Effect of Ripening on the Phenolic Composition and Mineral Content of Three Varieties of Olive Fruits
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals and Reagents
2.2. Sample Preparation and Extraction
2.3. HPLC Analysis of the Phenolic Compounds
2.4. ICP-MS Analysis of Olives
2.5. Statistical Analysis
3. Results and Discussion
3.1. HPLC-MS Analysis
3.1.1. Secoiridoids
3.1.2. Other Compounds
3.2. Quantification of Phenolic Compounds
3.3. Influence of Ripening on Phenolic Content
3.4. Mineral Components
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1st | October |
2nd | November |
3rd | December |
4th | January |
DE | Dried extract |
FW | Fresh weight |
HD | Harvest date |
m/z | Mass to charge ratio |
SD | Standard deviation |
TIPC | Total individual phenolic content |
tR | Retention time |
References
- Loumou, A.; Giourga, C. Olive groves: The life and identity of the Mediterranean. Agric. Hum. Values 2003, 20, 87–95. [Google Scholar] [CrossRef]
- Arslan, D.; Özcan, M.M. Phenolic profile and antioxidant activity of olive fruits of the Turkish variety “Sarıulak” from different locations. Grasas Aceites 2011, 62, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Hbaieb, R.H.; Kotti, F.; García-Rodríguez, R.; Gargouri, M.; Sanz, C.; Pérez, A.G. Monitoring endogenous enzymes during olive fruit ripening and storage: Correlation with virgin olive oil phenolic profiles. Food Chem. 2015, 174, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Brahmi, F.; Mechri, B.; Dhibi, M.; Hammami, M. Variations in phenolic compounds and antiradical scavenging activity of Olea europaea leaves and fruits extracts collected in two different seasons. Ind. Crops Prod. 2013, 49, 256–264. [Google Scholar] [CrossRef]
- Kumar, V.; Irfan, M.; Ghosh, S.; Chakraborty, N.; Chakraborty, S.; Datta, A. Fruit ripening mutants reveal cell metabolism and redox state during ripening. Protoplasma 2016, 253, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Gomes, L.; Leitão, F.; Coelho, A.V.; Boas, L.V. Phenolic compounds and antioxidant activity of Olea europaea L. fruits and leaves. Food Sci. Technol. Int. 2006, 12, 385–396. [Google Scholar] [CrossRef]
- Fregapane, G.; Salvador, M.D. Production of superior quality extra virgin olive oil modulating the content and profile of its minor components. Food Res. Int. 2013, 54, 1907–1914. [Google Scholar] [CrossRef]
- Bouaziz, M.; Chamkha, M.; Sayadi, S. Comparative study on phenolic content and antioxidant activity during maturation of the olive cultivar Chemlali from Tunisia. J. Agric. Food Chem. 2004, 52, 5476–5481. [Google Scholar] [CrossRef]
- Moure, A.; Cruz, J.M.; Franco, D.; Domínguez, J.M.; Sineiro, J.; Domínguez, H.; Núñez, M.J.; Parajó, J.C. Natural antioxidants from residual sources. Food Chem. 2001, 72, 145–171. [Google Scholar] [CrossRef]
- Gómez-Rico, A.; Fregapane, G.; Salvador, M.D. Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Res. Int. 2008, 41, 433–440. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Domínguez-Perles, R.; Gironés-Vilaplana, A.; Carvalho, T.; Machado, N.; Barros, A. Kinetics of the polyphenolic content and radical scavenging capacity in olives through on-tree ripening. J. Chem. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Garcia, F.; Blanco, S.; Peinado, M.A.; Peragon, J. Polyphenol oxidase and its relationship with oleuropein concentration in fruits and leaves of olive (Olea europaea) cv. “Picual” trees during fruit ripening. Tree Physiol. 2008, 28, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.; Medina, E.; Mateo, M.A.; Brenes, M. Quantification of bioactive compounds in Picual and Arbequina olive leaves and fruit. J. Sci. Food Agric. 2017, 97, 1725–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajoub, A.; Medina-Rodríguez, S.; Olmo-García, L.; Ajal, E.A.; Monasterio, R.P.; Hanine, H.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. In-depth two-year study of phenolic profile variability among olive oils from autochthonous and mediterranean varieties in Morocco, as revealed by a LC-MS chemometric profiling approach. Int. J. Mol. Sci. 2017, 18, 52. [Google Scholar] [CrossRef]
- Salvador, M.D.; Aranda, F.; Fregapane, G. Influence of fruit ripening on “Cornicabra” virgin olive oil quality. A study of four successive crop seasons. Food Chem. 2001, 73, 45–53. [Google Scholar] [CrossRef]
- Casas, J.S.; De Miguel Gordillo, C.; Bueno, E.O.; Expósito, J.M.; González, L.G.; Cano, M.M.; Cano, M.M. Sensory quality of virgin olive oils coming from olive varieties produced in Extremadura (Spain). Grasas Aceites 2006, 57, 313–318. [Google Scholar] [CrossRef]
- Casas, J.S.; De Miguel Gordillo, C.; Bueno, E.O.; Expósito, J.M.; Mendoza, M.F.; Hierro, T.A.; González, L.G.; Cano, M.M. Characteristics of virgin olive oils from the olive zone of Extremadura (Spain), and an approximation to their varietal origin. J. Am. Oil Chem. Soc. 2009, 86, 933–940. [Google Scholar] [CrossRef]
- Fernández-Poyatos, M.P.; Ruiz-Medina, A.; Llorent-Martínez, E.J. Phytochemical profile, mineral content, and antioxidant activity of Olea europaea L. cv. Cornezuelo table olives. Influence of in vitro simulated gastrointestinal digestion. Food Chem. 2019, 297, 124933. [Google Scholar] [CrossRef]
- Abenoza, M.; Lasa Dolhagaray, J.M.; Benito, M.; Oria, R.; Sánchez-Gimeno, A.C. The evolution of Arbequina olive oil quality during ripening in a commercial super-high density orchard in north-east Spain. Riv. Ital. Delle Sostanze Grasse 2015, 92, 83–92. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De La Rosa, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Pattern of variation of fruit traits and phenol content in olive fruits from six different cultivars. J. Agric. Food Chem. 2015, 63, 10466–10476. [Google Scholar] [CrossRef]
- Malapert, A.; Reboul, E.; Loonis, M.; Dangles, O.; Tomao, V. Direct and rapid profiling of biophenols in olive pomace by UHPLC-DAD-MS. Food Anal. Methods 2018, 11, 1001–1010. [Google Scholar] [CrossRef]
- Jiménez-López, J.; Ruiz-Medina, A.; Ortega-Barrales, P.; Llorent-Martínez, E.J. Rosa rubiginosa and Fraxinus oxycarpa herbal teas: Characterization of phytochemical profiles by liquid chromatography-mass spectrometry, and evaluation of the antioxidant activity. New J. Chem. 2017, 41, 7681–7688. [Google Scholar] [CrossRef]
- Llorent-Martínez, E.J.; Gouveia, S.; Castilho, P.C. Analysis of phenolic compounds in leaves from endemic trees from Madeira Island. A contribution to the chemotaxonomy of Laurisilva forest species. Ind. Crops Prod. 2015, 64, 135–151. [Google Scholar] [CrossRef]
- Rigane, G.; Salem, R.B.; Sayadi, S.; Bouaziz, M. Phenolic composition, isolation, and structure of a new deoxyloganic acid derivative from Dhokar and Gemri-Dhokar olive cultivars. J. Food Sci. 2011, 76, C965–C973. [Google Scholar] [CrossRef]
- Savarese, M.; De Marco, E.; Sacchi, R. Characterization of phenolic extracts from olives (Olea europaea cv. Pisciottana) by electrospray ionization mass spectrometry. Food Chem. 2007, 105, 761–770. [Google Scholar] [CrossRef]
- García-Villalba, R.; Larrosa, M.; Possemiers, S.; Tomás-Barberán, F.A.; Espín, J.C. Bioavailability of phenolics from an oleuropein-rich olive (Olea europaea) leaf extract and its acute effect on plasma antioxidant status: Comparison between pre- and postmenopausal women. Eur. J. Nutr. 2014, 53, 1015–1027. [Google Scholar] [CrossRef]
- Kanakis, P.; Termentzi, A.; Michel, T.; Gikas, E.; Halabalaki, M.; Skaltsounis, A.-L. From olive drupes to olive oil. An HPLC-orbitrap-based qualitative and quantitative exploration of olive key metabolites. Planta Med. 2013, 79, 1576–1587. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.; Arráez-Roman, D.; Segura-Carretero, A.; Menéndez, J.A.; Menéndez-Gutiérrez, M.P.; Micol, V.; Fernández-Gutiérrez, A. Qualitative screening of phenolic compounds in olive leaf extracts by hyphenated liquid chromatography and preliminary evaluation of cytotoxic activity against human breast cancer cells. Anal. Bioanal. Chem. 2010, 397, 643–654. [Google Scholar] [CrossRef]
- Jerman, T.; Trebše, P.; Vodopivec, B.M. Ultrasound-assisted solid liquid extraction (USLE) of olive fruit (Olea europaea) phenolic compounds. Food Chem. 2010, 123, 175–182. [Google Scholar] [CrossRef]
- Llorent-Martínez, E.J.; Ortega-Barrales, P.; Zengin, G.; Mocan, A.; Simirgiotis, M.J.; Ceylan, R.; Uysal, S.; Aktumsek, A. Evaluation of antioxidant potential, enzyme inhibition activity and phenolic profile of Lathyrus cicera and Lathyrus digitatus: Potential sources of bioactive compounds for the food industry. Food Chem. Toxicol. 2017, 107, 609–619. [Google Scholar] [CrossRef]
- Ren, L.; Xue, X.; Zhang, F.; Wang, Y.; Liu, Y.; Li, C.; Liang, X. Studies of iridoid glycosides using liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 3039–3050. [Google Scholar] [CrossRef] [PubMed]
- Llorent-Martínez, E.J.; Spínola, V.; Castilho, P.C. Phenolic profiles of Lauraceae plant species endemic to Laurisilva forest: A chemotaxonomic survey. Ind. Crops Prod. 2017, 107, 1–12. [Google Scholar] [CrossRef]
- Fernández-Poyatos, M.D.P.; Ruiz-Medina, A.; Llorent-Martínez, E.J. Phytochemical profile and mineral content of Royal variety olive fruits. Influence of the ripening stage. J. Food Compos. Anal. 2021, 95, 103671. [Google Scholar] [CrossRef]
- Ferro, M.D.; Lopes, E.; Afonso, M.; Peixe, A.; Rodrigues, F.M.; Duarte, M.F. Phenolic profile characterization of "Galega Vulgar" and "Cobrançosa" Portuguese olive cultivars along the ripening stages. Appl. Sci. 2020, 10, 3930. [Google Scholar] [CrossRef]
- Jemai, H.; Bouaziz, M.; Sayadi, S. Phenolic composition, sugar contents and antioxidant activity of Tunisian sweet olive cultivar with regard to fruit ripening. J. Agric. Food Chem. 2009, 57, 2961–2968. [Google Scholar] [CrossRef]
- Othman, N.B.; Roblain, D.; Chammen, N.; Thonart, P.; Hamdi, M. Antioxidant phenolic compounds loss during the fermentation of Chétoui olives. Food Chem. 2009, 116, 662–669. [Google Scholar] [CrossRef]
- Dağdelen, A.; Tümen, G.; Özcan, M.M.; Dündar, E. Phenolics profiles of olive fruits (Olea europaea L.) and oils from Ayvalik, Domat and Gemlik varieties at different ripening stages. Food Chem. 2013, 136, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Ortega-García, F.; Peragón, J. Phenylalanine ammonia-lyase, polyphenol oxidase, and phenol concentration in fruits of Olea europaea L. cv. Picual, Verdial, Arbequina, and Frantoio during ripening. J. Agric. Food Chem. 2009, 57, 10331–10340. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.; Robards, J.; Lavee, S. Changes in phenolic content of olive during maturation. Int. J. Food Sci. Tech. 1999, 34, 265–274. [Google Scholar] [CrossRef]
- Yorulmaz, A.; Erinc, H.; Tekin, A. Changes in olive and olive oil characteristics during maturation. J. Am. Oil Chem. Soc. 2013, 90, 647–658. [Google Scholar] [CrossRef]
- D’Amato, R.; Petrelli, M.; Proietti, P.; Onofri, A.; Regni, L.; Perugini, D.; Businelli, D. Determination of changes in the concentration and distribution of elements within olive drupes (cv. Leccino) from Se biofortified plants, using laser ablation inductively coupled plasma mass spectrometry. J. Sci. Food Agric. 2018, 98, 4971–4977. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.J.; Pozzi, M.T.; Furlong, O.J.; Marchevsky, E.J.; Pellerano, R.G. Classification of organic olives based on chemometric analysis of elemental data. Microchem. J. 2018, 142, 30–35. [Google Scholar] [CrossRef]
- Llorent-Martínez, E.J.; Fernández-de Córdova, M.L.; Ortega-Barrales, P.; Ruiz-Medina, A. Quantitation of metals during the extraction of virgin olive oil from olives using ICP-MS after microwave-assisted acid digestion. J. Am. Oil Chem. Soc. 2014, 91, 1823–1830. [Google Scholar] [CrossRef]
N° | tR(min) | [M-H]− m/z | m/z (% Base Peak) | Assigned Identification | Cornezuelo | Cornicabra | Picual | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 1st | 2nd | 3rd | 4th | 1st | 2nd | 3rd | 4th | |||||
1 | 1.8 | 191 | MS2 [191]: 173 (37), 127 (7), 111 (100) | Citric acid | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
2 | 2.8 | 375 | MS2 [375]: 213 (100), 169 (13), 151 (3), 125 (23), 107 (4) MS3 [375→213]: 169 (7), 125 (100) | Dihydrocominic acid | ✓ | ✓ | ||||||||||
3 | 3.5 | 315 | MS2 [315]: 153 (100), 135 (19), 123 (22) MS3 [315→153]: 123 (100) | Hydroxytyrosol glucoside | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
4 | 4.1 | 407 | MS2 [407]: 389 (100), 375 (85), 357 (71), 313 (57) MS3 [407→389]: 357 (62), 313 (100), 161 (22) | 1-β-Glucosyl-acyclodihydroelenolic acid | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
5 | 7.3 | 389 | MS2 [389]: 345 (100), 209 (65), 165 (25), 121 (44) MS3 [389→345]: 183 (51), 165 (100), 119 (48) MS4 [389→345→165]: 121 (100) | Oleoside/secologanoside | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
6 | 10.2 | 403 | MS2 [403]: 223 (100), 179 (69), 143 (24), 121 (21) MS3 [403→223]: 191 (11), 121 (100) | Oleoside-11-methylester * | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
7 | 10.7 | 377 | MS2 [377]: 197 (100), 153 (25) MS3 [377→197]: 153 (100) | Oleuropein aglycone | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
8 | 13.4 | 337 | MS2 [337]: 178 (41), 115 (6), 114 (100) | Unknown | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
9 | 13.6 | 403 | MS2 [403]: 371 (100), 223 (70), 179 (78), 121 (13) | Elenolic acid glucoside | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
10 | 17.6 | 525 | MS2 [525]: 481 (29), 319 (23), 301 (23), 195 (100) MS3 [525→195]: 193 (100), 192 (50) | Dimethyl-oleuropein glucoside | ✓ | ✓ | ||||||||||
11 | 18.1 | 701 | MS2 [701]: 539 (34), 469 (29), 385 (17), 315 (100) MS3 [701→315]: 153 (100), 123 (24) MS4 [701→315→153]: 123 (100) | Hydroxytyrosol glucoside derivative | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
12 | 19.4 | 609 | MS2 [609]: 301 (100) MS3 [609→301]: 179 (100), 151 (70) MS4 [609→301→179]: 151 (100) | Rutin * | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
13 | 20.3 | 623 | MS2 [623]: 461 (100) MS3 [623→461]: 315 (58), 135 (100) | Verbascoside * | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
14 | 20.8 | 447 | MS2 [447]: 285 (100) MS3 [447→285]: 241 (90), 175 (100) | Luteolin-O-hexoside | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
15 | 21.2 | 543 | MS2 [543]: 525 (100), 513 (31), 389 (15)MS3 [543→525]: 389 (100), 357 (73), 313 (83) MS4 [543→525→389]: 357 (59), 313 (100) | Dihydrooleuropein | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
16 | 22.1 | 701 | MS2 [701]: 539 (100), 377 (82), 307 (54), 275 (46) MS3 [701→539]: 507 (32), 377 (100), 307 (94), 275 (73) MS4 [701→539→377]: 275 (100) | Oleuropein glucoside | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
17 | 23.1 | 701 | MS2 [701]: 539 (100), 377 (43), 307 (42), 275 (34) MS3 [701→539]: 377 (54), 307 (50), 275 (100) MS4 [701→539→275]: 139 (100), 113 (86) | Oleuropein glucoside | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
18 | 24.3 | 551 | MS2 [551]: 507 (100), 341 (48), 281 (37), 251 (39), 179 (40) MS3 [551→507]: 341 (34), 179 (34), 161 (100) | 6′-β-hexopyranosyloleoside | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
19 | 25.4 | 377 | MS2 [377]: 307 (100), 275 (72) MS3 [377→307]: 275 (100), 139 (22) MS4 [377→307→275]: 113 (100) | Oleuropein aglycone | ✓ | ✓ | ✓ | ✓ | ||||||||
20 | 26.0 | 569 | MS2 [569]: 537 (90), 403 (100), 223 (25) MS3 [569→403]: 371 (10), 223 (100), 179 (81), 143 (28) MS4 [569→403→223]: 121 (100), 101 (24) | Elenolic acid glucoside derivative | ✓ | ✓ | ✓ | ✓ | ||||||||
21 | 27.0 | 539 | MS2 [539]: 377 (100), 307 (57), 275 (72) MS3 [539→377]: 307 (100), 275 (87), 149 (8) MS4 [539→377→307]: 275 (100) | Oleuropein * | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
22 | 28.3 | 535 | MS2 [535]: 491 (100), 265 (36), 235 (28) MS3 [535→491]: 345 (46), 265 (46), 145 (100) | Comselogoside isomer | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
23 | 29.4 | 539 | MS2 [539]: 377 (71), 307 (85), 275 (100) | Oleuropein isomer | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
24 | 30.1 | 535 | MS2 [535]: 491 (100), 265 (60), 235 (44), 209 (37) MS3 [535→491]: 345 (25), 235 (46), 206 (19), 145 (100) MS4 [535→491→145]: 143 (100) | Comselogoside isomer | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
25 | 30.6 | 473 | MS2 [473]: 358 (29), 195 (100), 178 (7) MS3 [473→195]: 135 (100) | Unknown | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
26 | 32.2 | 523 | MS2 [523]: 361 (100), 291 (59), 259 (47) MS3 [523→361]: 291 (100), 259 (77), 223 (12) | Ligstroside | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
27 | 36.3 | 557 | MS2 [557]: 513 (100), 345 (46), 209 (66), 185 (56) MS3 [557→513]: 345 (100), 199 (19), 185 (59) MS4 [557→513→345]: 183 (100) | Oleoside/secologanoside derivative | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Cornezuelo | 2017/2018 | 2018/2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2nd HD | 3rd HD | 4th HD | 1st HD | 2nd HD | 3rd HD | 4th HD | ||||
MI | 2 | 3.5 | 4 | 1 | 1.5 | 3 | 4 | |||
(Seco)iridoids | ||||||||||
5 | Oleoside/secologanoside | 20 ± 2 b | 26 ± 3 b | 100 ± 10 a | 25 ± 3 c | 38.4 ± 0.3 c | 102 ± 5 b | 220 ± 20 a | ||
6 | Oleoside-11-methylester | 0.48 ± 0.03 b | 6.1 ± 0.5 b | 65 ± 6 a | 12.3 ± 0.7 d | 22 ± 2 c | 70 ± 2 b | 128 ± 5 a | ||
7 | Oleuropein aglycone | 3.62 ± 0.08 | 4.0 ± 0.5 | - | 2.2 ± 0.1 b | 2.4 ± 0.1 b | 6.3 ± 0.1 a | - | ||
9 | Elenolic acid glucoside | 11 ± 2 b | 7.8 ± 0.5 b | 47 ± 1 a | 16 ± 2 c | 14.19 ± 0.05 c | 69 ± 5 b | 88 ± 7 a | ||
15 | Dihydrooleuropein | - | - | - | 4.6 ± 0.5 a | 4.3 ± 0.5 a | 4.4 ± 0.5 a | 4.6 ± 0.4 a | ||
16 | Oleuropein glucoside | 7.8 ± 0.3 b | 11.4 ± 0.2 a | 6.8 ± 0.7 b | 6.3 ± 0.7 b | 6.5 ± 0.3 b | 9.2 ± 0.9 a | 7.7 ± 0.3 ab | ||
17 | Oleuropein glucoside | 2.3 ± 0.3 c | 4.0 ± 0.4 b | 9.3 ± 0.9 a | 2.63 ± 0.01 c | - | 11.7 ± 0.6 b | 14 ± 1 a | ||
18 | 6′-β-hexopyranosyloleoside | 35 ± 3 ab | 39 ± 4 a | 30.8 ± 0.3 b | 30 ± 3 a | 32.5 ± 0.4 a | 32 ± 2 a | 32 ± 1 a | ||
20 | Elenolic acid glucoside derivative | - | 3.6 ± 0.1 | 24 ± 2 | - | - | - | 13.2 ± 0.6 | ||
21 | Oleuropein | 24 ± 1 c | 60 ± 3 b | 88 ± 5 a | 61 ± 5 c | 78 ± 6 c | 131 ± 8 b | 160 ± 10 a | ||
22 | Comselogoside isomer | 99 ± 8 ab | 110 ± 10 a | 81.9 ± 0.6 b | 62 ± 5 b c | 64.7 ± 0.1 ab | 70 ± 1 a | 55 ± 2 c | ||
23 | Oleuropein isomer | 37 ± 4 | 42 ± 4 | 30.3 ± 0.2 | 34 ± 3 a | 38 ± 2 a | 35 ± 1 a | 28 ± 2 b | ||
24 | Comselogoside isomer | 5.6 ± 0.6 b | 11 ± 1 a | 9.4 ± 0.9 a | 5.3 ± 0.6 b | 5.0 ± 0.2 b | 5.1 ± 0.1 b | 6.4 ± 0.3 a | ||
26 | Ligstroside | 2.7 ± 0.3 b | 6.6 ± 0.7 a | 7.2 ± 0.8 a | 7.9 ± 0.9 b | 7.6 ± 0.6 b | 19 ± 2 a | 10 ± 1 b | ||
27 | Oleoside/secologanoside derivative | 16.53 ± 0.04 a | 13 ± 1 b | 15 ± 1 ab | 9.2 ± 0.9 c | 8.808 ± 0.003 c | 17 ± 2 a | 13.0 ± 0.3 b | ||
Total | 270 ± 10 c | 340 ± 10 b | 510 ± 10 a | 278 ± 9 d | 322 ± 7 c | 580 ± 10 b | 780 ± 20 a | |||
Other compounds | ||||||||||
3 | Hydroxytyrosol glucoside | 2.4 ± 0.3 c | 12 ± 1 b | 30 ± 3 a | 3.15 ± 0.05 d | 6.5 ± 0.4 c | 10.8 ± 0.7 b | 35.9 ± 0.9 a | ||
11 | Hydroxytyrosol glucoside derivative | - | 3.9 ± 0.4 | 9.5 ± 0.2 | - | - | 4.6 ± 0.4 | 12.2 ± 0.6 | ||
12 | Rutin | 19 ± 1 a | 17 ± 2 a | 5.7 ± 0.5 b | 4.5 ± 0.5 b | 4.7 ± 0.5 b | 10.9 ± 0.9 a | 3.3 ± 0.3 b | ||
13 | Verbascoside | 0.026 ± 0.002 c | 0.26 ± 0.03 b | 2.47 ± 0.01 a | 0.040 ± 0.003 c | - | 2.38 ± 0.08 b | 6.39 ± 0.09 a | ||
14 | Luteolin-O-hexoside | 10.9 ± 0.6 b | 18 ± 2 a | 10.7 ± 0.1 b | - | 1.5 ± 0.1 c | 9.2 ± 0.8 a | 6.9 ± 0.5 b | ||
Total | 32 ± 1 c | 51 ± 3 b | 58 ± 3 a | 7.7 ± 0.5 d | 12.7 ± 0.6 c | 38 ± 1 b | 65 ± 1 a | |||
TIPC | 300 ± 10 c | 390 ± 10 b | 570 ± 10 a | 286 ± 9 d | 335 ± 7 c | 620 ± 10 b | 840 ± 20 a |
Cornicabra | 2017/2018 | 2018/2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2nd HD | 3rd HD | 4th HD | 1st HD | 2nd HD | 3rd HD | 4th HD | ||||
MI | 1 | 3 | 4 | 1 | 3 | 4.5 | 4.75 | |||
(Seco)iridoids | ||||||||||
5 | Oleoside/secologanoside | 7.4 ± 0.7 c | 81 ± 4 a | 51 ± 4 b | 24 ± 2 d | 55 ± 5 c | 84 ± 3 b | 170 ± 10 a | ||
6 | Oleoside-11-methylester | - | 53 ± 4 | 25 ± 2 | 38 ± 3 c | 40 ± 3 c | 58 ± 4 b | 81 ± 6 a | ||
7 | Oleuropein aglycone | 2.10 ± 0.07 | - | - | 1.71 ± 0.03 a | 0.93 ± 0.09 c | 1.49 ± 0.06 b | - | ||
10 | Dimethyl-oleuropein glucoside | - | - | - | 11 ± 1 | - | - | - | ||
15 | Dihydrooleuropein | - | - | - | 2.4 ± 0.3 b | 1.5 ± 0.1 c | 1.8 ± 0.2 bc | 3.1 ± 0.3 a | ||
16 | Oleuropein glucoside | 3.3 ± 0.1 b | 3.34 ± 0.02 b | 9.0 ± 0.9 a | 3.7 ± 0.3 c | 7.6 ± 0.2 a | 6.2 ± 0.6 b | 6.9 ± 0.6 ab | ||
17 | Oleuropein glucoside | - | 72 ± 2 | 30 ± 3 | - | - | - | - | ||
18 | 6′-β -Hexopyranosyloleoside | - | - | - | 9.8 ± 0.3 c | 6.2 ± 0.2 d | 13 ± 1 b | 16 ± 1 a | ||
20 | Elenolic acid glucoside derivative | - | 82 ± 2 | 28 ± 2 | - | - | 5.4 ± 0.3 | 60 ± 6 | ||
21 | Oleuropein | 9.3 ± 0.8 b | 80 ± 5 a | 75 ± 4 a | 72 ± 5 a | 62 ± 4 ab | 67 ± 4 ab | 56 ± 4 b | ||
22 | Comselogoside isomer | - | - | - | 26 ± 2 a | 15.3 ± 0.7 b | 27 ± 2 a | 29 ± 1 a | ||
23 | Oleuropein isomer | 30 ± 3 | - | 34 ± 1 | 39 ± 4 a | 18.1 ± 0.7 c | 27 ± 3 b | 12 ± 1 c | ||
24 | Comselogoside isomer | - | - | - | - | - | - | 3.6 ± 0.2 | ||
26 | Ligstroside | 1.7 ± 0.1 b | 8.2 ± 0.9 a | 7.0 ± 0.8 a | 21 ± 2 a | 7.6 ± 0.8 c | 16 ± 1 b | 9.2 ± 0.5 c | ||
27 | Oleoside/secologanoside derivative | 2.4 ± 0.2 | - | - | 7.0 ± 0.6 | - | - | - | ||
Total | 56 ± 3 c | 380 ± 8 a | 259 ± 7 b | 256 ± 8 c | 214 ± 7 d | 307 ± 8 b | 450 ± 20 a | |||
Other compounds | ||||||||||
3 | Hydroxytyrosol glucoside | - | - | 7.5 ± 0.8 | 2.3 ± 0.1 d | 9.0 ± 0.9 c | 33 ± 3 b | 63 ± 4 a | ||
11 | Hydroxytyrosol glucoside derivative | - | 3.6 ± 0.1 | 5.4 ± 0.4 | - | 2.0 ± 0.2 c | 3.4 ± 0.4 b | 5.1 ± 0.1 a | ||
12 | Rutin | 8.7 ± 0.5 a | 6.8 ± 0.4 b | 4.1 ± 0.4 c | 7.9 ± 0.8 a | 3.2 ± 0.4 c | 6.0 ± 0.7 b | 4.8 ± 0.5 b c | ||
13 | Verbascoside | - | - | 1.54 ± 0.08 | 0.17 ± 0.01 c | 0.27 ± 0.01 c | 3.08 ± 0.07 a | 1.32 ± 0.08 b | ||
14 | Luteolin-O-hexoside | 2.18 ± 0.02 c | 9.2 ± 0.3 b | 11.1 ± 0.9 a | - | 2.21 ± 0.05 c | 6.6 ± 0.3 b | 7.2 ± 0.2 a | ||
Total | 10.9 ± 0.5 c | 19.6 ± 0.5 b | 30 ± 1 a | 10.4 ± 0.8 c | 17 ± 1 c | 52 ± 3 b | 81 ± 4 a | |||
TIPC | 67 ± 3 c | 400 ± 8 a | 289 ± 7 b | 266 ± 8 c | 231 ± 7 d | 359 ± 9 b | 530 ± 20 a |
Picual | 2017/2018 | 2018/2019 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2nd HD | 3rd HD | 4th HD | 1st HD | 2nd HD | 3rd HD | 4th HD | ||||
MI | 2 | 3.75 | 4.25 | 1 | 2.75 | 5 | 5.75 | |||
(Seco)iridoids | ||||||||||
5 | Oleoside/secologanoside | - | 8.8 ± 0.8 | 25.1 ± 6 | 38 ± 4 c | 36.6 ± 0.4 c | 74 ± 7 b | 100 ± 10 a | ||
6 | Oleoside-11-methylester | - | 1.4 ± 0.2 | 10.9 ± 0.9 | 29 ± 3 b | 27 ± 2 b | 54 ± 4 a | 56 ± 4 a | ||
7 | Oleuropein aglycone | 2.2 ± 0.1 b | 3.1 ± 0.5 a | 2.6 ± 0.3 ab | 3.7 ± 0.4 b | 3.5 ± 0.1 b | 6.0 ± 0.5 a | 4.02 ± 0.04 b | ||
9 | Elenolic acid glucoside | - | - | - | 10.3 ± 0.2 | - | - | - | ||
15 | Dihydrooleuropein | 6.0 ± 0.6 a | 5.4 ± 0.5 a | 2.8 ± 0.3 b | 4.1 ± 0.3 b | 4.2 ± 0.4 b | 4.5 ± 0.5 ab | 5.5 ± 0.5 a | ||
16 | Oleuropein glucoside | 4.5 ± 0.6 b | 3.0 ± 0.4 b | 9.3 ± 0.9 a | 5.0 ± 0.4 b | 6.4 ± 0.7 ab | 7.5 ± 0.7 a | 7.7 ± 0.2 a | ||
17 | Oleuropein glucoside | 2.5 ± 0.3 a | 2.5 ± 0.3 a | 2.0 ± 0.1 a | - | - | 4.0 ± 0.4 | - | ||
18 | 6′-β-hexopyranosyloleoside | 23 ± 1 b | 30 ± 3 a | 25 ± 1 b | 31.9 ± 0.2 b | 32 ± 3 b | 41 ± 1 a | 40 ± 2 a | ||
20 | Elenolic acid glucoside derivative | - | 21.1 ± 0.5 | 15.4 ± 0.6 | - | - | 12 ± 1 | - | ||
21 | Oleuropein | 13.1 ± 0.8 c | 16.5 ± 0.9 b | 44 ± 2 a | 107 ± 5 c | 85 ± 5 d | 191 ± 9 a | 152 ± 7 b | ||
22 | Comselogoside isomer | 42 ± 4 ab | 46 ± 4 a | 37 ± 2 b | 42.4 ± 0.7 b | 46 ± 3 b | 53 ± 2 a | 45 ± 3 b | ||
23 | Oleuropein isomer | - | - | - | 52 ± 5 c | 91 ± 9 b | 86 ± 8 b | 114 ± 3 a | ||
24 | Comselogoside isomer | 3.5 ± 0.4 a | 3.7 ± 0.4 a | 4.4 ± 0.5 a | 2.6 ± 0.3 | - | - | - | ||
26 | Ligstroside | - | - | 2.6 ± 0.3 | 17 ± 2 b | 11 ± 1 c | 23 ± 2 a | 19 ± 2 ab | ||
27 | Oleoside/secologanoside derivative | - | - | 2.8 ± 0.3 | 9.05 ± 0.07 b | 8.1 ± 0.8 b | 10.9 ± 0.4 a | 8.410 ± 0.002 b | ||
Total | 97 ± 4 c | 142 ± 5 b | 184 ± 7 a | 352 ± 9 b | 350 ± 10 b | 570 ± 20 a | 550 ± 10 a | |||
Other compounds | ||||||||||
3 | Hydroxytyrosol glucoside | 9.3 ± 0.8 a | 11 ± 1 a | 10.5 ± 0.6 a | 20 ± 2 b | 14 ± 1 c | 21 ± 2 b | 31 ± 2 a | ||
12 | Rutin | 8.3 ± 0.2 b | 8.0 ± 0.3 b | 10.3 ± 0.5 a | 7.9 ± 0.8 c | 9.2 ± 0.9 c | 32 ± 3 a | 16.5 ± 0.2 b | ||
13 | Verbascoside | 26 ± 1 a | 23 ± 1 b | 17 ± 1 c | 9.2 ± 0.8 b | 5.8 ± 0.4 c | 10.1 ± 0.8 b | 17.8 ± 0.8 a | ||
14 | Luteolin-O-hexoside | 4.9 ± 0.3 c | 20 ± 1 b | 37 ± 1 a | 2.9 ± 0.3 d | 11 ± 1 c | 37 ± 4 a | 25 ± 2 b | ||
Total | 49 ± 1 c | 62 ± 2 b | 75 ± 2 a | 40 ± 2 c | 40 ± 2 c | 100 ± 5 a | 90 ± 3 b | |||
TIPC | 146 ± 4 c | 204 ± 5 b | 259 ± 7 a | 392 ± 9 b | 390 ± 10 b | 670 ± 20 a | 640 ± 10 a |
CORNEZUELO | CORNICABRA | PICUAL | ||||
---|---|---|---|---|---|---|
Element | 2017/2018 | 2018/2019 | 2017/2018 | 2018/2019 | 2017/2018 | 2018/2019 |
As | 0.231–0.260 | 0.100–0.108 | 0.224–0.255 | 0.095–0.103 | 0.23–0.26 | 0.091–0.100 |
Ba | 0.24–0.27 | - | 0.874–0.950 | 0.56–0.83 | 0.35–0.54 | 0.099–0.122 |
Ca | 370–620 | 260–690 | 590–980 | 440–810 | 340–700 | 187–510 |
Cd | 0.145–0.160 | 0.009–0.010 | 0.138–0.157 | 0.080–0.083 | 0.15–0.16 | 0.079–0.084 |
Cu | 1.4–2.0 | 1.67–3.9 | 1.47–3.30 | 4.1–6.7 | 2.38–4.35 | 3.5–10.0 |
Fe | 10.0 | Detected * | Detected * | 2.5–4.9 | Detected * | 1.84–2.5 |
K | 4600–5700 | 5400–7600 | 7000–11,400 | 7200–10,800 | 5300–10,100 | 5700–7000 |
Mg | 130–180 | 150–210 | 126–209 | 160–202 | 109–257 | 119–152 |
Mn | 1.30–1.86 | 1.4–1.8 | 1.42–2.30 | 1.9–3.0 | 1.31–2.00 | 1.16–1.40 |
Mo | 0.122–0.139 | - | 0.131–0.168 | - | 0.13–0.15 | - |
Na | - | 5.1 | - | 3.4–6.3 | - | 2.90–4.05 |
Ni | Detected * | 0.046–0.058 | Detected * | 0.236–0.510 | Detected * | 0.062–0.180 |
P | 330–430 | 410–600 | 200–380 | 320–700 | 260–458 | 380–830 |
Sb | 0.075–0.088 | 0.071–0.089 | 0.073–0.084 | - | 0.080–0.083 | - |
Sn | Detected * | - | Detected * | - | Detected * | - |
Ti | - | - | - | 0.072–0.075 | - | 0.13 |
Zn | 2.8–3.7 | 2.48–3.20 | 2.6–2.8 | 3.22–5.54 | 2.53–4.30 | 1.70–2.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Poyatos, M.d.P.; Llorent-Martínez, E.J.; Ruiz-Medina, A. Effect of Ripening on the Phenolic Composition and Mineral Content of Three Varieties of Olive Fruits. Foods 2021, 10, 380. https://doi.org/10.3390/foods10020380
Fernández-Poyatos MdP, Llorent-Martínez EJ, Ruiz-Medina A. Effect of Ripening on the Phenolic Composition and Mineral Content of Three Varieties of Olive Fruits. Foods. 2021; 10(2):380. https://doi.org/10.3390/foods10020380
Chicago/Turabian StyleFernández-Poyatos, María del Pilar, Eulogio J. Llorent-Martínez, and Antonio Ruiz-Medina. 2021. "Effect of Ripening on the Phenolic Composition and Mineral Content of Three Varieties of Olive Fruits" Foods 10, no. 2: 380. https://doi.org/10.3390/foods10020380
APA StyleFernández-Poyatos, M. d. P., Llorent-Martínez, E. J., & Ruiz-Medina, A. (2021). Effect of Ripening on the Phenolic Composition and Mineral Content of Three Varieties of Olive Fruits. Foods, 10(2), 380. https://doi.org/10.3390/foods10020380