sci. 2018, 34, 1–11. [Google Scholar] [CrossRef]
- Drzewiecki, J.; Martinez-Ayala, A.L.; Lozano-Grande, M.A.; Leontowicz, H.; Leontowicz, M.; Jastrzebski, Z.; Pasko, P.; Gorinstein, S. In Vitro Screening of Bioactive Compounds in some Gluten-Free Plants. Appl. Biochem. Biotechnol. 2018, 186, 847–860. [Google Scholar] [CrossRef]
- Paucar-Menacho, L.M.; Martínez-Villaluenga, C.; Dueñas, M.; Frias, J.; Peñas, E. Response surface optimisation of germination conditions to improve the accumulation of bioactive compounds and the antioxidant activity in quinoa. Int. J. Food Sci. Technol. 2018, 53, 516–524. [Google Scholar] [CrossRef]
- Nickel, J.; Spanier, L.P.; Botelho, F.T.; Gularte, M.A.; Helbig, E. Effect of different types of processing on the total phenolic compound content, antioxidant capacity, and saponin content of Chenopodium quinoa Willd grains. Food Chem. 2016, 209, 139–143. [Google Scholar] [CrossRef]
- Carciochi, R.A.; Galván D′Alessandro, L.; Manrique, G.D. Effect of roasting conditions on the antioxidant compounds of quinoa seeds. Int. J. Food Sci. Technol. 2016, 51, 1018–1025. [Google Scholar] [CrossRef]
- Carciochi, R.A.; Galván-D’Alessandro, L.; Vandendriessche, P.; Chollet, S. Effect of Germination and Fermentation Process on the Antioxidant Compounds of Quinoa Seeds. Plant Foods Hum. Nutr. 2016, 71, 361–367. [Google Scholar] [CrossRef]
- Carciochi, R.A.; Dimitrov, K.; Galván D’Alessandro, L. Effect of malting conditions on phenolic content, Maillard reaction products formation, and antioxidant activity of quinoa seeds. J. Food Sci. Technol. 2016, 53, 3978–3985. [Google Scholar] [CrossRef] [Green Version]
- Buitrago, D.; Buitrago-Villanueva, I.; Barbosa-Cornelio, R.; Coy-Barrera, E. Comparative Examination of Antioxidant Capacity and Fingerprinting of Unfractionated Extracts from Different Plant Parts of Quinoa (Chenopodium quinoa) Grown under Greenhouse Conditions. Antioxidants 2019, 8, 238. [Google Scholar] [CrossRef] [Green Version]
- Melini, V.; Panfili, G.; Fratianni, A.; Acquistucci, R. Bioactive compounds in rice on Italian market: Pigmented varieties as a source of carotenoids, total phenolic compounds and anthocyanins, before and after cooking. Food Chem. 2019, 277, 119–127. [Google Scholar] [CrossRef]
- Lee, M.J.; Sim, K.H. Nutritional value and the kaempferol and quercetin contents of quinoa (Chenopodium quinoa Willd.) from different regions. Korean J. Food Sci. Technol. 2018, 50, 680–687. [Google Scholar]
- Park, J.H.; Lee, Y.J.; Kim, Y.H.; Yoon, K.S. Antioxidant and antimicrobial activities of Quinoa (Chenopodium quinoa Willd.) Seeds Cultivated in Korea. Prev. Nutr. Food Sci. 2017, 22, 195–202. [Google Scholar]
- Sobota, A.; Świeca, M.; Gęsiński, K.; Wirkijowska, A.; Bochnak, J. Yellow-coated quinoa (Chenopodium quinoa Willd)–physicochemical, nutritional, and antioxidant properties. J. Sci. Food Agric. 2020, 100, 2035–2042. [Google Scholar] [CrossRef]
- Škrovánková, S.; Válková, D.; Mlček, J. Polyphenols and antioxidant activity in pseudocereals and their products. Potravin. Slovak J. Food Sci. 2020, 14, 365–370. [Google Scholar] [CrossRef]
- Pellegrini, M.; Lucas-Gonzalez, R.; Fernández-López, J.; Ricci, A.; Pérez-Álvarez, J.A.; Lo Sterzo, C.; Viuda-Martos, M. Bioaccessibility of polyphenolic compounds of six quinoa seeds during in vitro gastrointestinal digestion. J. Funct. Foods 2017, 38, 77–88. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.; Zhang, B.; Chen, P.X.; Liu, R.; Tsao, R. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem. 2015, 166, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Navarro del Hierro, J.; Herrera, T.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Martin, D. Ultrasound-assisted extraction and bioaccessibility of saponins from edible seeds: Quinoa, lentil, fenugreek, soybean and lupin. Food Res. Int. 2018, 109, 440–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz-Valencia, Y.K.; Alca, J.J.; Calori-Domingues, M.A.; Zanabria-Galvez, S.J.; Da Cruz, S.H. Nutritional composition, total phenolic compounds and antioxidant activity of quinoa (Chenopodium quinoa Willd.) of different colours. Nov. Biotechnol. Chim. 2018, 17, 74–85. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Schneider, R.G. Quinoa flavonoids and their bioaccessibility during in vitro gastrointestinal digestion. J. Cereal Sci. 2020, 95, 103070. [Google Scholar] [CrossRef]
- Laus, M.N.; Cataldi, M.P.; Robbe, C.; D’Ambrosio, T.; Luisa Amodio, M.; Colelli, G.; De Santis, G.; Flagella, Z.; Pastore, D. Antioxidant capacity, phenolic and vitamin C contents of quinoa (Chenopodium quinoa willd.) as affected by sprouting and storage conditions. Ital. J. Agron. 2017, 12, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Rocchetti, G.; Miragoli, F.; Zacconi, C.; Lucini, L.; Rebecchi, A. Impact of cooking and fermentation by lactic acid bacteria on phenolic profile of quinoa and buckwheat seeds. Food Res. Int. 2019, 119, 886–894. [Google Scholar] [CrossRef]
- Hur, J.; Nguyen, T.T.H.; Park, N.; Kim, J.; Kim, D. Characterization of quinoa (Chenopodium quinoa) fermented by Rhizopus oligosporus and its bioactive properties. AMB Express 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Ballard, C.R.; Maróstica, M.R. Health Benefits of Flavonoids. In Bioactive Compounds: Health Benefits and Potential Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 185–201. ISBN 9780128147757. [Google Scholar]
- Paucar-Menacho, L.M.; Duenãs, M.; Penãs, E.; Frias, J.; Martínez-Villaluenga, C. Effect of Dry Heat Puffing on Nutritional Composition, Fatty Acid, Amino Acid and Phenolic Profiles of Pseudocereals Grains. Pol. J. Food Nutr. Sci. 2018, 68, 289–297. [Google Scholar] [CrossRef]
- Pereira, E.; Cadavez, V.; Barros, L.; Encina-Zelada, C.; Stojković, D.; Sokovic, M.; Calhelha, R.C.; Gonzales-Barron, U.; Ferreira, I.C.F.R. Chenopodium quinoa Willd. (quinoa) grains: A good source of phenolic compounds. Food Res. Int. 2020, 137, 109574. [Google Scholar] [CrossRef] [PubMed]
- Fiorito, S.; Preziuso, F.; Epifano, F.; Scotti, L.; Bucciarelli, T.; Taddeo, V.A.; Genovese, S. Novel biologically active principles from spinach, goji and quinoa. Food Chem. 2019, 276, 262–265. [Google Scholar] [CrossRef]
- del Hierro, J.N.; Reglero, G.; Martin, D. Chemical Characterization and Bioaccessibility of Bioactive Compounds from Saponin-Rich Extracts and Their Acid-Hydrolysates Obtained from Fenugreek and Quinoa. Foods 2020, 9, 1159. [Google Scholar] [CrossRef]
- Carrasco-Sandoval, J.; Rebolledo, P.; Peterssen-Fonseca, D.; Fischer, S.; Wilckens, R.; Aranda, M.; Henríquez-Aedo, K. A fast and selective method to determine phenolic compounds in quinoa (Chenopodium quinoa Will) seeds applying ultrasound-assisted extraction and high-performance liquid chromatography. Chem. Pap. 2020, 1, 3. [Google Scholar] [CrossRef]
- Graf, B.L.; Rojo, L.E.; Delatorre-Herrera, J.; Poulev, A.; Calfio, C.; Raskin, I. Phytoecdysteroids and flavonoid glycosides among Chilean and commercial sources of Chenopodium quinoa: Variation and correlation to physico-chemical characteristics. J. Sci. Food Agric. 2016, 96, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, S.L.; Fernandes, Â.; Pereira, C.; Calhelha, R.C.; Sokovic, M.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C.F.R. Nutritional value, physicochemical characterization and bioactive properties of the Brazilian quinoa: BRS Piabiru. Food Funct. 2020, 11, 2969–2977. [Google Scholar] [CrossRef]
- Coy-Barrera, E. Analysis of betalains (betacyanins and betaxanthins). In Recent Advances in Natural Products Analysis; Elsevier: Amsterdam, The Netherlands, 2020; pp. 593–619. [Google Scholar]
- Rodriguez-Amaya, D.B. Update on natural food pigments–A mini-review on carotenoids, anthocyanins, and betalains. Food Res. Int. 2019, 124, 200–205. [Google Scholar] [CrossRef]
- Escribano, J.; Cabanes, J.; Jiménez-Atiénzar, M.; Ibañez-Tremolada, M.; Gómez-Pando, L.R.; García-Carmona, F.; Gandía-Herrero, F. Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties. Food Chem. 2017, 234, 285–294. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. Food Carotenoids: Chemistry, Biology and Technology; IFT Press-Wiley: Oxford, UK, 2015. [Google Scholar]
- Niro, S.; D’Agostino, A.; Fratianni, A.; Cinquanta, L.; Panfili, G. Gluten-Free Alternative Grains: Nutritional Evaluation and Bioactive Compounds. Foods 2019, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Li, X.; Chen, P.X.; Zhang, B.; Hernandez, M.; Zhang, H.; Marcone, M.F.; Liu, R.; Tsao, R. Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem. 2015, 174, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Pachari Vera, E.; Alca, J.J.; Rondón Saravia, G.; Callejas Campioni, N.; Jachmanián Alpuy, I. Comparison of the lipid profile and tocopherol content of four Peruvian quinoa (Chenopodium quinoa Willd.) cultivars (‘Amarilla de Maranganí’, ‘Blanca de Juli’, INIA 415 ‘Roja Pasankalla’, INIA 420 ‘Negra Collana’) during germination. J. Cereal Sci. 2019, 88, 132–137. [Google Scholar] [CrossRef]
- Granda, L.; Rosero, A.; Benešová, K.; Pluháčková, H.; Neuwirthová, J.; Cerkal, R. Content of Selected Vitamins and Antioxidants in Colored and Nonpigmented Varieties of Quinoa, Barley, and Wheat Grains. J. Food Sci. 2018, 83, 2439–2447. [Google Scholar] [CrossRef]
- Pereira, E.; Encina-Zelada, C.; Barros, L.; Gonzales-Barron, U.; Cadavez, V.; Ferreira, I.C.F.R. Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food. Food Chem. 2019, 280, 110–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, N.; Mishra, S.K.; Bishayee, A.; Ali, E.S.; Bishayee, A. The phytochemical, biological, and medicinal attributes of phytoecdysteroids: An updated review. Acta Pharm. Sin. B 2020. [Google Scholar] [CrossRef]
- Di Gioia, F.; Petropoulos, S.A. Phytoestrogens, phytosteroids and saponins in vegetables: Biosynthesis, functions, health effects and practical applications. In Advances in Food and Nutrition Research; Academic Press Inc.: Cambridge, MA, USA, 2019; Volume 90, pp. 351–421. ISBN 9780128165676. [Google Scholar]
- Gómez-Caravaca, A.M.; Iafelice, G.; Lavini, A.; Pulvento, C.; Caboni, M.F.; Marconi, E. Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens. J. Agric. Food Chem. 2012, 60, 4620–4627. [Google Scholar] [CrossRef] [PubMed]
- Pulvento, C.; Riccardi, M.; Lavini, A.; Iafelice, G.; Marconi, E.; d’Andria, R. Yield and Quality Characteristics of Quinoa Grown in Open Field Under Different Saline and Non-Saline Irrigation Regimes. J. Agron. Crop Sci. 2012, 198, 254–263. [Google Scholar] [CrossRef]
- De Santis, G.; Maddaluno, C.; D’Ambrosio, T.; Rascio, A.; Rinaldi, M.; Troisi, J. Characterisation of quinoa (Chenopodium quinoa willd.) accessions for the saponin content in Mediterranean environment. Ital. J. Agron. 2016, 11, 277–281. [Google Scholar]
- Singh, B.K.; Trivedi, P. Microbiome and the future for food and nutrient security. Microb. Biotechnol. 2017, 10, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.R.; Tresina, P.S.; Daffodil, E.D. Antinutritional Factors in Legume Seeds: Characteristics and Determination. In Encyclopedia of Food and Health; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 211–220. ISBN 9780123849533. [Google Scholar]
- Medina-Meza, I.G.; Aluwi, N.A.; Saunders, S.R.; Ganjyal, G.M. GC-MS Profiling of Triterpenoid Saponins from 28 Quinoa Varieties (Chenopodium quinoa Willd.) Grown in Washington State. J. Agric. Food Chem. 2016, 64, 8583–8591. [Google Scholar] [CrossRef] [PubMed]
- Präger, A.; Munz, S.; Nkebiwe, M.; Mast, B.; Graeff-Hönninger, S. Yield and Quality Characteristics of Different Quinoa (Chenopodium quinoa Willd.) Cultivars Grown under Field Conditions in Southwestern Germany. Agronomy 2018, 8, 197. [Google Scholar] [CrossRef] [Green Version]
- Herrera, T.; Navarro del Hierro, J.; Fornari, T.; Reglero, G.; Martin, D. Acid hydrolysis of saponin-rich extracts of quinoa, lentil, fenugreek and soybean to yield sapogenin-rich extracts and other bioactive compounds. J. Sci. Food Agric. 2019, 99, 3157–3167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonfiglio, G.V.; Wierna, R.V.; Bonini, N.A.; Armada, M.; Goldner, M.C. Study of bitterness perception of quinoa (Chenopodium quinoa wild.) saponin extracts. J. Cereal Sci. 2020, 95, 103032. [Google Scholar] [CrossRef]
- Ruiz, K.B.; Khakimov, B.; Engelsen, S.B.; Bak, S.; Biondi, S.; Jacobsen, S.E. Quinoa seed coats as an expanding and sustainable source of bioactive compounds: An investigation of genotypic diversity in saponin profiles. Ind. Crop Prod. 2017, 104, 156–163. [Google Scholar] [CrossRef]
- Reguera, M.; Conesa, C.M.; Gil-Gómez, A.; Haros, C.M.; Pérez-Casas, M.Á.; Briones-Labarca, V.; Bolaños, L.; Bonilla, I.; Álvarez, R.; Pinto, K.; et al. The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ 2018, 6, e4442. [Google Scholar] [CrossRef]
- Soares, S.; Brandão, E.; Guerreiro, C.; Soares, S.; Mateus, N.; de Freitas, V. Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste. Molecules 2020, 25, 2590. [Google Scholar] [CrossRef]
- Schlemmer, U.; Frølich, W.; Prieto, R.M.; Grases, F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res. 2009, 53, S330–S375. [Google Scholar] [CrossRef] [PubMed]
- Castro-Alba, V.; Lazarte, C.E.; Perez-Rea, D.; Carlsson, N.G.; Almgren, A.; Bergenståhl, B.; Granfeldt, Y. Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. J. Sci. Food Agric. 2019, 99, 5239–5248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Search ID | Scopus Query | Documents (No.) |
---|---|---|
#1 | (TITLE-ABS-KEY (quinoa) AND TITLE-ABS-KEY (antioxidants)) AND PUBYEAR > 2015 | 211 |
#2 | (TITLE-ABS-KEY (quinoa) AND TITLE-ABS-KEY (saponins)) AND PUBYEAR > 2015 | 98 |
#3 | (TITLE-ABS-KEY (quinoa) AND TITLE-ABS-KEY (flavonoids)) AND PUBYEAR > 2015 | 90 |
#4 | (TITLE-ABS-KEY (quinoa) AND TITLE-ABS-KEY (phenolic AND compounds)) AND PUBYEAR > 2015 | 73 |
#5 | (TITLE-ABS-KEY (quinoa) AND TITLE-ABS-KEY (bioactive AND compounds)) AND PUBYEAR > 2015 | 56 |
#6 | (TITLE-ABS-KEY (quinoa) AND TITLE-ABS-KEY (phytochemicals)) AND PUBYEAR > 2015 | 37 |
#7 | (TITLE-ABS-KEY (quinoa) AND TITLE-ABS-KEY (carotenoids)) AND PUBYEAR > 2015 | 30 |
#8 | (TITLE-ABS-KEY (quinoa) AND TITLE-ABS-KEY (tocopherols)) AND PUBYEAR > 2015 | 28 |
#9 | (TITLE-ABS-KEY (quinoa) AND TITLE-ABS-KEY (betalains)) AND PUBYEAR > 2015 | 11 |
#10 | (TITLE-ABS-KEY (quinoa) AND TITLE-ABS-KEY (tannins)) AND PUBYEAR > 2015 | 13 |
#11 | (TITLE-ABS-KEY (quinoa) AND TITLE-ABS-KEY (phytoecdysteroids)) AND PUBYEAR > 2015 | 5 |
#12 | (TITLE-ABS-KEY (quinoa) AND TITLE-ABS-KEY (phytic acid)) AND PUBYEAR > 2015 | 17 |
Total | 669 |
Analyte | Analytical Method | Analyte Content | Quinoa Sample Origin | Reference |
---|---|---|---|---|
Phenolic acids | HPLC | Phenolic acids (white): 3.04–10.67 1 Phenolic acids (red): 0.41–28.28 1 Phenolic acids (black): 2.90–28.68 1 | Asia, China | Liu et al. [18] |
Phenolic acids and flavonoids | HPLC | Gallic acid (free): 295.11 1 Gallic acid (bound): nd Protocatechuic acid (free): 126.27 1 Protocatechuic acid (bound): nd p-Hydroxybenzoic acid (free): 54.57 1 p-Hydroxybenzoic acid (bound): 22.13 1 Chlorogenic acid (free): 7.86 1 Chlorogenic acid (bound): nd Vanillic acid (free): 26.87 1 Vanillic acid (bound): 17.14 1 Caffeic acid (free): 3.81 1 Caffeic acid (bound): nd Syringic acid (free): 21.20 1 Syringic acid (bound): 4.08 1 Vanillin (free): 21.92 1 Vanillin (bound): nd p-Coumaric acid (free): 48.39 1 p-Coumaric acid (bound): 15.92 1 Ferulic acid (free): 118.18 1 Ferulic acid (bound): 72.62 1 Rutin (free): 52.14 1 Rutin (bound): 7.64 1 Quercetin (free): 17.61 1 Quercetin (bound): 6.51 1 Total (free): 793.93 1 Total (bound): 146.04 1 | Asia, China | Han et al. [16] |
Phenolic acids | LC-MS | Total phenolic acids (raw): 151.43 1 trans-p-coumaric acid (raw): 68.10 1 Total phenolics (raw): 686.42 1 Total phenolics (popped): 784.63 1 | South America, Peru | Paucar-Menacho et al. [47] |
Phenolic acids | HPLC | Total phenolics (raw): 2.13 4 p-OH-benzoic (raw): 0.22 4 Vanillic acid (raw): 0.88 4 p-Coumaric acid (raw): 0.09 4 Ferulic acid (raw): 0.57 4 Total phenolic acids (raw): 1.75 4 | South America, Argentina | Carciochi et al. [29] |
Phenolic acids | HPLC | Total phenolics (raw): 2.13 4 Total phenolic acids (raw): 1.75 4 Total phenolics (malted): 16.7 4 Total phenolic acids (malted): 15.0 4 | South America, Argentina | Carciochi et al. [31] |
Phenolic acids | UHPLC–DAD MS/MS | Ferulic acid: nd—56.21 2 5-O-caffeoylquinic acid: 2.14–2.19 2 Gentisic acid: nd—0.62 2 p-Coumaric acid: 2.03–6.46 2 Ellagic acid: 12.03–14.29 2 Total phenolic acids: 23.51–72.46 2 | Europe, Serbia | Stikić et al. [23] |
Total phenolics | LC-MS | Total phenolics (black): 574.7 3 Total phenolics (red): 358.7 3 Total phenolics (white): 483.4 3 | Commercial | Pereira et al. [48] |
Phenolic acids | UHPLC-DAD | 4′-geranyloxyferulic acid: 2.01 1 | Commercial | Fiorito et al. [49] |
Phenolic acids | LC-MS | Vanillic acid: 1.3 2 Gallic acid: 0.01 2 Chlorogenic acid: 0.002 2 | Commercial | Hur et al. [45] |
Phenolic acids and flavonoids | GC-MS | 3-Hydroxybenzoic acid (free): 20 4 4-Hydroxybenzoic acid (free): 30 4 Vanillic acid (free): 60 4 Protocatechuic acid (free): 130 4 Isoferulic acid (free): 70 4 Quercetin (free): 160 4 3-Hydroxybenzoic acid (bound): 20 4 4-Hydroxybenzoic acid (bound): 60 4 Vanillic acid (bound): 190 4 Protocatechuic acid (bound): 90 4 Isoferulic acid (bound): 100 4 Quercetin (bound): 350 4 | Commercial | Navarro del Hierro et al. [50] |
Phenolic acids | HPLC | Total phenolics: 1.10–1.99 2 Caffeic acid: 0.14–0.33 2 Vanillic acid: 0.34–0.95 2 Vanillin: nd—0.09 2 t-Ferulic acid: 0.21–1.03 2 | Not specified | Carrasco-Sandoval et al. [51] |
Flavonoids | HPLC-ESI-MS | Identification of 11 flavonoids (i.e., quercetin and kaempferol glycosides) | Commercial | Balakrishnan et al. [42] |
Flavonoids | LC-MS | TF (raw): 534.99 1 TF (popped): 674.58 1 Quercetin 3-O-rutinoside (raw): 73.33 1 Quercetin 3-O-rutinoside (popped): 112.60 1 | South America, Peru | Paucar-Menacho et al. [47] |
Flavonoids | HPLC | Quercetin (raw): 0.23 4 Kaempferol (raw): 0.15 4 Total flavonoid (raw): 0.37 4 Quercetin (roasted at 190 °C): 1.98 4 Kaempferol (roasted at 190 °C): 2.00 4 Total flavonoid (roasted at 190 °C): 3.98 4 | South America, Argentina | Carciochi et al. [29] |
Flavonoids | HPLC | Quercetin (raw): 0.23 4 Kaempferol (raw): 0.15 4 Total flavonoid (raw): 0.37 4 Quercetin (malted): 1.36 4 Kaempferol (malted): 0.27 4 Total flavonoid (malted): 1.63 4 | South America, Argentina | Carciochi et al. [31] |
Flavonoids | UHPLC–DAD MS/MS | Quercetin (Puno): 4.78 2 Quercetin (Titicaca): 4.78 2 Isorhamnetin (Puno): 3.00 2 Isorhamnetin (Titicaca): nd Quercetin−3-O-galactoside (Puno): 1.09 2 Quercetin−3-O-galactoside (Titicaca): 1.87 2 Isorhamnetin−3-O-rutinoside (Puno): 2.37 2 Isorhamnetin−3-O-rutinoside (Titicaca): 2.42 2 Rutin (Puno): 30.1 2 Rutin (Titicaca): 33.8 2 Naringin (Puno): 0.07 2 Naringin (Titicaca): 0.12 2 Aesculin (Puno): 0.53 2 Aesculin (Titicaca): 0.46 2 Phlorizin (Puno): 0.08 2 Phlorizin (Titicaca): 0.14 2 Eriodictyol (Puno): 0.33 2 Eriodictyol (Titicaca): nd | Europe, Serbia | Stikić et al. [23] |
Flavonoid glycosides | HPLC-UV-MS | FG (Chile): 192–804 5 FG (commercial): 196–674 5 | Multi-origin (Commercial + South America, Chile) | Graf et al. [52] |
Flavonoid glycosides | HPLC-DAD-ESI/MS | Quercetin 3-O-(2″,6″-di-O-α-l-rhamnoside)-β-d-galactoside: 93.5 6 Quercetin 3-O-(2″-O-β-apioside-6″-O-α-rhamnoside)-β-galactoside: 58.2 6 Kaempferol 3-O-(2″,6″-di-O-α-rhamnoside)-β-galactoside: 23.73 6 Kaempferol 3-O-(2″,6″-di-O-α-rhamnoside)-β-glucoside: 21.5 6 Quercetin 3-O-rutinoside: 5.26 6 Kaempferol 3-O-rutinoside: 5.28 6 | South America, Brazil | Sampaio et al. [53] |
Isoflavones | HPLC | Genistein: 0.39–0.52 4 Daidzein: 0.60–1.93 4 | South America, Chile | Vega-Gálvez et al. [25] |
Analytical Method | Analyte Content | Quinoa Sample Origin | Reference |
---|---|---|---|
Spectrophotometry | Total betalains: 0.15–6.10 1 | South America, Peru | Abderrahim et al. [24] |
HPLC | Amaranthin: 0.8–148.6 2 iso-Amaranthin: 0.8–145.5 2 Betanin: 0.6–9.7 2 iso-Betanin: 0.6–7.7 2 Dopaxanthin: 0.4–85.3 2 Dopamine-BX: 0.5–10.5 2 Proline-BX: 0.3–7.5 2 | South America, Peru | Escribano et al. [56] |
LC-MS | Identification of betanin and isobetanin | Commercial (red and black quinoa) | Tang et al. [39] |
Functional Component Group | Analytical Method | Analyte Content | Quinoa Sample Origin | Reference |
---|---|---|---|---|
Carotenoids | Spectrophotometry | β-carotene: 10.5–12.65 1 Lycopene: 1.48–2.40 1 | Africa, Egypt | Saad-Allah et al. [14] |
Carotenoids | HPLC-APCI-MS/MS | all-trans-E-lutein: 1.47 1 all-trans-zeaxanthin: 0.22 1 Lutein isomer A: 0.09 1 Lutein isomer B: 0.21 1 Neochrome A: 0.24 1 Neochrome B: 0.11 1 | Europe, Finland | Multari et al. [22] |
Carotenoids | HPLC | Lutein (white): 85.6 2 Lutein (pigmented): 265.2 2 Zeaxanthin (white): 11.2 2 Zeaxanthin (pigmented): 13.2 2 Β-carotenone (white): 12.3 2 Β-carotenone (pigmented): 23.60 2 TC (white): 109.1 2 TC (pigmented): 302.0 2 | Commercial | Niro et al. [58] |
Carotenoids | Spectrophotometry HPLC | TC (white): 11.87 1 TC (red): 14.97 1 TC (black): 17.61 1 all-trans-lutein (white): 7.56 1 all-trans-lutein (red): 9.49 1 all-trans-lutein (black): 11.32 1 all-trans-zeaxanthin (white): 0.39 1 all-trans-zeaxanthin (red): 0.47 1 all-trans-zeaxanthin (black): 0.55 1 | Commercial | Tang et al. [59] |
Tocols | HPLC | α-tocopherol (Blanca de Juli): 639 3 α-tocopherol (Roja Pasankalla): 608 3 α-tocopherol (Negra Collana): 463 3 α-tocopherol (Amarilla de Marangani): 1444 3 TT (Blanca de Juli): 1354 3 TT (Roja Pasankalla): 1450 3 TT (Negra Collana): 1512 3 TT (Amarilla de Maranganì): 2275 3 | South America, Peru | Pachari et al. [60] |
Tocols | HPLC | γ-tocopherol: 40.6 1 α-tocopherol: 28.3 1 β-tocopherol: 0.9 1 δ-tocopherol: 3.1 1 | South America, Argentina | Carciochi et al. [30] |
Tocols | HPCL-FL | α-tocopherol: 0.919 4 γ-tocopherol: 2.67 4 TT: 3.59 4 | South America, Brazil | Sampaio et al. [53] |
Tocols | HPLC | α-tocopherol (non-pigmented): 39.41–53.27 1 α-tocopherol (pigmented): 35.55–82.87 1 β-tocopherol: nd γ-tocopherol (non-pigmented): 24.77–86.47 1 γ-tocopherol (pigmented): 40.13–78.98 1 δ-tocopherol (non-pigmented): 0.62–3.72 1 δ-tocopherol (pigmented): 0.91–4.59 1 α-tocotrienol: nd β-tocotrienol: nd Vit. E activity: 43.50–86.89 1 | Multi-country (Bolivia, Colombia, Denmark and Peru) | Granda et al. [61] |
Tocols | LC-MS | γ-tocopherol (white): 25.89 1 γ-tocopherol (red): 43.51 1 γ-tocopherol (black): 46.90 1 β-tocotrienol (white): 0.78 1 β-tocotrienol (red): 0.82 1 β-tocotrienol (black): 0.86 1 Total Vit E (white): 37.49 1 Total Vit E (red): 55.25 1 Total Vit E (black): 59.82 1 | Commercial | Tang et al. [59] |
Tocols | HPLC | γ-tocoferol (white): 839 2 γ-tocoferol (red): 1210 2 γ-tocoferol (black): 1619 2 TT (white): 971 2 TT (red): 1388 2 TT (black): 1764 2 | Commercial | Pereira et al. [62] |
Tocols | HPLC | α-tocopherol: 2.86 4 β-tocopherol: 0.11 4 γ-tocopherol: 5.90 4 δ-tocopherol: 0.22 4 α-tocotrienol: nd β-tocotrienol: traces γ-tocotrienol: traces δ-tocotrienol: nd | Commercial | Niro et al. [58] |
Tocols | GC-MS | β-tocopherol (free): 0.51 1 β-tocopherol (bound): 0.68 1 | Commercial | Navarro del Hierro et al. [50] |
Phytoecdysteroids | LC-MS | TPE (Chile): 224–570 5 TPE (commercial): 138–578 5 20 HE: 184–491 5 | Multi-origin (South America, Chile + Commercial) | Graf et al. [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melini, V.; Melini, F. Functional Components and Anti-Nutritional Factors in Gluten-Free Grains: A Focus on Quinoa Seeds. Foods 2021, 10, 351. https://doi.org/10.3390/foods10020351
Melini V, Melini F. Functional Components and Anti-Nutritional Factors in Gluten-Free Grains: A Focus on Quinoa Seeds. Foods. 2021; 10(2):351. https://doi.org/10.3390/foods10020351
Chicago/Turabian StyleMelini, Valentina, and Francesca Melini. 2021. "Functional Components and Anti-Nutritional Factors in Gluten-Free Grains: A Focus on Quinoa Seeds" Foods 10, no. 2: 351. https://doi.org/10.3390/foods10020351
APA StyleMelini, V., & Melini, F. (2021). Functional Components and Anti-Nutritional Factors in Gluten-Free Grains: A Focus on Quinoa Seeds. Foods, 10(2), 351. https://doi.org/10.3390/foods10020351