A Long-Term Stable Sensor Based on Fe@PCN-224 for Rapid and Quantitative Detection of H2O2 in Fishery Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Fabrication of PCN-224 and Fe@PCN-224
2.4. Preparation of Fe@PCN-224-Modified Electrodes
2.5. Sample Treatment for H2O2 Determination
2.6. Electrochemical Determination of H2O2
2.7. Spectrophotometric Determination of H2O2
3. Results and Discussion
3.1. Characterization of Composites
3.2. Cyclic Voltammetry of the H2O2 Sensor
3.3. Amperometric Measurement of H2O2
3.4. Selectivity, Stability, and Reproducibility
3.5. Application of the H2O2 Sensor in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dainty, R.H. Chemical/biochemical detection of spoilage. Int. J. Food Microbiol. 1996, 33, 19–33. [Google Scholar] [CrossRef]
- Magnaghi, L.R.; Capone, F.; Zanoni, C.; Alberti, G.; Quadrelli, P.; Biesuz, R. Colorimetric sensor array for monitoring, modelling and comparing spoilage processes of different meat and fish foods. Foods 2020, 9, 684. [Google Scholar] [CrossRef]
- Chun, H.N.; Kim, B.; Shin, H.S. Evaluation of a freshness indicator for quality of fish products during storage. Food Sci. Biotechnol. 2014, 23, 1719–1725. [Google Scholar] [CrossRef]
- DeWitt, C.; Oliveira, A. Modified Atmosphere Systems and Shelf Life Extension of Fish and Fishery Products. Foods 2016, 5, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Cánovas, A.E.; Cabas, I.; Chaves-Pozo, E.; Ros-Chumillas, M.; Navarro-Segura, L.; López-Gómez, A.; Fernandes, J.M.O.; Galindo-Villegas, J.; García-Ayala, A. Nanoencapsulated Clove Oil Applied as an Anesthetic at Slaughtering Decreases Stress, Extends the Freshness, and Lengthens Shelf Life of Cultured Fish. Foods 2020, 9, 1750. [Google Scholar] [CrossRef]
- Council Regulation (EC) No 2406/96 of 26 November 1996 Laying Down Common Marketing Standards for Certain Fishery Products. Off. J. Eur. Communities 1996. Available online: http://data.europa.eu/eli/reg/1996/2406/oj (accessed on 31 January 2021).
- Bello, F.D.; Aigotti, R.; Zorzi, M.; Giaccone, V.; Medana, C. Multi-analyte ms based investigation in relation to the illicit treatment of fish products with hydrogen peroxide. Toxics 2020, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Manimaran, U.; Shakila, R.J.; Shalini, R.; Sivaraman, B.; Sumathi, G.; Selvaganapathi, R.; Jeyasekaran, G. Effect of additives in the shelflife extension of chilled and frozen stored Indian octopus (Cistopus indicus). J. Food Sci. Technol. 2016, 53, 1348–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himonides, A.T.; Taylor, K.D.A.; Knowles, M.J. The improved whitening of cod and haddock flaps using hydrogen peroxide. J. Sci. Food Agric. 1999, 79, 845–850. [Google Scholar] [CrossRef]
- Jafarpour, A.; Sherkat, F.; Leonard, B.; Gorczyca, E.M. Colour improvement of common carp (Cyprinus carpio) fillets by hydrogen peroxide for surimi production. Int. J. Food Sci. Technol. 2008, 43, 1602–1609. [Google Scholar] [CrossRef]
- Fu, X.Y.; Xue, C.H.; Miao, B.C.; Liang, J.N.; Li, Z.J.; Cui, F.X. Purification and characterization of trimethylamine-N-oxide demethylase from Jumbo squid (Dosidicus gigas). J. Agric. Food Chem. 2006, 54, 968–972. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.K.; Hurng, D.C. Thermal conversion of trimethylamine-N-oxide to trimethylamine and dimethylamine in squids. Food Chem. Toxicol. 1985, 23, 579–583. [Google Scholar] [CrossRef]
- Zou, Q.; Bennion, B.J.; Daggett, V.; Murphy, K.P. The molecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effects of urea. J. Am. Chem. Soc. 2002, 124, 1192–1202. [Google Scholar] [CrossRef] [PubMed]
- Pillai, K.; Akhter, J.; Chua, T.C.; Morris, D.L. Mucolysis by ascorbic acid and hydrogen peroxide on compact mucin secreted in pseudomyxoma peritonei. J. Surg. Res. 2012, 174, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, C.F.; Santos, P.M.; Pereira-Filho, E.R.; Rocha, F.R.P. Recent advances on determination of milk adulterants. Food Chem. 2017, 221, 1232–1244. [Google Scholar] [CrossRef]
- Chou, T.C.; Wu, K.Y.; Hsu, F.X.; Lee, C.K. Pt-MWCNT modified carbon electrode strip for rapid and quantitative detection of H2O2 in food. J. Food Drug Anal. 2018, 26, 662–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanova, A.S.; Merkuleva, A.D.; Andreev, S.V.; Sakharov, K.A. Method for determination of hydrogen peroxide in adulterated milk using high performance liquid chromatography. Food Chem. 2019, 283, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Code of Federal Regulations (CFR) Title 21: Sec. 184.1366 Hydrogen Peroxide. FDA. 2020. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=184.1366 (accessed on 31 January 2021).
- Jin, H.; Heller, D.A.; Kalbacova, M.; Kim, J.H.; Zhang, J.Q.; Boghossian, A.A.; Maheshri, N.; Strano, M.S. Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 2010, 5, 302–309. [Google Scholar] [CrossRef]
- Klassen, N.V.; Marchington, D.; McGowan, H.C.E. H2O2 Determination by the I3- Method and by KMnO4 Titration. Anal. Chem. 1994, 66, 2921–2925. [Google Scholar] [CrossRef]
- Hanaoka, S.; Lin, J.M.; Yamada, M. Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin. Anal. Chim. Acta 2001, 426, 57–64. [Google Scholar] [CrossRef]
- Goicoechea, J.; Rivero, P.J.; Sada, S.; Arregui, F.J. Self-referenced optical fiber sensor for hydrogen peroxide detection based on LSPR of metallic nanoparticles in layer-by-layer films. Sensors 2019, 19, 3872. [Google Scholar] [CrossRef] [Green Version]
- Jahanbakhshi, M.; Habibi, B. A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support: Application to electroanalytical determination of H2O2 in fetal bovine serum. Biosens. Bioelectron. 2016, 81, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Ai, S.; Shi, W.; Zhu, L. A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase. Sensors Actuators B Chem. 2009, 137, 747–753. [Google Scholar] [CrossRef]
- Prakash, P.A.; Yogeswaran, U.; Chen, S.M. A review on direct electrochemistry of catalase for electrochemical sensors. Sensors 2009, 9, 1821–1844. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Jin, J.; Yang, G.; Lu, T.; Zhang, H.; Cai, C. Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Anal. Chem. 2009, 81, 7271–7280. [Google Scholar] [CrossRef] [PubMed]
- Si, P.; Dong, X.C.; Chen, P.; Kim, D.H. A hierarchically structured composite of Mn3O4/3D graphene foam for flexible nonenzymatic biosensors. J. Mater. Chem. B 2013, 1, 110–115. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, M.; Zhang, H.; Zheng, J. A sensitive hydrogen peroxide sensor based on leaf-like silver. Meas. Sci. Technol. 2014, 25, 025301–025305. [Google Scholar] [CrossRef]
- Lee, H.; Kim, Y.; Yu, A.; Jin, D.; Jo, A.; Lee, Y.; Kim, M.H.; Lee, C. An Efficient Electrochemical Sensor Driven by Hierarchical Hetero-Nanostructures Consisting of RuO2 Nanorods on WO3 Nanofibers for Detecting Biologically Relevant Molecules. Sensors 2019, 19, 3295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.; Tian, C.; Zhai, J.; Yang, R. Sol-gel derived carbon nanotubes ceramic composite electrodes for electrochemical sensing. Sensors Actuators B Chem. 2007, 125, 254–261. [Google Scholar] [CrossRef]
- Sun, J.; Li, C.; Qi, Y.; Guo, S.; Liang, X. Optimizing colorimetric assay based on V2O5 nanozymes for sensitive detection of H2O2 and glucose. Sensors 2016, 16, 584. [Google Scholar] [CrossRef] [Green Version]
- Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O.M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472. [Google Scholar] [CrossRef] [Green Version]
- Farrusseng, D.; Aguado, S.; Pinel, C. Metal-organic frameworks: Opportunities for catalysis. Angew. Chem. Int. Ed. Engl. 2009, 48, 7502–7513. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Binyam, A.; Liu, M.; Wu, Y.; Li, F. Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules. Biosens. Bioelectron. 2016, 86, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.Z.; Chen, G.H.; Xiao, S.T.; Wang, Q.; Huang, Z.K.; Wang, L.Y. The enzyme-like catalytic hydrogen abstraction reaction mechanisms of cyclic hydrocarbons with magnesium-diluted Fe-MOF-74. RSC Adv. 2019, 9, 23622–23632. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, Y. Luminescence-Sensing Tb-MOF Nanozyme for the Detection and Degradation of Estrogen Endocrine Disruptors. ACS Appl. Mater. Interfaces 2020, 12, 8351–8358. [Google Scholar] [CrossRef] [PubMed]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Dou, Y.B.; Xie, L.H.; Rutledge, W.; Li, J.R.; Zhou, H.C. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327–2367. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.W.; Chung, W.C.; Wei, Z.W.; Gu, Z.Y.; Jiang, H.L.; Chen, Y.P.; Darensbourg, D.J.; Zhou, H.C. Construction of Ultrastable Porphyrin Zr Metal-Organic Frameworks through Linker Elimination. J. Am. Chem. Soc. 2013, 135, 17105–17110. [Google Scholar] [CrossRef] [PubMed]
- Morris, W.; Volosskiy, B.; Demir, S.; Gandara, F.; McGrier, P.L.; Furukawa, H.; Cascio, D.; Stoddart, J.F.; Yaghi, O.M. Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal-Organic Frameworks. Inorg. Chem. 2012, 51, 6443–6445. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Liu, M.; Li, K.Y.; Han, Y.T.; Zuo, Y.; Wang, J.H.; Song, C.S.; Zhang, G.; Guo, X. Controlled synthesis of mixed-valent Fe-containing metal organic frameworks for the degradation of phenol under mild conditions. Dalt. Trans. 2016, 45, 7952–7959. [Google Scholar] [CrossRef] [PubMed]
- Darago, L.E.; Aubrey, M.L.; Yu, C.J.; Gonzalez, M.I.; Long, J.R. Electronic Conductivity, Ferrimagnetic Ordering, and Reductive Insertion Mediated by Organic Mixed-Valence in a Ferric Semiquinoid Metal-Organic Framework. J. Am. Chem. Soc. 2015, 137, 15703–15711. [Google Scholar] [CrossRef]
- Cheng, H.J.; Liu, Y.F.; Hu, Y.H.; Ding, Y.B.; Lin, S.C.; Cao, W.; Wang, Q.; Wu, J.J.X.; Muhammad, F.; Zhao, X.Z.; et al. Monitoring of Heparin Activity in Live Rats Using Metal-Organic Framework Nanosheets as Peroxidase Mimics. Anal. Chem. 2017, 89, 11552–11559. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Yin, W.; Zhang, Z.; He, P.; Yang, X.; Zhang, X. A DNA functionalized porphyrinic metal-organic framework as a peroxidase mimicking catalyst for amperometric determination of the activity of T4 polynucleotide kinase. Mikrochim. Acta 2019, 186, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Jiang, Z.; Mu, R.; Li, Y. A novel sensor for dopamine based on the turn-on fluorescence of Fe-MIL-88 metal-organic frameworks–hydrogen peroxide–o-phenylenediamine system. Talanta 2016, 159, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Wang, K.; Zhang, G.; Wu, X. A novel α-Fe2O3@g-C3N4 catalyst: Synthesis derived from Fe-based MOF and its superior photo-Fenton performance. Appl. Surf. Sci. 2019, 469, 331–339. [Google Scholar] [CrossRef]
- Shi, L.; Yang, L.Q.; Zhang, H.B.; Chang, K.; Zhao, G.X.; Kako, T.; Ye, J.H. Implantation of Iron(III) in porphyrinic metal organic frameworks for highly improved photocatalytic performance. Appl. Catal. B-Environ. 2018, 224, 60–68. [Google Scholar] [CrossRef]
- Li, T.; Hu, P.; Li, J.; Huang, P.; Tong, W.; Gao, C. Enhanced peroxidase-like activity of Fe@PCN-224 nanoparticles and their applications for detection of H2O2 and glucose. Colloids Surf. A Physicochem. Eng. Asp. 2019, 577, 456–463. [Google Scholar] [CrossRef]
- Bader, H.; Sturzenegger, V.; Hoigné, J. Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD). Water Res. 1988, 22, 1109–1115. [Google Scholar] [CrossRef]
- Drábková, M.; Admiraal, W.; Maršálek, B. Combined exposure to hydrogen peroxide and light-selective effects on cyanobacteria, green algae, and diatoms. Environ. Sci. Technol. 2007, 41, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Lochan, R.C.; Khaliullin, R.Z.; Head-Gordon, M. Interaction of molecular hydrogen with open transition metal centers for enhanced binding in metal-organic frameworks: A computational study. Inorg. Chem. 2008, 47, 4032–4044. [Google Scholar] [CrossRef]
- Mauritz, K.A.; Moore, R.B. State of understanding of Nafion. Chem. Rev. 2004, 104, 4535–4585. [Google Scholar] [CrossRef]
- Li, C.; Zhang, T.; Zhao, J.; Liu, H.; Zheng, B.; Gu, Y.; Yan, X.; Li, Y.; Lu, N.; Zhang, Z.; et al. Boosted sensor performance by surface modification of bifunctional rht-type metal-organic framework with nanosized electrochemically reduced graphene oxide. Nat. Chem. 2017, 9, 2984–2994. [Google Scholar] [CrossRef] [PubMed]
- Soh, N. Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal. Bioanal. Chem. 2006, 386, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.; Fernandes, E.; Lima, J.L.F.C. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 2005, 65, 45–80. [Google Scholar] [CrossRef]
- Kim, Y.M.; Kim, S.S.; Kang, G.; Yoo, Y.M.; Kim, K.M.; Lee, M.E.; Han, J.A.; Hong, S.J. Comparative studies of protein modification mediated by fenton-like reactions of iron, hematin, and hemoglobin: Generation of different reactive oxidizing species. J. Biochem. Mol. Biol. 1998, 31, 161–169. [Google Scholar]
- Davydov, R.; Osborne, R.L.; Shanmugam, M.; Du, J.; Dawson, J.H.; Hoffman, B.M. Probing the oxyferrous and catalytically active ferryl states of amphitrite ornata dehaloperoxidase by cryoreduction and EPR/ENDOR spectroscopy. detection of compound i. J. Am. Chem. Soc. 2010, 132, 14995–15004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollan, T.L.; Banerjee, S.; Wu, G.; Parker Siburt, C.J.; Tsai, A.L.; Olson, J.S.; Weiss, M.J.; Crumbliss, A.L.; Alayash, A.I. α-hemoglobin stabilizing protein (AHSP) markedly decreases the redox potential and reactivity of a-subunits of human HbA with hydrogen peroxide. J. Biol. Chem. 2013, 288, 4288–4298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Yuri, I.; Gan, X.; Suzuki, I.; Li, G. Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation. Biosens. Bioelectron. 2007, 22, 1600–1604. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.J.; Zuo, S.H.; Lan, M.B. Direct electron transfer of Horseradish peroxidase on porous structure of screen-printed electrode. Biosens. Bioelectron. 2009, 24, 1353–1357. [Google Scholar] [CrossRef]
- Zhang, L. Direct electrochemistry of cytochrome cat ordered macroporous active carbon electrode. Biosens. Bioelectron. 2008, 23, 1610–1615. [Google Scholar] [CrossRef]
- Li, M.; Wu, J.; Su, H.; Tu, Y.; Shang, Y.; He, Y.; Liu, H. Ionic Liquid-polypyrrole-gold composites as enhanced enzyme immobilization platforms for hydrogen peroxide sensing. Sensors 2019, 19, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.M.; Liu, R.; Chen, W. Graphene wrapped Cu2O nanocubes: Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens. Bioelectron. 2013, 45, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Li, Y.; Bai, Y.; Sun, C. Hydrogen peroxide biosensor based on myoglobin/colloidal gold nanoparticles immobilized on glassy carbon electrode by a Nafion film. Sensors Actuators B Chem. 2006, 115, 42–48. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, P.P.; Ouyang, Z.F.; Zhang, M.F.; Lin, Z.J.; Li, J.F.; Su, Z.Q.; Wei, G. Nanoscale Graphene Doped with Highly Dispersed Silver Nanoparticles: Quick Synthesis, Facile Fabrication of 3D Membrane-Modified Electrode, and Super Performance for Electrochemical Sensing. Adv. Funct. Mater. 2016, 26, 2122–2134. [Google Scholar] [CrossRef]
Electrode Material | Linear Range (μM) | Detection Limit (μM) | Reference |
---|---|---|---|
1 MP/ZnO/PGE | 1–100 | 0.3 | [59] |
2 HRP/SPE | 5.98–35.36 | 0.48 | [60] |
3 Ag/L-Cys/GCE | 2.5–1500 | 0.7 | [28] |
4 Cyt c/MPCE | 20–240 | 14.6 | [61] |
5 C12-PPy-Au-HRP/GCE | 2–420 | 0.25 | [62] |
Cu2O/6 GNs/GCE | 300–7800 | 20.8 | [63] |
Nafion/7 Mb/CGNs/GCE | 1.5–90 | 0.5 | [64] |
8 NG/Ag NP/MME | 5–47,000 | 0.56 | [65] |
Fe@PCN-224/Nafion/GCE | 2–13,000 | 0.7 | this work |
Samples | Fe@PCN-224/Nafion/$ GCE (µmol kg−1) | Photometrical Method (µmol kg−1) | Accuracy (%) |
---|---|---|---|
Todarodes pacificus | 18.1 ± 0.2 | 19.9 ± 0.2 | 91.0 |
Larimichthys polyactis | 0.71 ± 0.08 | 0.76 ± 0.09 | 94.1 |
Pennahia argentata | 2.00 ± 0.03 | 2.13 ± 0.05 | 93.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, P.; Sun, Z.; Shen, Y.; Pan, Y. A Long-Term Stable Sensor Based on Fe@PCN-224 for Rapid and Quantitative Detection of H2O2 in Fishery Products. Foods 2021, 10, 419. https://doi.org/10.3390/foods10020419
Hu P, Sun Z, Shen Y, Pan Y. A Long-Term Stable Sensor Based on Fe@PCN-224 for Rapid and Quantitative Detection of H2O2 in Fishery Products. Foods. 2021; 10(2):419. https://doi.org/10.3390/foods10020419
Chicago/Turabian StyleHu, Pei, Zhentao Sun, Yunwen Shen, and Yiwen Pan. 2021. "A Long-Term Stable Sensor Based on Fe@PCN-224 for Rapid and Quantitative Detection of H2O2 in Fishery Products" Foods 10, no. 2: 419. https://doi.org/10.3390/foods10020419
APA StyleHu, P., Sun, Z., Shen, Y., & Pan, Y. (2021). A Long-Term Stable Sensor Based on Fe@PCN-224 for Rapid and Quantitative Detection of H2O2 in Fishery Products. Foods, 10(2), 419. https://doi.org/10.3390/foods10020419