Fruits and Vegetables in the Management of Underlying Conditions for COVID-19 High-Risk Groups
Abstract
:1. Introduction
2. Factors to Improve the Immune System
2.1. Importance of Exercise
2.2. Hydration (Drinking Water)
2.3. Healthy Eating Habits to Help the Immune System
3. Fruits and Vegetables and COVID19 High Risk Groups
3.1. Serious Cardiovascular or Cerebrovascular Diseases
Beneficial Nutrients and Minerals
3.2. Obesity
3.3. Diabetes
Beneficial Nutrients and Minerals
3.4. Chronic Obstructive Pulmonary Disease (COPD)
Some Key Nutrients
3.5. Chronic Kidney Disease (CKD)
Beneficial Nutrients and Minerals
3.6. Hemoglobin Disorder Such as Sickle Cell Disease
3.7. Immunocompromised State (Weakened Immune System)
Beneficial Nutrients and Minerals
4. Risks Associated with Quarantine and Lifestyle during COVID-19
4.1. Risks of Relying Solely on Home Cooked Meals
4.1.1. Portion Sizes
4.1.2. Access to Fresh Fruits and Vegetables
4.1.3. Overconsumption of Canned Foods
4.2. Inactivity
4.3. Depression
4.4. Alcohol Abuse
4.5. Misinformation
5. Risk Associated with Food Handling
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Coronavirus. Available online: https://www.who.int/health-topics/coronavirus#tabo=tab_1 (accessed on 25 November 2020).
- Centre for Disease Control and Prevention. Human Coronavirus Types. Available online: https://www.cdc.gov/coronavirus/types.html (accessed on 25 November 2020).
- Centre for Disease Control and Prevention. CORONAVIRUS DISEASE 2019 (COVID-19), Frequently Asked Questions. Available online: https://www.cdc.gov/coronavirus/2019-ncov/faq.html (accessed on 25 August 2020).
- Centre for Disease Control and Prevention. Symptoms of Coronavirus. Available online: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html (accessed on 27 October 2020).
- Centre for Disease Control and Prevention. Coronavirus Disease 2019 (COVID-19). Available online: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html (accessed on 25 September 2020).
- Kaparapu, J.; Pragada, P.M.; Geddada, M.N.R. Fruits and Vegetables and its Nutritional Benefits. In Functional Foods and Nutraceuticals: Bioactive Components, Formulations and Innovations; Egbuna, C., Dable Tupas, G., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 241–260. [Google Scholar] [CrossRef]
- Aribi, M. Introductory Chapter: Immune system dysfunction and autoimmune diseases. In Immunopathogenesis and Immune-based Therapy for Selected Autoimmune Disorders; IntechOpen: London, UK, 2017. [Google Scholar]
- Newman, T. How the Immune System Works. Available online: https://www.medicalnewstoday.com/articles/320101 (accessed on 1 September 2020).
- Hague, A. Soil, the Immune System and Cancer Questions Must be Asked! Acta Sci. Cancer Biol. 2019, 3, 17–23. [Google Scholar]
- Simpson, R.J.; Campbell, J.P.; Gleeson, M.; Krüger, K.; Nieman, D.C.; Pyne, D.B.; Turner, J.E.; Walsh, N.P. Can exercise affect immune function to increase susceptibility to infection? Exerc. Immunol. Rev. 2020, 26, 8–22. [Google Scholar]
- Felman, A. What to Know About Exercise and How to Start. Available online: https://www.medicalnewstoday.com/articles/153390 (accessed on 4 September 2020).
- Fonseca, D.C.; Sala, P.; Ferreira, B.d.A.M.; Reis, J.; Torrinhas, R.S.; Bendavid, I.; Waitzberg, D.L. Body weight control and energy expenditure. Clin. Nutr. Exp. 2018, 20, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Harvard Health Publishing. How to Boost your Immune System. Available online: https://www.health.harvard.edu/staying-healthy/how-to-boost-your-immune-system (accessed on 4 September 2020).
- Mohamed, A.; Alawna, M. Role of increasing the aerobic capacity on improving the function of immune and respiratory systems in patients with coronavirus (COVID-19): A review. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 489–496. [Google Scholar] [CrossRef]
- Team, F.-T.H.L. 8 Tips to Boost Your Immune System. Available online: https://www.fishertitus.org/health/boost-your-immune-system (accessed on 1 August 2020).
- Leech, J. 7 Science-Based Health Benefits of Drinking Enough Water. Available online: https://www.healthline.com/nutrition/7-health-benefits-of-water (accessed on 5 September 2020).
- Elliott, B. 19 Water-Rich Foods That Help You Stay Hydrated. Available online: https://www.healthline.com/nutrition/19-hydrating-foods (accessed on 5 September 2020).
- Manz, F.; Wentz, A. The importance of good hydration for the prevention of chronic diseases. Nutr. Rev. 2005, 63, S2–S5. [Google Scholar] [CrossRef] [PubMed]
- McLeod, S. Stress Illness and the Immune System. Available online: https://www.simplypsychology.org/stress-immune.html (accessed on 5 September 2020).
- Harvard Health Publishing. How Much Water Should You Drink? Available online: https://www.health.harvard.edu/staying-healthy/how-much-water-should-you-drink (accessed on 1 September 2020).
- Reid, R. Boost Your Immune System by Drinking Water. Available online: https://www.tyentusa.com/blog/immune-system-drinking-water/ (accessed on 5 September 2020).
- Marhuenda, J.; Cerda, B.; Villaño, D.; Galindo, A.; Zafrilla, P. Citrus and Health. In Citrus—Health Benefits and Production Technology; Amanullah, M.S.A., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Alexander, I. Exploitative Beneficial Effects of Citrus Fruits. In Citrus—Health Benefits and Production Technology; IntechOpen: London, UK, 2019; p. 31. [Google Scholar]
- Ahmed, W.; Azmat, R. Citrus: An Ancient Fruits of Promise for Health Benefits. In Citrus-Health Benefits and Production Technology; IntechOpen: London, UK, 2019. [Google Scholar]
- Jaiswal, A.K. Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Bayan, L.; Koulivand, P.H.; Gorji, A. Garlic: A review of potential therapeutic effects. Avicenna J. Phytomed. 2014, 4, 1. [Google Scholar]
- Cleaveland Clinic. Diet to Help Reduce Heart Disease Risk. Available online: https://my.clevelandclinic.org/health/articles/17380-heart-healthy-power-foods (accessed on 13 September 2020).
- Ravichandran, K.; Smetanska, I.; Antony, U. Red beet. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 315–321. [Google Scholar]
- Díaz, M.T.B.; Font, R.; Gómez, P.; Celestino, M.D.R. Summer squash. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 239–254. [Google Scholar]
- Bohn, T.; Bouayed, J. Apples: An apple a day, still keeping the doctor away. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 595–612. [Google Scholar]
- Ghazouani, T.; Talbi, W.; Sassi, C.B.; Fattouch, S. Pears. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 671–680. [Google Scholar]
- Yang, Y.; Dong, J.-Y.; Cui, R.; Muraki, I.; Yamagishi, K.; Sawada, N.; Iso, H.; Tsugane, S.; Japan Public Health Center-based Prospective Study Group. Consumption of flavonoid-rich fruits and risk of CHD: A prospective cohort study. Br. J. Nutr. 2020, 124, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Haseeb, S.; Alexander, B.; Baranchuk, A. Wine and cardiovascular health: A comprehensive review. Circulation 2017, 136, 1434–1448. [Google Scholar] [CrossRef]
- Harvard, T.H. Chan. Magnesium. Available online: https://www.hsph.harvard.edu/nutritionsource/magnesium/ (accessed on 17 November 2020).
- U.S. Department of Health & Human Services, National Institute of Health. Omega-3 Fatty Acids. Available online: https://ods.od.nih.gov/factsheets/Omega3FattyAcids-Consumer/ (accessed on 16 November 2020).
- Trailokya, A.; Srivastava, A.; Bhole, M.; Zalte, N. Calcium and calcium salts. J. Assoc. Physicians India 2017, 65, 100–103. [Google Scholar]
- Ranjana Das, C.B. Grapes. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 695–708. [Google Scholar]
- U.S. Library of Medicine, MedLine Plus. Vitamin C. Available online: https://medlineplus.gov/ency/article/002404.htm (accessed on 18 November 2020).
- Haytowitz, D.; Bhagwat, S.; Harnly, J.; Holden, J.; Gebhardt, S. Sources of Flavonoids in the US Diet Using USDA’s Updated Database on the Flavonoid Content of Selected Foods; US Department of Agriculture (USDA), Agricultural Research Service, Beltsville Human Nutrition Research Center, Nutrient Data Laboratory and Food Composition Laboratory: Beltsville, MD, USA, 2006.
- Tütem, E.; Başkan, K.S.; Ersoy, Ş.K.; Apak, R. Orange. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 353–376. [Google Scholar]
- Eldridge, A.; Haytowitz, D.; Bhagwat, S.; Gebhardt, S.; Holden, J.; Beecher, G.; Peterson, J.; Dwyer, J. Flavonoid content of vegetables: The USDA’s Flavonoid Database. FASEB J. 2003, 17, A766–A767. [Google Scholar]
- Vera-Guzmán, A.M.; Aquino-Bolaños, E.N.; Heredia-García, E.; Carrillo-Rodríguez, J.C.; Hernández-Delgado, S.; Chávez-Servia, J.L. Flavonoid and capsaicinoid contents and consumption of mexican chili pepper (Capsicum annuum L.) landraces. In Flavonoids—From Biosynthesis to Human Health; InTechOpen: London, UK, 2017; pp. 405–437. [Google Scholar]
- Thuphairo, K.; Sornchan, P.; Suttisansanee, U. Bioactive compounds, antioxidant activity and inhibition of key enzymes relevant to Alzheimer’s disease from sweet pepper (Capsicum annuum) extracts. Prev. Nutr. Food Sci. 2019, 24, 327. [Google Scholar] [CrossRef] [PubMed]
- Moreb, N.; O’Dwyer, C.; Jaiswal, S.; Jaiswal, A.K. Pepper. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 223–238. [Google Scholar]
- Wu, X.; Zhao, Y.; Haytowitz, D.B.; Chen, P.; Pehrsson, P.R. Effects of domestic cooking on flavonoids in broccoli and calculation of retention factors. Heliyon 2019, 5, e01310. [Google Scholar] [CrossRef] [Green Version]
- Nagraj, G.S.; Chouksey, A.; Jaiswal, S.; Jaiswal, A.K. Broccoli. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 5–17. [Google Scholar]
- Rodrigues, A.S.; Almeida, D.P.; Simal-Gándara, J.; Pérez-Gregorio, M.R. Onions: A source of flavonoids. In Flavonoids: From Biosynthesis to Human Health; IntechOpen: London, UK, 2017; p. 439. [Google Scholar]
- Nadezhda Golubkina, G.C. Onion. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 73–87. [Google Scholar]
- U.S. Department of Health & Human Services, N.I.O.H. Iron, Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/Iron-HealthProfessional/ (accessed on 20 August 2020).
- Im, J.H.; Je, Y.S.; Baek, J.; Chung, M.-H.; Kwon, H.Y.; Lee, J.-S. Nutritional status of patients with COVID-19. Int. J. Infect. Dis. 2020, 100, 390–393. [Google Scholar] [CrossRef]
- Chaurasia, S. Green beans. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 289–300. [Google Scholar]
- Cardwell, G.; Bornman, J.F.; James, A.P.; Black, L.J. A review of mushrooms as a potential source of dietary vitamin D. Nutrients 2018, 10, 1498. [Google Scholar] [CrossRef] [Green Version]
- Centre for Disease Control and Prevention. Other Conditions Related to Heart Disease. Available online: https://www.cdc.gov/heartdisease/other_conditions.htm (accessed on 2 December 2020).
- American Heart Association, Inc. What do Heart Patients Need to Know About COVID-19 Now? Available online: https://www.heart.org/en/news/2020/08/10/what-do-heart-patients-need-to-know-about-covid-19-now (accessed on 25 August 2020).
- Ranard, L.S.; Fried, J.A.; Abdalla, M.; Anstey, D.E.; Givens, R.C.; Kumaraiah, D.; Kodali, S.K.; Takeda, K.; Karmpaliotis, D.; Rabbani, L.E. Approach to Acute Cardiovascular Complications in COVID-19 Infection. Circ. Heart Fail. 2020, 13, e007220. [Google Scholar] [CrossRef] [PubMed]
- Centre for Disease Control and Prevention. 6 Strategies to Live a Heart-Healthy Lifestyle. Available online: https://www.cdc.gov/chronicdisease/resources/infographic/hearthealth.htm (accessed on 26 August 2020).
- Welty, F.K. Dietary treatment to lower cholesterol and triglyceride and reduce cardiovascular risk. Curr. Opin. Lipidol. 2020, 31, 206–231. [Google Scholar] [CrossRef]
- Jensen, S.K.; Yates, B.; Lyden, E.; Krogstrand, K.S.; Hanson, C. Dietary Micronutrient Intake of Participants in a “Partners Together in Health” Cardiac Rehabilitation Intervention. J. Cardiopulm. Rehabil. Prev. 2018, 38, 388. [Google Scholar] [CrossRef]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G. Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef] [PubMed]
- Cascino, T.M.; Hummel, S.L. Nutrient deficiencies in heart failure: A micro problem with macro effects? Am. Heart Assoc. 2018, 7, e010447. [Google Scholar] [CrossRef]
- Kahleova, H.; Levin, S.; Barnard, N.D. Plant-Based Diets for Healthy Aging. J. Am. Coll. Nutr. 2020, 9, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Angeles-Agdeppa, I.; Sun, Y.; Tanda, K.V. Dietary pattern and nutrient intakes in association with non-communicable disease risk factors among Filipino adults: A cross-sectional study. Nutr. J. 2020, 19, 1–13. [Google Scholar] [CrossRef] [PubMed]
- USDA. Dietary Guidelines for Americans 2015–2020. Available online: http://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 1 September 2020).
- Harvard Health Publishing Fruits and Vegetables for Heart Health: More is Better. Available online: https://www.health.harvard.edu/heart-health/fruits-and-vegetables-for-heart-health-more-is-better (accessed on 2 December 2020).
- Clinic Mayo. 8 Steps to a Heart-Healthy Diet. Available online: https://www.mayoclinic.org/diseases-conditions/heart-disease/in-depth/heart-healthy-diet/art-20047702 (accessed on 12 December 2020).
- Smetneva, N.; Pogozheva, A.; Vasil’ev, Y.L.; Dydykin, S.; Dydykina, I.; Kovalenko, A. The role of optimal nutrition in the prevention of cardiovascular diseases. Voprosy Pitaniia 2020, 89, 114–124. [Google Scholar]
- Ahmad, S.; Khan, I. Role of of Dietary Fibers and Their Preventive Measures of Human Diet. In Functional Food Products and Sustainable Health; Ahmad, S., Al-Shabib, N.A., Eds.; Springer: Singapore, 2020; pp. 109–130. [Google Scholar] [CrossRef]
- Wei, K.-Y.; Gritter, M.; Vogt, L.; de Borst, M.H.; Rotmans, J.I.; Hoorn, E.J. Dietary potassium and the kidney: Lifesaving physiology. Clin. Kidney J. 2020. [Google Scholar] [CrossRef]
- Micha, R.; Shulkin, M.L.; Penalvo, J.L.; Khatibzadeh, S.; Singh, G.M.; Rao, M.; Fahimi, S.; Powles, J.; Mozaffarian, D. Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: Systematic reviews and meta-analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS ONE 2017, 12, e0175149. [Google Scholar] [CrossRef]
- Chee, Y.F.; Kaur, S.; Yap, R.W.K. Association between Dietary Patterns and Cardiometabolic Risks in Malaysian Punjabi Adults. Malays. J. Med. Health Sci. 2020, 16, 2636–9346. [Google Scholar]
- Zhao, L.; Hu, M.; Yang, L.; Xu, H.; Song, W.; Qian, Y.; Zhao, M. Quantitative Association Between Serum/Dietary Magnesium and Cardiovascular Disease/Coronary Heart Disease Risk: A Dose–Response Meta-analysis of Prospective Cohort Studies. J. Cardiovasc. Pharmacol. 2019, 74, 516–527. [Google Scholar] [CrossRef]
- Tangvoraphonkchai, K.; Davenport, A. Magnesium and cardiovascular disease. Adv. Chronic Kidney Dis. 2018, 25, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-Y.; Chiu, S.-W.; Hong, K.-S.; Saver, J.L.; Wu, Y.-L.; Lee, J.-D.; Lee, M.; Ovbiagele, B. Folic acid in stroke prevention in countries without mandatory folic acid food fortification: A meta-analysis of randomized controlled trials. J. Stroke 2018, 20, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayedi, A.; Zargar, M.S. Intake of vitamin B6, folate, and vitamin B12 and risk of coronary heart disease: A systematic review and dose-response meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 2697–2707. [Google Scholar] [CrossRef]
- Nour, M.; Lutze, S.A.; Grech, A.; Allman-Farinelli, M. The relationship between vegetable intake and weight outcomes: A systematic review of cohort studies. Nutrients 2018, 10, 1626. [Google Scholar] [CrossRef] [Green Version]
- Motswagole, B.; Jackson, J.; Kobue-Lekalake, R.; Maruapula, S.; Mongwaketse, T.; Kwape, L.; Thomas, T.; Swaminathan, S.; Kurpad, A.V.; Jackson, M. The Association of General and Central Obesity with Dietary Patterns and Socioeconomic Status in Adult Women in Botswana. J. Obes. 2020, 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Assakran, B.S.; Widyan, A.M.; Alhumaidan, N.A.; Alharbi, F.A.; Alhnaya, M.A.; Aljabali, A.A.; Aleid, M.A. Dietary assessment and patient-perspective reasons for poor adherence to diet and exercise post bariatric surgery. BMC Res. Notes 2020, 13, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, G.; Barrea, L.; Laudisio, D.; Aprano, S.; Castellucci, B.; Framondi, L.; Di Matteo, R.; Savastano, S.; Colao, A.; Muscogiuri, G. What about the Mediterranean Diet as tool to Manage Obesity in Menopause? A Narrative Review. Nutrition 2020, 79, 110991. [Google Scholar] [CrossRef]
- World Health Organization. Increasing Fruit and Vegetable Consumption to Reduce the Risk of Noncommunicable Diseases, Biological, Behavioural and Contextual Rationale. Available online: https://www.who.int/elena/bbc/fruit_vegetables_ncds/en/ (accessed on 25 August 2020).
- Pearce, K. Obesity a Major Risk Factor for COVID-19 Hospitalization. Available online: https://hub.jhu.edu/2020/06/01/david-kass-obesity-covid-19/ (accessed on 29 August 2020).
- Popkin, B.M.; Du, S.; Green, W.D.; Beck, M.A.; Algaith, T.; Herbst, C.H.; Alsukait, R.F.; Alluhidan, M.; Alazemi, N.; Shekar, M. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes. Rev. 2020, 21, e13128. [Google Scholar] [CrossRef]
- Bornstein, S.R.; Rubino, F.; Khunti, K.; Mingrone, G.; Hopkins, D.; Birkenfeld, A.L.; Boehm, B.; Amiel, S.; Holt, R.I.; Skyler, J.S. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020, 8, 546–550. [Google Scholar] [CrossRef]
- Via, M.A.; De Alwis, S. Diabetes and obesity: An overview of nutritional effects. In Nutritional Signaling Pathway Activities in Obesity and Diabetes; Cheng, Z., Ed.; Royal Society of Chemistry: London, UK, 2020; pp. 1–23. [Google Scholar]
- Mayo Clinic. How Much Fiber is Found in common Foods? Available online: https://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/in-depth/high-fiber-foods/art-20050948 (accessed on 25 August 2020).
- Dreher, M.L.; Ford, N.A. A Comprehensive Critical Assessment of Increased Fruit and Vegetable Intake on Weight Loss in Women. Nutrients 2020, 12, 1919. [Google Scholar] [CrossRef]
- Harvard Health Publishing. Type 2 Diabetes Mellitus. Available online: https://www.health.harvard.edu/a_to_z/type-2-diabetes-mellitus-a-to-z (accessed on 2 December 2020).
- Li, J.; Wang, X.; Chen, J.; Zuo, X.; Zhang, H.; Deng, A. COVID-19 infection may cause ketosis and ketoacidosis. Diabetes Obes. Metab. 2020, 22, 1935–1941. [Google Scholar] [CrossRef]
- Kumar, A.; Arora, A.; Sharma, P.; Anikhindi, S.A.; Bansal, N.; Singla, V.; Khare, S.; Srivastava, A. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 535–545. [Google Scholar] [CrossRef]
- Centre for Disease Control and Prevention. Flu and Sick Days, Living with Diabetes. Available online: https://www.cdc.gov/diabetes/managing/flu-sick-days.html (accessed on 25 September 2020).
- American Diabetes Association. How COVID-19 Impacts People with Diabetes. Available online: https://www.diabetes.org/coronavirus-covid-19/how-coronavirus-impacts-people-with-diabetes (accessed on 2 November 2020).
- International Diabetes Federation. COVID-19 and Diabetes. Available online: https://www.idf.org/aboutdiabetes/what-is-diabetes/covid-19-and-diabetes/1-covid-19-and-diabetes.html (accessed on 1 September 2020).
- National Center for Complementary and Integrative Health. Diabetes and Dietary Supplements. Available online: https://www.nccih.nih.gov/health/diabetes-and-dietary-supplements (accessed on 25 October 2020).
- Tan, J.; Lv, H.; Ma, Y.; Liu, C.; Li, Q.; Wang, C. Analysis of angiographic characteristics and intervention of vitamin D in type 2 diabetes mellitus complicated with lower extremity arterial disease. Diabetes Res. Clin. Pract. 2020, 169, 108439. [Google Scholar] [CrossRef]
- Takagi, T.; Hayashi, R.; Nakai, Y.; Okada, S.; Miyashita, R.; Yamada, M.; Mihara, Y.; Mizushima, K.; Morita, M.; Uchiyama, K. Dietary Intake of Carotenoid-Rich Vegetables Reduces Visceral Adiposity in Obese Japanese men—A Randomized, Double-Blind Trial. Nutrients 2020, 12, 2342. [Google Scholar] [CrossRef]
- Satapathy, S.; Bandyopadhyay, D.; Patro, B.K.; Khan, S.; Naik, S. Folic acid and vitamin B12 supplementation in subjects with type 2 diabetes mellitus: A multi-arm randomized controlled clinical trial. Complementary Ther. Med. 2020, 53, 102526. [Google Scholar] [CrossRef]
- Suraj, P.; Wagh, S.P.B. Nandkishor Bankar, Karan Jain. Role of Vitamin-C Supplementation in Type II Diabetes Mellitus. Int. J. Curr. Res. Rev. 2020, 12, 61–64. [Google Scholar]
- Dass, A.S.; Narayana, S.; Venkatarathnamma, P. Effect of Vitamin E and omega 3 fatty acids in type 2 diabetes mellitus patients. J. Adv. Pharm. Technol. Res. 2018, 9, 32. [Google Scholar]
- Sacan, O.; Turkyilmaz, I.B.; Bayrak, B.B.; Mutlu, O.; Akev, N.; Yanardag, R. Protective role of zinc in liver damage in experimental diabetes demonstrated via different biochemical parameters. J. Biochem. Mol. Toxicol. 2020, 35, e22617. [Google Scholar] [PubMed]
- Lv, Y.; Xie, L.; Dong, C.; Yang, R.; Long, T.; Yang, H.; Chen, L.; Zhang, L.; Chen, X.; Luo, X. Co-exposure of serum calcium, selenium and vanadium is nonlinearly associated with increased risk of type 2 diabetes mellitus in a Chinese population. Chemosphere 2020, 263, 128021. [Google Scholar] [CrossRef]
- Karalis, D.T. The Beneficiary Role of Selenium in Type II Diabetes: A Longitudinal Study. Cureus 2019, 11, e6443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bin-Jaliah, I.; Morsy, M.; Al-Ani, B.; Eid, R.A.; Haidara, M.A. Vanadium Inhibits Type 2 Diabetes Mellitus-Induced Aortic Ultrastructural Alterations Associated with the Inhibition of Dyslipidemia and Biomarkers of Inflammation in Rats. Int. J Morphol. 2020, 38, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Alqahtani, J.S.; Oyelade, T.; Aldhahir, A.M.; Alghamdi, S.M.; Almehmadi, M.; Alqahtani, A.S.; Quaderi, S.; Mandal, S.; Hurst, J.R. Prevalence, severity and mortality associated with COPD and smoking in patients with COVID-19: A rapid systematic review and meta-analysis. PLoS ONE 2020, 15, e0233147. [Google Scholar] [CrossRef]
- American Lung Association. Nutrition and COPD. Available online: https://www.lung.org/lung-health-diseases/lung-disease-lookup/copd/living-with-copd/nutrition (accessed on 2 December 2020).
- Scoditti, E.; Massaro, M.; Garbarino, S.; Toraldo, D.M. Role of diet in chronic obstructive pulmonary disease prevention and treatment. Nutrients 2019, 11, 1357. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, A.B.; Bowell, K. Mind the gap’: The importance of managing malnutrition in chronic obstructive pulmonary disease. Br. J. Nurs. 2019, 28, 1442–1449. [Google Scholar] [CrossRef] [Green Version]
- Gombart, A.F.; Pierre, A.; Maggini, S. A review of micronutrients and the immune System–Working in harmony to reduce the risk of infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Cronin, S.J.; Woolf, C.J.; Weiss, G.; Penninger, J.M. The role of iron regulation in immunometabolism and immune-related disease. Front. Mol. Biosci. 2019, 6, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Righi, N.C.; Schuch, F.B.; De Nardi, A.T.; Pippi, C.M.; de Almeida Righi, G.; Puntel, G.O.; da Silva, A.M.V.; Signori, L.U. Effects of vitamin C on oxidative stress, inflammation, muscle soreness, and strength following acute exercise: Meta-analyses of randomized clinical trials. Eur. J. Nutr. 2020, 59, 2827–2839. [Google Scholar] [CrossRef]
- Sanowara, R.; Keliat, E.; Abidin, A. Difference in serum magnesium level among patients with stable chronic obstructive pulmonary disease (COPD) and exacerbated COPD. E&ES 2018, 125, 012151. [Google Scholar]
- Niventhi, A.; Praveen, D.; Chowdary, P.R.; Aanandhi, M.V. A review on clinical association of serum magnesium and serum fibrinogen levels with acute exacerbation of chronic obstructive pulmonary disease. Drug Invent. Today 2018, 10, 2. [Google Scholar]
- National Kidney Fundation. Kidney Disease & COVID-19. Available online: https://www.kidney.org/coronavirus/kidney-disease-covid-19#what-kind-foods-should-i-have-my-house (accessed on 20 November 2020).
- National Institute of Health. Kidney Disease Statistics for the United States. Available online: https://www.niddk.nih.gov/health-information/health-statistics/kidney-disease (accessed on 29 August 2020).
- Franca Gois, P.H.; Wolley, M.; Ranganathan, D.; Seguro, A.C. Vitamin D deficiency in chronic kidney disease: Recent evidence and controversies. Int. J. Environ. Res. Public Health 2018, 15, 1773. [Google Scholar] [CrossRef] [Green Version]
- Maurya, V.K.; Aggarwal, M. Factors influencing the absorption of vitamin D in GIT: An overview. J. Food Sci. Technol. 2017, 54, 3753–3765. [Google Scholar] [CrossRef] [PubMed]
- Leenders, N.H.; Vervloet, M.G. Magnesium: A magic bullet for cardiovascular disease in chronic kidney disease? Nutrients 2019, 11, 455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakaguchi, Y.; Hamano, T.; Isaka, Y. Effects of magnesium on the phosphate toxicity in chronic kidney disease: Time for intervention studies. Nutrients 2017, 9, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Q.; Zhu, X.; Manson, J.E.; Song, Y.; Li, X.; Franke, A.A.; Costello, R.B.; Rosanoff, A.; Nian, H.; Fan, L. Magnesium status and supplementation influence vitamin D status and metabolism: Results from a randomized trial. Am. J. Clin. Nutr. 2018, 108, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Vargas, F.; Romecín, P.; García-Guillén, A.I.; Wangesteen, R.; Vargas-Tendero, P.; Paredes, M.D.; Atucha, N.M.; García-Estañ, J. Flavonoids in kidney health and disease. Front. Physiol. 2018, 9, 394. [Google Scholar] [CrossRef] [Green Version]
- Centre for Disease Control and Prevention. Data & Statistics on Sickle Cell Disease. Available online: https://www.cdc.gov/ncbddd/sicklecell/data.html (accessed on 12 September 2020).
- Vichinsky, E.P.; Styles, L.A.; Colangelo, L.H.; Wright, E.C.; Castro, O.; Nickerson, B.; The Cooperative Study of Sickle Cell Disease. Acute chest syndrome in sickle cell disease: Clinical presentation and course. Blood J. Am. Soc. Hematol. 1997, 89, 1787–1792. [Google Scholar]
- Khan, S.A.; Damanhouri, G.; Ali, A.; Khan, S.A.; Khan, A.; Bakillah, A.; Marouf, S.; Al Harbi, G.; Halawani, S.H.; Makki, A. Precipitating factors and targeted therapies in combating the perils of sickle cell disease—A special nutritional consideration. Nutr. Metab. 2016, 13, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, E.M.; Shane, E. Vitamin D in organ transplantation. Osteoporos. Int. 2011, 22, 2107–2118. [Google Scholar] [CrossRef] [PubMed]
- Fryar, C.D.; Hughes, J.P.; Herrick, K.A.; Ahluwalia, N. Fast food consumption among adults in the United States, 2013–2016. 2018. Available online: https://www.cdc.gov/nchs/data/databriefs/db322-h.pdf (accessed on 20 December 2020).
- Congressional Report. COVID-19: Supply Chain Disruptions in the U.S. Fruit and Vegetable Industry: In Brief. Available online: https://crsreports.congress.gov/product/pdf/R/R46348 (accessed on 12 November 2020).
- U.S. Food and Drug Administration. Sodium in Your Diet. Available online: https://www.fda.gov/food/nutrition-education-resources-materials/sodium-your-diet (accessed on 1 December 2020).
- Salt and Sodium. Available online: https://www.hsph.harvard.edu/nutritionsource/salt-and-sodium/ (accessed on 2 December 2020).
- Matters, N.R. Physical Activity Key to Keeping Weight Off. Available online: https://www.nih.gov/news-events/nih-research-matters/physical-activity-key-keeping-weight (accessed on 1 December 2020).
- Nieman, D.C.; Wentz, L.M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef]
- Mattina, G.F.; Van Lieshout, R.J.; Steiner, M. Inflammation, depression and cardiovascular disease in women: The role of the immune system across critical reproductive events. Ther. Adv. Cardiovasc. Dis. 2019. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.-W.; Jung, S.-Y.; Lee, S.-W.; Lee, S.-J.; Seo, T.-B.; Kim, Y.-P.; Kim, D.-Y. Treadmill exercise ameliorates social isolation-induced depression through neuronal generation in rat pups. J. Exerc. Rehabil. 2017, 13, 627. [Google Scholar] [CrossRef] [Green Version]
- Yıldız, M. What are positive/negative affects of nutrition on depression? Klin. Psikofarmakol. Bul. 2018, 28, 365. [Google Scholar]
- National Institute on Alcohol Abuse and Alcoholism. Surveillance Report Covid-19. Alcohol Sales during the COVID-19 Pandemic. Available online: https://pubs.niaaa.nih.gov/publications/surveillance-covid-19/COVSALES.htm (accessed on 1 December 2020).
- Centre for Disease Control and Prevention. Alcohol Use. Available online: https://www.cdc.gov/nchs/fastats/alcohol.htm (accessed on 20 December 2020).
- Dguzeh, U.; Haddad, N.C.; Smith, K.T.; Johnson, J.O.; Doye, A.A.; Gwathmey, J.K.; Haddad, G.E. Alcoholism: A multi-systemic cellular insult to organs. Int. J. Environ. Res. Public Health 2018, 15, 1083. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Immunizing the public Against Misinformation. Available online: https://www.who.int/news-room/feature-stories/detail/immunizing-the-public-against-misinformation (accessed on 2 December 2020).
- WebMed. Man Dies after Taking Chloroquine for Coronavirus. Available online: https://www.webmd.com/lung/news/20200324/man-dies-after-taking-chloroquine-for-coronavirus (accessed on 28 November 2020).
- BBC News. Coronavirus: Bill Gates ‘Microchip’ Conspiracy Theory and Other Vaccine Claims Fact-Checked. Available online: https://www.bbc.com/news/52847648 (accessed on 2 December 2020).
- González-Estrada, R.; Blancas-Benítez, F.; Velázquez-Estrada, R.M.; Montaño-Leyva, B.; Ramos-Guerrero, A.; Aguirre-Güitrón, L.; Moreno-Hernández, C.; Coronado-Partida, L.; Herrera-González, J.A.; Rodríguez-Guzmán, C.A. Alternative eco-friendly methods in the control of post-harvest decay of tropical and subtropical fruits. In Modern Fruit Industry; IntechOpen: London, UK, 2019. [Google Scholar]
- Centre for Disease Control and Prevention. Foods That Can Cause Food Poisoning. Available online: https://www.cdc.gov/foodsafety/foods-linked-illness.html (accessed on 22 August 2020).
- Hazards, E.P.O.B.; Koutsoumanis, K.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F. The public health risk posed by Listeria monocytogenes in frozen fruit and vegetables including herbs, blanched during processing. EFSA J. 2020, 18, e06092. [Google Scholar]
- Baggett, L. Heat is Key to Killing Coronavirus on Surfaces. Available online: https://news.uga.edu/heat-key-killing-coronavirus-surfaces/ (accessed on 22 August 2020).
- Williams, V. COVID-19 and Food Safety. Available online: https://newsnetwork.mayoclinic.org/discussion/covid-19-and-food-safety/ (accessed on 23 August 2020).
- Marshall, W. Can COVID-19 (Coronavirus) Spread through Food, Water, Surfaces and Pets? Available online: https://www.mayoclinic.org/diseases-conditions/coronavirus/expert-answers/can-coronavirus-spread-food-water/faq-20485479 (accessed on 25 August 2020).
- Grover, N. Can Coronavirus Spread through Frozen Food or Refrigerated Food? Experts Weigh in. Available online: https://food.ndtv.com/news/covid-19-can-coronavirus-spread-through-frozen-food-or-refrigerated-food-experts-weigh-in-2247643 (accessed on 24 August 2020).
- World Health Organization. COVID-19 and Food Safety: Guidance for Food Businesses. Available online: https://apps.who.int/iris/bitstream/handle/10665/331705/WHO-2019-nCoV-Food_Safety-2020.1-eng.pdf (accessed on 25 August 2020).
- Ahuja, A. Covid-19: 5 Tips to Keep Fruits and Vegetables Clean According to FSSAI. Available online: https://food.ndtv.com/food-drinks/covid-19-5-tips-to-keep-fruits-and-vegetables-clean-according-to-fssai-2254417 (accessed on 24 August 2020).
- Ko, J. How to Wash Fruits and Vegetables during the Coronavirus Crisis. Available online: https://www.latimes.com/food/story/2020-03-16/how-to-wash-fresh-vegetables-fruits-during-coronavirus-crisis (accessed on 22 August 2020).
Fruit/Vegetable | Nutrient/Mineral | Patients That May Benefit | References |
---|---|---|---|
Red beets | Contain Folate, fiber, copper, magnesium, and potassium | CVD & Diabetes | [27,28] |
Squash (e.g., acorn & pumpkin) | Vitamins A, B1, B6, C, calcium, carotenoids, copper, fiber, folate, magnesium, manganese, and potassium | Diabetes, CVD, Obesity, COPD, compromised immune system, CKD. | [27,29] |
Apples & Pears | Vitamin C, fiber, and flavonoids | CVD, Obesity, COPD, Compromised Immune System, CKD | [27,30,31] |
Berries (e.g., raspberries blue berries and black berries) | “Vitamin C, folate, manganese, potassium, fiber” and flavonoids | CVD, Obesity, Diabetes, compromised immune system | [27,32] |
Mangoes | “Vitamins A, C, E, potassium, and fiber” | CVD, Obesity, Diabetes, compromised immune system | [27] |
Grapes | Contain high levels of polyphenols and Flavonoids | SCD, COPD, CKD, compromised immune system. | [27,32,33] |
Soybeans | A good source of Magnesium, calcium and omega-3 polyunsaturated fatty acids | COPD, CKD, CVD, Diabetes, Compromised immune system. | [34,35,36,37] |
Oranges | Rich in flavonoids, Vitamin C | SCD, COPD, CKD, CVD, Obesity, Diabetes, Compromised immune system. | [38,39,40] |
Parsley | Rich in flavonoids | SCD, COPD, CKD, Compromised immune system. | [41] |
Peppers (bell peppers and chili peppers) | A good source of antioxidants such as flavonoids and Vitamin C | SCD, COPD, CKD, Obesity, CVD, Diabetes, Compromised immune system. | [38,42,43,44] |
Broccoli | Rich in antioxidants such as flavonoids and Vitamin C | SCD, COPD, CKD, Obesity, CVD, Diabetes, Compromised immune system. | [38,45,46] |
Onions | Has a wide variety of flavonoids | SCD, COPD, CKD, Obesity, Compromised immune system. | [47,48] |
Spinach | A good source of antioxidants, Vitamin C, iron, magnesium | CVD, Obesity, Diabetes, COPD, CKD, Compromised immune system. | [34,38,49] |
White & Kidney Beans | A good source of iron, potassium and magnesium | COPD, CVD, Diabetes, CKD, Compromised Immune system. | [34,49,50,51] |
Bananas | A good source of magnesium and potassium | CVD, COPD, CKD, Diabetes, Compromised immune system. | [34,50] |
Cantalope | A great source for Vitamin C | CVD, Obesity, Diabetes, COPD, Compromised immune system. | [38] |
Mushrooms | A good source of dietary Vitamin D | Diabetes, CKD. | [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreb, N.A.; Albandary, A.; Jaiswal, S.; Jaiswal, A.K. Fruits and Vegetables in the Management of Underlying Conditions for COVID-19 High-Risk Groups. Foods 2021, 10, 389. https://doi.org/10.3390/foods10020389
Moreb NA, Albandary A, Jaiswal S, Jaiswal AK. Fruits and Vegetables in the Management of Underlying Conditions for COVID-19 High-Risk Groups. Foods. 2021; 10(2):389. https://doi.org/10.3390/foods10020389
Chicago/Turabian StyleMoreb, Nora A., Ahmed Albandary, Swarna Jaiswal, and Amit K. Jaiswal. 2021. "Fruits and Vegetables in the Management of Underlying Conditions for COVID-19 High-Risk Groups" Foods 10, no. 2: 389. https://doi.org/10.3390/foods10020389
APA StyleMoreb, N. A., Albandary, A., Jaiswal, S., & Jaiswal, A. K. (2021). Fruits and Vegetables in the Management of Underlying Conditions for COVID-19 High-Risk Groups. Foods, 10(2), 389. https://doi.org/10.3390/foods10020389