Coriandrum sativum L.—Effect of Multiple Drying Techniques on Volatile and Sensory Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals and Reagents
2.3. Drying Methods
2.3.1. Convective Drying (CD)
2.3.2. Vacuum-Microwave Drying (VMD)
2.3.3. Combined Convective Pre-Drying Followed by Vacuum-Microwave Finishing Drying (CPD-VMFD)
2.4. Modelling of Drying Kinetics
2.5. VOC Profiling
2.6. Sensory Evaluation
2.7. Statistical Analysis
3. Results
3.1. Drying
3.2. Aroma Profiling
3.3. Influence of Drying on Cilantro Volatile Organic Constituents Composition
3.4. Sensory Analysis
4. Discussion
4.1. Drying Kinetics
4.2. Volatile Organic Constituents of Cilantro and Quality of Dried Products
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R. (Ed.) Academic Press: London, UK, 2016; ISBN 9780124166417. [Google Scholar]
- Laribi, B.; Kouki, K.; Hamdi, M.M.; Bettaieb, T. Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia 2015, 103, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Rajeshwari, U.; Andallu, B. Medicinal benefits of coriander (Coriandrum Sativum L.). Spat. DD 2011, 1, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.-N.; Liu, Z.-H.; Zhao, Y.-P.; Zhao, L.-L.; Xue, T.-K.; Lan, Q.-K. Phytochemical and Bioactive Profile of Coriandrum sativum L. Food Chem. 2019, 286, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Mandal, M. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pac. J. Trop. Biomed. 2015, 5, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Padalia, R.C.; Karki, N.; Sah, A.N.; Verma, R.S. Constituents of Leaf and Seed Essential Oil of Coriandrum sativum L. J. Essent. Oil Bear. Plants 2011, 14, 610–616. [Google Scholar] [CrossRef]
- Raghavan, S. Handbook of Spices, Seasoning and Flavorings; CRC Press: Boca Raton, FL, USA, 2007; ISBN 9788578110796. [Google Scholar]
- Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Coriander (Coriandrum sativum): A promising functional food toward the well-being. Food Res. Int. 2018, 105, 305–323. [Google Scholar] [CrossRef]
- Zangeneh, M.M.; Zangeneh, A.; Moradi, R.; Shahmohammadi, A. Chemical Characterization and Antibacterial Activity of the Essential Oil of Coriandrum sativum Leaves in the West of Iran (Kermanshah). J. Essent. Oil Bear. Plants 2018, 21, 1349–1358. [Google Scholar] [CrossRef]
- Yildiz, H. Chemical Composition, Antimicrobia, and Antioxidant Activities of Essential Oil and Ethanol Extract of Coriandrum sativum L. Leaves from Turkey. Int. J. Food Prop. 2016, 19, 1593–1603. [Google Scholar] [CrossRef] [Green Version]
- Priyadarshi, S.; Khanum, H.; Ravi, R.; Borse, B.B.; Naidu, M.M. Flavour characterisation and free radical scavenging activity of coriander (Coriandrum sativum L.) foliage. J. Food Sci. Technol. 2016, 53, 1670–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadwallader, K.R.; Surakarnkul, R.; Yang, S.-P.; Webb, T.E. Character-Impact Aroma Components of Coriander (Coriandrum Sativuml.) Herb K. In Flavor Chemistry of Ethnic Foods; Shahidi, F., Ed.; Springer: Boston, MA, USA, 1999; ISBN 978-1-4615-4783-9. [Google Scholar]
- Das, L.; Raychaudhuri, U.; Chakraborty, R. Supplementation of Common White Bread by Coriander Leaf Powder. Food Sci. Biotechnol. 2012, 21, 425–433. [Google Scholar] [CrossRef]
- Priyadarshi, S.; Naidu, M.M. A comparative study on nutritional, fatty acids, carotenoids, aroma and antioxidative characteristics of Microcarpum DC and Vulgare alef varieties of coriander foliage. Indian J. Tradit. Knowl. 2019, 18, 458–467. [Google Scholar]
- Handbook of Essential Oils. Science, Technology, and Applications, 2nd ed.; Başer, K.H.C.; Buchbauer, G. (Eds.) CRC Press: Boca Raton, FL, USA, 2016; ISBN 9781466590472. [Google Scholar]
- Medicinal and Aromatic Crops Harvesting, Drying, and Processing; Oztekin, S.; Martinov, M. (Eds.) Haworth Food Articultural Products Press: Binghamton, NY, USA, 2007. [Google Scholar]
- Chua, L.Y.W.; Chong, C.H.; Chua, B.L.; Figiel, A. Influence of Drying Methods on the Antibacterial, Antioxidant and Essential Oil Volatile Composition of Herbs: A Review. Food Bioprocess Technol. 2019, 12, 450–476. [Google Scholar] [CrossRef]
- Rocha, R.P.; Melo, E.C.; Radünz, L.L. Influence of drying process on the quality of medicinal plants: A review. J. Med. Plants Res. 2012, 5, 7076–7084. [Google Scholar] [CrossRef]
- Jin, W.; Mujumdar, A.S.; Zhang, M.; Shi, W. Novel Drying Techniques for Spices and Herbs: A Review. Food Eng. Rev. 2018, 10, 34–45. [Google Scholar] [CrossRef]
- Rahath Kubra, I.; Kumar, D.; Jagan Mohan Rao, L. Emerging Trends in Microwave Processing of Spices and Herbs. Crit. Rev. Food Sci. Nutr. 2016, 56, 2160–2173. [Google Scholar] [CrossRef] [PubMed]
- El-Zaeddi, H.; Martínez-Tomé, J.; Calín-Sánchez, Á.; Burló, F.; Carbonell-Barrachina, Á. Volatile Composition of Essential Oils from Different Aromatic Herbs Grown in Mediterranean Regions of Spain. Foods 2016, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Choo, C.O.; Chua, B.L.; Figiel, A.; Jałoszyński, K.; Wojdyło, A.; Szumny, A.; Łyczko, J.; Chong, C.H. Hybrid Drying of Murraya koenigii Leaves: Energy Consumption, Antioxidant Capacity, Profiling of Volatile Compounds and Quality Studies. Processes 2020, 8, 240. [Google Scholar] [CrossRef] [Green Version]
- Łyczko, J.; Jałoszyński, K.; Surma, M.; García-Garví, J.-M.; Carbonell-Barrachina, A.A.; Szumny, A. Determination of Various Drying Methods’ Impact on Odour Quality of True Lavender (Lavandula angustifolia Mill.) Flowers. Molecules 2019, 24, 2900. [Google Scholar] [CrossRef] [Green Version]
- Mierzwa, D.; Szadzińska, J. The microwave-assisted convective drying of kale (Brassica oleracea L. var. sabellica L.) using continuous and changeable power radiation. J. Food Process Eng. 2019, 42, 1–14. [Google Scholar] [CrossRef]
- Nabissi, M.; Fiorini, D.; Molle, A.; Santini, G.; Maggi, F.; Benelli, G. Valorizing industrial hemp (Cannabis sativa L.) by-products: Cannabidiol enrichment in the inflorescence essential oil optimizing sample pre-treatment prior to distillation. Ind. Crops Prod. 2018, 128, 581–589. [Google Scholar]
- Politowicz, J.; Lech, K.; Sánchez-Rodríguez, L.; Figiel, A.; Szumny, A.; Grubor, M.; Carbonell-Barrachina, Á.A. Volatile composition and sensory profile of oyster mushroom as affected by drying method. Dry. Technol. 2018, 36, 685–696. [Google Scholar] [CrossRef]
- Jayashree, E.; Visvanathan, R.; Zachariah, T.J. Quality of dry ginger (Zingiber officinale) by different drying methods. J. Food Sci. Technol. 2014, 51, 3190–3198. [Google Scholar]
- Antal, T.; Figiel, A.; Kerekes, B.; Sikolya, L. Effect of drying methods on the quality of the essential oil of spearmint leaves (Mentha spicata L.). Dry. Technol. 2011, 29, 1836–1844. [Google Scholar] [CrossRef]
- Babu, A.K.; Kumaresan, G.; Aroul, V.A.; Velraj, R. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renew. Sustain. Energy Rev. 2018, 90, 536–556. [Google Scholar] [CrossRef]
- Yilmaz, A.; Alibas, I. Determination of Microwave and Convective Drying Characteristics of Coriander Leaves. J. Biol. Environ. Sci. 2017, 11, 75–85. [Google Scholar]
- Sarimeseli, A. Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves. Energy Convers. Manag. 2011, 52, 1449–1453. [Google Scholar] [CrossRef]
- Pirbalouti, A.G.; Salehi, S.; Craker, L. Effect of drying methods on qualitative and quantitative properties of essential oil from the aerial parts of coriander. J. Appl. Res. Med. Aromat. Plants 2017, 4, 35–40. [Google Scholar] [CrossRef]
- Kamel, S.M.; Thabet, H.A.; Algadi, E.A. Influence of Drying Process on the Functional Properties of Some Plants. Chem. Mater. Res. 2013, 3, 1–8. [Google Scholar]
- Fathima, A.; Begum, K.; Rajalakshmi, D. Microwave drying of selected greens and their sensory. Plant Food Hum. Nutr. 2001, 56, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Łyczko, J.; Jałoszyński, K.; Surma, M.; Masztalerz, K.; Szumny, A. HS-SPME Analysis of True Lavender (Lavandula angustifolia Mill.) Leaves Treated by Various Drying Methods. Molecules 2019, 24, 764. [Google Scholar] [CrossRef] [Green Version]
- Łyczko, J.; Masztalerz, K.; Lipan, L.; Lech, K.; Carbonell-Barrachina, Á.A.; Szumny, A. Chemical determinants of dried Thai basil (O. basilicum var. thyrsiflora) aroma quality. Ind. Crop. Prod. 2020, 155, 112769. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oils by Ion Trap Mass Spectroscopy; Academic Press: San Diego, CA, USA, 2012. [Google Scholar]
- International Standard Organization. Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors—Part 1: Selected Assessors. ISO 8586-1:1993; International Standard Organization: Geneva, Switzerland, 1993. [Google Scholar]
- Meilgaard, M.C.; Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques, 5th ed.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 0962-1067. [Google Scholar]
- Louw, L.; Malherbe, S.; Naes, T.; Lambrechts, M.; van Rensburg, P.; Nieuwoudt, H. Validation of two Napping® techniques as rapid sensory screening tools for high alcohol products. Food Qual. Prefer. 2013, 30, 192–201. [Google Scholar] [CrossRef]
- Pagès, J.; Cadoret, M.; Lê, S. The sorted napping: A new holistic approach in sensory evaluation. J. Sens. Stud. 2010, 25, 637–658. [Google Scholar] [CrossRef]
- Perrin, L.; Symoneaux, R.; Maître, I.; Asselin, C.; Jourjon, F.; Pagès, J. Comparison of three sensory methods for use with the Napping® procedure: Case of ten wines from Loire valley. Food Qual. Prefer. 2008, 19, 1–11. [Google Scholar] [CrossRef]
- Eyres, G.; Dufour, J.-P.; Hallifax, G.; Sotheeswaran, S.; Marriott, P.J. Identification of character-impact odorants in coriander and wild coriander leaves using gas chromatography-olfactometry (GCO) and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GCxGC–TOFMS). J. Sep. Sci. 2005, 28, 1061–1074. [Google Scholar] [CrossRef]
- Politowicz, J.; Lech, K.; Sánchez-Rodríguez, L.; Szumny, A.; Carbonell-Barrachina, Á.A. Volatile composition and sensory profile of Cantharellus cibarius Fr. as affected by drying method. J. Sci. Food Agric. 2017, 97, 5223–5232. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Figiel, A.; Lech, K.; Szumny, A.; Carbonell-Barrachina, Á.A. Effects of Drying Methods on the Composition of Thyme (Thymus vulgaris L.) Essential Oil. Dry. Technol. 2013, 31, 224–235. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Lech, K.; Szumny, A.; Figiel, A.; Carbonell-Barrachina, Á.A. Volatile composition of sweet basil essential oil (Ocimum basilicum L.) as affected by drying method. Food Res. Int. 2012, 48, 217–225. [Google Scholar] [CrossRef]
- Chua, L.Y.W.; Chua, B.L.; Figiel, A.; Chong, C.H.; Wojdyło, A.; Szumny, A.; Lech, K. Characterisation of the convective hot-air drying and vacuum microwave drying of Cassia alata: Antioxidant activity, essential oil volatile composition and quality studies. Molecules 2019, 14, 1625. [Google Scholar] [CrossRef] [Green Version]
- Calín-Sánchez, Á.; Figiel, A.; Lech, K.; Szumny, A.; Martínez-Tomé, J.; Carbonell-Barrachina, Á.A. Dying methods affect the aroma of Origanum majorana L. analyzed by GC-MS and descriptive sensory analysis. Ind. Crops Prod. 2015, 74, 218–227. [Google Scholar] [CrossRef]
- de Melo, A.C.G.R.; dos Santos, M.D.V.; de Carvalho Neto, M.F.; Takarashi, J.A.; Ferraz, V.P.; Chagas, E.A.; Chagas, P.C.; de Melo Filho, A.A. Phytochemical Trial and Bioactivity of the Essential Oil from Coriander Leaves (Coriandrum sativum) on Pathogenic Microorganisms. Chem. Eng. Trans. 2019, 75, 403–408. [Google Scholar]
- Nurzyńska-Wierdak, R. Essential Oil Composition of the Coriander (Coriandrum sativum L.) Herb Depending on the Development Stage. ACTA Agrobot. 2013, 66, 53–60. [Google Scholar] [CrossRef]
- Shahwar, M.K.; El-Ghorab, A.H.; Anjum, M.; Butt, M.S.; Hussain, S.; Butt, M.S.; Hussain, S.; Characterization, M.N. Characterization of Coriander (Coriandrum sativum L.) Seeds and Leaves: Volatile and Non Volatile Extracts. Int. J. Food Prop. 2012, 15, 736–747. [Google Scholar] [CrossRef] [Green Version]
- Farouk, A.; Fikry, R.; Mohsen, M. Chemical Composition and Antioxidant Activity of Ocimum basilicum L. Essential Oil Cultivated in Madinah Monawara, Saudi Arabia and its Comparison to the Egyptian Chemotype. J. Essent. Oil Bear. Plants 2016, 19, 1119–1128. [Google Scholar] [CrossRef]
- Orav, A.; Arak, E.; Raal, A. Essential Oil Composition of Coriandrum sativum L. Fruits from Different Countries. J. Essent. Oil Bear. Plants 2011, 14, 118–123. [Google Scholar] [CrossRef]
- Rubiolo, P.; Belliardo, F.; Cordero, C.; Liberto, E.; Sgorbini, B.; Bicchi, C. Headspace—Solid-phase Microextraction Fast GC in Combination with Principal Component Analysis as a Tool to Classify Different Chemotypes of chamomile flower-heads (Matricaria recutita L.). Phytochem. Anal. 2006, 17, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Maeyama, K.; Yoshida, E.; Kori, M. Aroma Character of Coriander (Coriandrum Sativum L.) Leaves: Limited Odor Unit Method and Sensory Perception in Preference. In Nutrition, Functional and Sensory Properties of Foods; Ho, C.-T., Mussinan, C., Shahidi, F., Contis, E.T., Eds.; RCS Publishing: Cambridge, UK, 2013; ISBN 9781849737685. [Google Scholar]
- Breheret, S.; Talou, T.; Rapior, S.; Bessière, J.-M. Monoterpenes in the aromas of fresh wild mushrooms (Basidiomycetes). J. Agric. Food Chem. 1997, 45, 831–836. [Google Scholar] [CrossRef]
- Chua, L.Y.W.; Chua, B.L.; Figiel, A.; Chong, C.H.; Wojdyło, A.; Szumny, A.; Łyczko, J. Drying of Phyla nodiflora Leaves: Antioxidant Activity, Volatile and Phytosterol Content, Energy Consumption, and Quality Studies. Processes 2019, 7, 210. [Google Scholar] [CrossRef] [Green Version]
- Calín-Sánchez, Á.; Szumny, A.; Figiel, A.; Jałoszyński, K.; Adamski, M.; Carbonell-Barrachina, Á.A. Effects of vacuum level and microwave power on rosemary volatile composition during vacuum-microwave drying. J. Food Eng. 2011, 103, 219–227. [Google Scholar] [CrossRef]
- Ali, A.; Choong, C.; Lin, B.; Figiel, A.; Hwa, C.; Wojdylo, A.; Piotr, I.; Szumny, A.; Jacek, Ł. Volatile and polyphenol composition, anti-oxidant, anti-diabetic and anti-aging properties, and drying kinetics as affected by convective and hybrid vacuum microwave drying of Rosmarinus officinalis L. Ind. Crops Prod. 2020, 151, 112463. [Google Scholar] [CrossRef]
Drying Method | Code |
---|---|
Convective drying at 50 °C | CD50 |
Convective drying at 60 °C | CD60 |
Convective drying at 70 °C | CD70 |
Convective drying at 50 °C for 120 min followed by convective finishing drying at 70 °C | CD50/70 |
Convective drying at 60 °C for 120 min followed by convective finishing drying at 70 °C | CD60/70 |
Convective drying at 70 °C for 120 min followed by convective finishing drying at 50 °C | CD70/50 |
Convective drying at 70 °C for 120 min followed by convective finishing drying at 60 °C | CD70/60 |
Vacuum-microwave drying with power 240 W | VMD 240 |
Vacuum-microwave drying with power 360 W | VMD 360 |
Vacuum-microwave drying with power 480 W | VMD 480 |
Convective pre-drying at 50 °C for 120 min followed by vacuum-microwave drying at 360 W | CPD50-VMFD |
Convective drying at 60 °C for 120 min followed by vacuum-microwave drying at 360 W | CPD60-VMFD |
Convective drying at 70 °C for 120 min followed by vacuum-microwave drying at 360 W | CPD70-VMFD |
Drying Conditions | Constants | Statistics | Drying Time [min] | Maximum Temperature | Mcwb [%] | |||||
---|---|---|---|---|---|---|---|---|---|---|
A | k | n | RMSE | R2 | CPD | CD | VMD | Tmax, [°C] | ||
CD50 | 1 | 0.0091 | 0.995 | 0.0115 | 0.9989 | - | 570 | - | 50 ± 2 | 6.2 ± 0.5 |
CD60 | 1 | 0.0106 | 1.124 | 0.0206 | 0.9964 | - | 360 | - | 60 ± 2 | 3.3 ± 0.2 |
CD70 | 1 | 0.0192 | 1.021 | 0.0109 | 0.9989 | - | 270 | - | 70 ± 2 | 3.6 ± 0.3 |
CD50/70 | 1 | 0.0062 | 1.123 | 0.0188 | 0.9972 | 120 | 270 | - | 70 ± 2 | 4.0 ± 0.3 |
CD70/50 | 1 | 0.0151 | 1.062 | 0.0215 | 0.9958 | 120 | 300 | - | 50 ± 2 | 8.1 ± 0.5 |
CD60/70 | 1 | 0.0151 | 1.001 | 0.0075 | 0.9995 | 120 | 180 | - | 70 ± 2 | 6.4 ± 0.4 |
CD70/60 | 1 | 0.0193 | 1.002 | 0.0227 | 0.9953 | 120 | 210 | - | 60 ± 2 | 9.7 ± 0.6 |
VMD 240 | 1 | 0.0111 | 1.391 | 0.0242 | 0.9943 | - | - | 68 | 50 ± 2 | 9.0 ± 0.5 |
VMD 360 | 1 | 0.0063 | 1.671 | 0.0143 | 0.9982 | - | - | 51 | 53 ± 2 | 7.8 ± 0.3 |
VMD 480 | 1 | 0.0191 | 1.441 | 0.0264 | 0.9932 | - | - | 42 | 56 ± 2 | 8.1 ± 0.2 |
CPD50-VMFD | 0.2231 | 0.1351 | 1.082 | 0.002 | 0.9992 | 120 | - | 27 | 53 ± 2 | 6.1 ± 1.1 |
CPD60-VMFD | 0.1111 | 0.5842 | 0.687 | 0.0014 | 0.9982 | 120 | - | 15 | 55 ± 2 | 5.9 ± 0.9 |
CPD70-VMFD | 0.0768 | 0.4921 | 0.697 | 0.0012 | 0.9972 | 120 | - | 15 | 62 ± 2 | 5.2 ± 0.9 |
Compound | Compound Class | LRIexp 1 | LRIlit 2 | LRIlit 3 | Contribution 4 [%] | The Match Fitting Score 5 [%] | Odour Description 6 |
---|---|---|---|---|---|---|---|
3-Methyl-1-butanol | alcohol | 736 | 736 | 731 | 0.34 ± 0.01 | 93 | |
2-Methyl-1-butanol, | alcohol | 739 | 739 | - | 0.57 ± 0.01 | 91 | |
(Z)-Hex-3-enal | aldehyde | 803 | 810 | 797 | 0.16 ± 0.04 | 91 | Green/Floral |
(Z)-Hex-3-en-1-ol | alcohol | 851 | 857 | 850 | 17.38 ± 0.38 | 94 | Green, cut grass |
(E)-Hex-2-en-1-ol | alcohol | 863 | 862 | - | 0.39 ± 0.02 | 92 | |
3-Methylbutyl acetate | ester | 874 | 876 | 869 | 0.12 ± 0.01 | 92 | |
Allyl Isothiocyanate | other | 884 | 887 | - | 0.17 ± 0.03 | 95 | |
Nonane | alkane/alkene | 902 | 900 | 900 | 9.28 ± 1.20 | 90 | |
α-Pinene | terpene/terpenoid | 934 | 937 | 932 | 0.37 ± 0.05 | 95 | |
Camphene | terpene/terpenoid | 950 | 952 | 946 | tr 7 | 94 | |
2-Methylpropyl butanoate | ester | 955 | 955 | - | 0.16 ± 0.02 | 91 | |
Sabinene | terpene/terpenoid | 974 | 974 | 969 | 0.11 ± 0.01 | 93 | |
β-Pinene | terpene/terpenoid | 979 | 978 | 974 | 0.14 ± 0.01 | 94 | Mouldy, earthy/Mushroom |
6-Methyl-hept-5-ene-2-one | others | 986 | 988 | - | 0.10 ± 0.02 | 90 | |
Unknown | - | 992 | 0.31 ± 0.01 | ||||
Decane | alkane/alkene | 1001 | 1000 | 1000 | 0.27 ± 0.04 | 94 | |
(Z)-Hex-3-en-1-ol, acetate | ester | 1009 | 1005 | 1004 | 34.54 ± 2.08 | 90 | |
3-Carene | terpene/terpenoid | 1012 | 1011 | 1008 | 1.57 ± 0.06 | 90 | |
p-Cymene | terpene/terpenoid | 1025 | 1025 | 1022 | 0.45 ± 0.01 | 91 | |
Limonene | terpene/terpenoid | 1030 | 1030 | 1024 | 2.43 ± 0.22 | 91 | |
(Z)-β -Ocimene | terpene/terpenoid | 1038 | 1038 | 1032 | tr | 92 | |
(E)-β-Ocimene | terpene/terpenoid | 1049 | 1049 | 1044 | 0.15 ± 0.01 | 94 | |
3-Methylbutyl butanoate | ester | 1056 | 1056 | 1049 | 0.23 ± 0.01 | 95 | |
γ-Terpinene | terpene/terpenoid | 1060 | 1060 | 1054 | 0.33 ± 0.03 | 97 | |
(Z)-Sabinene hydrate | terpene/terpenoid | 1072 | 1064 | 1069 | 0.59 ± 0.04 | 93 | |
Terpinolene | terpene/terpenoid | 1090 | 1088 | 1086 | 0.45 ± 0.04 | 97 | Mushroom, truffle/Mouldy, earthy |
Tetrahydrolinalool | terpene/terpenoid | 1099 | 1098 | 1098 | 0.38 ± 0.02 | 93 | |
Linalool | terpene/terpenoid | 1101 | 1099 | 1095 | 1.44 ± 0.02 | 93 | Citrusy/Floral |
Limonene epoxide | terpene/terpenoid | 1137 | 1133 | 1137 | 0.15 ± 0.01 | 90 | |
p-Menthone | terpene/terpenoid | 1157 | 1153 | 1148 | 0.10 ± 0.01 | 90 | |
Menthol | terpene/terpenoid | 1174 | 1175 | 1167 | 0.51 ± 0.08 | 93 | |
Terpinen-4-ol | terpene/terpenoid | 1180 | 1177 | 1174 | 0.13 ± 0.01 | 90 | |
Dill ether | terpene/terpenoid | 1189 | 1186 | 1184 | 0.10 ± 0.01 | 90 | |
p-Menth-8-en-2-ol | terpene/terpenoid | 1197 | 1195 | 1187 | 0.23 ± 0.02 | 93 | |
Estragole | other | 1201 | 1196 | 1195 | 0.30 ± 0.02 | 94 | |
Decanal | aldehyde | 1207 | 1206 | 1201 | 4.53 ± 0.13 | 96 | Floral, citronellol/Fruity |
Carvone | terpene/terpenoid | 1247 | 1242 | 1239 | 0.65 ± 0.09 | 92 | |
Linalyl acetate | terpene/terpenoid | 1258 | 1257 | 1254 | 0.27 ± 0.01 | 92 | |
(E)-De-2-cenal | aldehyde | 1264 | 1263 | 1260 | 0.46 ± 0.14 | 97 | Coriander/Aldehydic/Pungent, spicy |
(E)-Dec-9-en-1-ol | alcohol | 1270 | 1262 | 1263 | 0.33 ± 0.10 | 90 | |
Decanol | alcohol | 1274 | 1273 | 1266 | 4.76 ± 0.56 | 91 | Floral/Spicy |
Bornyl acetate | terpene/terpenoid | 1290 | 1285 | 1283 | 0.26 ± 0.03 | 92 | |
Undecan-2-ol | alcohol | 1304 | 1308 | 1301 | 0.18 ± 0.05 | 97 | Medicinal/Pungent, spicy |
Undecanal | aldehyde | 1310 | 1307 | 1305 | 0.29 ± 0.08 | 95 | Fruity/Floral/Spicy |
Methyl dodecanoate | ester | 1330 | 1325 | 1323 | 0.10 ± 0.02 | 91 | |
Terpinyl acetate | terpene/terpenoid | 1357 | 1350 | 1346 | 0.20 ± 0.02 | 90 | |
(E)-Undec-2-enal | aldehyde | 1371 | 1365 | - | 0.18 ± 0.08 | 90 | Fruity/Solvent, chemical |
(Z)-Tetradec-2-ene, | alkane/alkene | 1380 | 1378 | - | 0.16 ± 0.02 | 91 | |
Dec-9-enyl acetate | ester | 1398 | 1399 | 1399 | 0.10 ± 0.03 | 92 | |
Decyl acetate | ester | 1402 | 1408 | 1407 | 0.12 ± 0.03 | 93 | |
Dodecanal | aldehyde | 1414 | 1409 | 1408 | 1.76 ± 0.30 | 96 | Pungent, spicy/Floral, citronellol |
Caryophyllene | sesquiterpene | 1420 | 1419 | 1417 | 0.22 ± 0.01 | 95 | |
Elemene isomer | sesquiterpene | 1444 | 1444 | - | tr | 92 | |
(Z)-Dodec-2-enal | aldehyde | 1460 | 1467 | - | 0.3 ± 0.07 | 92 | |
(E)-Dodec-2-enal | aldehyde | 1472 | 1471 | 1468 | 4.18 ± 0.36 | 95 | Coriander/Floral/Pungent |
Dodecanol | alcohol | 1477 | 1473 | 1469 | 1.35 ± 0.67 | 95 | |
Eremophilene | sesquiterpene | 1502 | 1499 | - | 0.22 ± 0.03 | 91 | |
unknown sesquiterpene | sesquiterpene | 1572 | 0.33 ± 0.21 | ||||
(E)-Tridec-2-enal | aldehyde | 1577 | 1572 | - | 0.30 ± 0.04 | 93 | Coriander/Pungent, spicy |
(E)-Tetradec-2-enal | aldehyde | 1667 | 1673 | - | 0.26 ± 0.10 | 94 | Pungent, spicy/Aldehydic/Floral |
(Z)-Tetradec-2-enal | aldehyde | 1682 | 1675 | - | 4.77 ± 0.50 | 91 | Pungent, spicy/Woody |
Compounds group | Total contribution [%] | ||||||
Aldehydes | 17.19 ± 0.95 | ||||||
Alkanes/alkenes | 9.71 ± 0.81 | ||||||
Esters | 35.47 ± 1.31 | ||||||
Alcohols | 24.39 ± 1.17 | ||||||
Others | 0.57 ± 0.02 | ||||||
Terpenes/terpenoids | 11.01 ± 0.05 | ||||||
Sesquiterpenes | 0.77 ± 0.18 | ||||||
SUM | 99.11 |
Odour Active Compounds | Fresh | CD50 | CD60 | CD70 | CD60/70 | CD50/70 | CD70/50 | CD70/60 | VMD 240 | VMD 360 | VMD 480 | CPD50-VMFD | CPD60-VMFD | CPD70-VMFD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Contribution [%] | ||||||||||||||
(Z)-Hex-3-enal | 0.16f 1 | 0.60bc | 0.14f | 0.41cde | 0.61bc | 0.35def | 0.47bcd | 0.65b | 0.56bcd | 0.65b | 1.70a | 0.24ef | 0.39cde | 0.22ef |
(Z)-Hex-3-en-1-ol | 17.38a | 0.58bc | 0.12d | 0.26cd | 0.32bcd | 0.24cd | 0.28bcd | 0.30bcd | 0.32bcd | 0.39bcd | 0.64b | 0.25cd | 0.23cd | 0.08d |
(E)-Hex-2-en-1-ol | 0.39b | 0.24cde | 0.07f | 0.22de | 0.28cd | 0.15ef | 0.24cde | 0.32bc | 0.32bcd | 0.25cd | 0.75a | 0.11f | 0.15ef | 0.07f |
β-Pinene | 0.14de | 0.33bc | 0.09e | 0.26cd | 0.35bc | 0.22cde | 0.34bc | 0.41b | 0.25cd | 0.36bc | 0.80a | 0.17de | 0.24cd | 0.14de |
Terpinolene | 0.45bcd | 0.45bc | 0.11f | 0.32cde | 0.45bcd | 0.30de | 0.42bcd | 0.55b | 0.35cde | 0.37cde | 0.70a | 0.23ef | 0.35cde | 0.25ef |
Linalool | 1.44bc | 1.21bcde | 0.52f | 1.20bcde | 1.37bcd | 1.14bcde | 0.77ef | 1.58b | 0.60f | 0.98cdef | 2.19a | 0.83ef | 0.90ef | 0.93def |
Decanal | 4.53g | 15.00d | 24.88b | 15.18d | 6.94ef | 20.82c | 4.94fg | 7.92e | 0.32h | 15.05d | 7.82e | 25.25b | 23.34b | 29.10a |
(E)-Dec-2-enal | 0.46e | 1.35e | 11.90a | 4.17d | 0.58e | 3.91d | 0.31e | 0.56e | 3.41d | 3.25d | 1.34e | 10.85ab | 6.60c | 9.89b |
Decanol | 4.76b | 2.71cd | 5.93b | 2.17cd | 2.03cd | 4.84b | 1.39d | 3.07c | 4.53b | 8.95a | 1.48d | 5.61b | 4.75b | 5.12b |
Undecan-2-ol | 0.18bcde | 0.25bc | 0.08e | 0.28b | 0.23bcd | 0.14cde | 0.17bcde | 0.21bcde | 0.24bcd | 0.27bc | 0.64a | 0.11de | 0.15cde | 0.10e |
Undecanal | 0.29d | 2.23ab | 1.55cd | 2.47ab | 1.54cd | 2.70a | 1.20d | 1.40cd | 0.24d | 1.42cd | 1.81bcd | 1.83bcd | 1.85bcd | 1.90bc |
(E)-Undec-2-enal | 0.18fg | 0.74de | 3.14a | 1.90c | 0.18fg | 1.88c | 0.14g | 0.21efg | 0.27efg | 0.72def | 0.86d | 2.59b | 1.78c | 1.65c |
Dodecanal | 1.76h | 5.34bc | 4.36de | 5.86ab | 3.04fg | 6.60a | 2.08h | 2.54gh | 0.33h | 3.37fg | 3.60ef | 4.86cd | 3.79ef | 4.93cd |
(E)-Dodec-2-enal | 4.18fg | 7.31e | 19.52a | 13.95bc | 2.96g | 14.51b | 1.37h | 1.14h | 0.32h | 2.92g | 4.34f | 14.05bc | 13.07cd | 11.80d |
(E)-Tridec-2-enal | 0.30f | 0.37ef | 1.53a | 0.94b | 0.22f | 0.66bcd | 0.19f | 0.23f | 0.71bc | 0.30f | 0.63cde | 0.80bc | 0.64cd | 0.42def |
(E)-Tetradec-2-enal | 0.26bc | 0.80a | 0.19c | 0.24bc | 0.17c | 0.18c | 0.14c | 0.19c | 0.35bc | 0.19c | 0.64ab | 0.25bc | 0.19c | 0.09c |
(Z)-Tetradec-2-enal | 4.77cd | 2.34fg | 9.46ab | 6.05c | 1.96fg | 8.21b | 1.03gh | 0.20h | 3.24ef | 3.18ef | 0.99gh | 10.76a | 5.54cd | 4.38de |
Drying Method | Rank 1 |
---|---|
CPD70-VMFD | 198a 2 |
CD70 | 184a |
CD50 | 181ab |
CPD60-VMFD | 179ab |
CD60 | 154abc |
VMD 360 | 134bcd |
CD60/70 | 124cd |
CD70/60 | 122cd |
CPD50-VMFD | 121cd |
VMD 240 | 120cd |
CD50/70 | 100d |
VMD 480 | 98d |
CD70/50 | 95d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łyczko, J.; Masztalerz, K.; Lipan, L.; Iwiński, H.; Lech, K.; Carbonell-Barrachina, Á.A.; Szumny, A. Coriandrum sativum L.—Effect of Multiple Drying Techniques on Volatile and Sensory Profile. Foods 2021, 10, 403. https://doi.org/10.3390/foods10020403
Łyczko J, Masztalerz K, Lipan L, Iwiński H, Lech K, Carbonell-Barrachina ÁA, Szumny A. Coriandrum sativum L.—Effect of Multiple Drying Techniques on Volatile and Sensory Profile. Foods. 2021; 10(2):403. https://doi.org/10.3390/foods10020403
Chicago/Turabian StyleŁyczko, Jacek, Klaudia Masztalerz, Leontina Lipan, Hubert Iwiński, Krzysztof Lech, Ángel A. Carbonell-Barrachina, and Antoni Szumny. 2021. "Coriandrum sativum L.—Effect of Multiple Drying Techniques on Volatile and Sensory Profile" Foods 10, no. 2: 403. https://doi.org/10.3390/foods10020403
APA StyleŁyczko, J., Masztalerz, K., Lipan, L., Iwiński, H., Lech, K., Carbonell-Barrachina, Á. A., & Szumny, A. (2021). Coriandrum sativum L.—Effect of Multiple Drying Techniques on Volatile and Sensory Profile. Foods, 10(2), 403. https://doi.org/10.3390/foods10020403