Effect of Chlorine Dioxide Treatment on Human Pathogens on Iceberg Lettuce
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effect of ClO2 Treatment on E. coli, S. enterica and L. monocytogenes on Iceberg Lettuce
3.2. Effect of ClO2 Treatment to Prevent Cross-Contamination
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rico, D.; Martin-Diana, A.B.; Barat, J.; Barry-Ryan, C. Extending and measuring the quality of fresh-cut fruit and vegetables: A review. Trends Food Sci. Technol. 2007, 18, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, M.W.; Chakraborty, I.; Ayala-Zavala, J.F.; Dhua, R.S. Advances in minimal processing of fruits and vegetables: A review. J. Sci. Ind. Res. 2011, 70, 823–834. [Google Scholar]
- Olaimat, A.N.; Holley, R.A. Factors influencing the microbial safety of fresh produce: A review. Food Microbiol. 2012, 32, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Allende, A.; Selma, M.V.; Lopez-Galvez, F.; Villaescusa, R.; Gil, M.I. Impact of wash water quality on sensory and microbial quality, including Escherichia coli cross-contamination, of fresh-cut escarole. J. Food Protect. 2008, 71, 2514–2518. [Google Scholar] [CrossRef] [PubMed]
- Pao, S.; Kelsey, D.F.; Khalid, M.F.; Ettinger, M.R. Using aqueous chlorine dioxide to prevent contamination of tomatoes with Salmonella enterica and Erwinia carotovora during fruit washing. J. Food Protect. 2007, 70, 629–634. [Google Scholar] [CrossRef]
- Beuchat, L.R. Surface Decontamination of Fruits and Vegetables Eaten Raw: A Review; Report WHO/FSF/ FOS/98.2; Food Safety Unit, WHO: Geneva, Switzerland, 1998; pp. 1–49. Available online: http://www.who.int/foodsafety/publications/food-decontamination/en/ (accessed on 5 February 2021).
- Singh, N.; Singh, R.K.; Bhunia, A.K.; Stroshine, R.L. Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157: H7 on lettuce and baby carrots. LWT Food Sci. Technol. 2002, 35, 720–729. [Google Scholar] [CrossRef]
- Gomez-Lopez, V.M.; Devlieghere, F.; Ragaert, P.; Chen, L.; Ryckeboer, J.; Debevere, J. Reduction of microbial load and sensory evaluation of minimally processed vegetables treated with chlorine dioxide and electrolyzed water. Ital. J. Food Sci. 2008, 20, 321–331. [Google Scholar]
- DGHM Veröffentlichte mikrobiologische Richt- und Warnwerte von Lebensmitteln. Eine Empfehlung der Fachgruppe Lebensmittelmikrobiologie und –Hygiene der DGHM, Arbeitsgruppe Mikrobiologische Richt- und Warnwerte; DGHM: Hamburg, Germany, 2016. [Google Scholar]
- De Corato, U. Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Crit. Rev. Food Sci. Nutr. 2020, 60, 940–975. [Google Scholar] [CrossRef] [PubMed]
- Feliziani, E.; Lichter, A.; Smilanick, J.L.; Ippolito, A. Disinfecting agents for controlling fruit and vegetable diseases after harvest. Postharvest Biol. Technol. 2016, 122, 53–69. [Google Scholar] [CrossRef]
- Beuchat, L.R.; Sofos, J.N. Scientific editor’s report. J. Food Protect. 1999, 62, 1371. [Google Scholar]
- Wei, C.I.; Cook, D.L.; Kirk, J.R. Use of chlorine compounds in the food industry. Food Technol. 1985, 39, 107–115. [Google Scholar]
- LFBG Lebensmittel-, Bedarfsgegenstände- und Futtermittelgesetzbuch 19. Juni 2020. Available online: https://www.gesetze-im-internet.de/lfgb/LFGB.pdf (accessed on 5 February 2021).
- Horvitz, S.; Cantalejo, M.J. Application of ozone for the postharvest treatment of fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2014, 54, 312–339. [Google Scholar] [CrossRef]
- Xu, L. Use of ozone to improve the safety of fresh fruits and vegetables. Food Technol. 1999, 53, 63. [Google Scholar]
- HSE. Ozone: Health Hazards and Precautionary Measures; Guidance Note EH38 from the Health and Safety Executive; Environmental Hygiene Guidance Notes Series; HSE: Sudbury, UK, 1996; p. 6. Available online: http://www.coronasupplies.co.uk/downloads/Ozone%20Health%20and%20Precautionary%20Measures.pdf (accessed on 9 March 2021).
- Karaca, H.; Velioglu, Y.S. Ozone application in fruit and vegetable processing. Food Rev. Int. 2007, 23, 91–106. [Google Scholar] [CrossRef]
- Forney, C.F. Postharvest response of horticultural products to ozone. In Postharvest Oxidative Stress in Horticultural Crops; Hodges, D.M., Ed.; Food Products Press: Boca Raton, FL, USA, 2003; pp. 13–54. [Google Scholar]
- Karaca, H. Use of ozone in the citrus industry. Ozone Sci. Eng. 2010, 32, 122–129. [Google Scholar] [CrossRef]
- Hassenberg, K.; Geyer, M.; Ammon, C.; Herppich, W.B. Physico-chemical and sensory evaluation of strawberries after acetic acid vapour treatment. Eur. J. Hort. Sci. 2011, 76, 125–131. [Google Scholar]
- Sholberg, P.L.; Gaunce, A.P. Fumigation of stonefruit with acetic acid to control postharvest decay. Crop Protect. 1996, 15, 681–686. [Google Scholar] [CrossRef]
- Chu, C.L.; Liu, W.T.; Zhou, T.; Tsao, R. Control of postharvest gray mold rot of modified atmosphere packaged sweet cherries by fumigation with thymol and acetic acid. Can. J. Plant Sci. 1999, 79, 685–689. [Google Scholar] [CrossRef]
- González-Aguilar, G.; Ayala-Zavala, J.F.; Chaidez-Quiroz, C.; Heredia, J.B.; Castro-del Campo, N. Peroxyacetic acid. In Decontamination of Fresh and Minimally Processed Produce; Gómez-López, V.M., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 215–223. [Google Scholar]
- Gómez-López, V.M. Continuous UV-C light. In Decontamination of Fresh and Minimally Processed Produce; Gómez-López, V.M., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 365–378. [Google Scholar]
- Benarde, M.A.; Israel, B.M.; Olivieri, V.P.; Granstrom, M.L. Efficiency of chlorine dioxide as bactericide. Appl. Microbiol. 1965, 13, 776–780. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA) Alternative Disinfectants and Oxidants, Guidance Manual; US Environmental Protection Agency, Office of Water: Washington, DC, USA, 1999; Chapter 4. Available online: https://bit.ly/3brr7QC (accessed on 9 March 2021).
- Richardson, S.D.; Thruston, A.D.; Caughran, T.; Collette, T.W.; Patterson, K.S.; Lykins, B.W. Chemical by-products of chlorine and alternative disinfectants. Food Technol. 1998, 52, 58–61. [Google Scholar]
- Junli, H.; Li, W.; Nanqi, R.; Fang, M. Juli Disinfection effect of chlorine dioxide on bacteria in water. Water Res. 1997, 31, 607–613. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Lee, S.-H.; Song, K.B. Effect of aqueous chlorine dioxide treatment on the microbial growth and qualities of iceberg lettuce during storage. J. Appl. Biol. Chem. 2007, 50, 239–243. [Google Scholar]
- Chen, Z.; Zhu, C.H.; Zhang, Y.; Niu, D.; Du, J. Effects of aqueous chlorine dioxide treatment on enzymatic browning and shelf-life of fresh-cut asparagus lettuce (Lactuca sativa L.). Postharvest Biol. Technol. 2010, 58, 232–238. [Google Scholar] [CrossRef]
- Jin, Y.-Y.; Kim, Y.J.; Chung, K.S.; Won, M.; Song, K.B. Effect of aqueous chlorine dioxide treatment on the microbial growth and qualities of strawberries during storage. Food Sci. Biotechnol. 2007, 16, 1018–1022. [Google Scholar]
- Chun, H.H.; Kang, J.H.; Song, K.B. Effects of aqueous chlorine dioxide treatment and cold storage on microbial growth and quality of blueberries. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 309–315. [Google Scholar] [CrossRef]
- Han, Y.; Linton, R.H.; Nielsen, S.S.; Nelson, P.E. Reduction of Listeria monocytogenes on green peppers (Capsicum annuum L.) by gaseous and aqueous chlorine dioxide and water washing and its growth at 7 °C. J. Food Protect. 2001, 64, 1730–1738. [Google Scholar] [CrossRef] [PubMed]
- Ridenour, G.M.; Armbruster, E.H. Bactericidal effect of chlorine dioxide. J. Amer. Water Works Assoc. 1949, 41, 537–550. [Google Scholar] [CrossRef]
- Foschino, R.; Nervegna, I.; Motta, A.; Galli, A. Bactericidal activity of chlorine dioxide against Escherichia coli in water and on hard surfaces. J. Food Protect. 1998, 61, 668–672. [Google Scholar] [CrossRef] [PubMed]
- Veschetti, E.; Citti, G.; Belluati, M.; Borelli, E.; Colombino, M.; Ottaviani, M. Water disinfection with ClO2 and NaClO: A comparative study in pilot-plant scale. Electron. J. Environ. Agric. Food Chem. 2003, 2, 274–279. [Google Scholar]
- Lopez-Velasco, G.; Tomas-Callejas, A.; Sbodio, A.; Artes-Hernandez, F.; Suslow, T.V. Chlorine dioxide dose, water quality and temperature affect the oxidative status of tomato processing water and its ability to inactivate Salmonella. Food Control 2012, 26, 28–35. [Google Scholar] [CrossRef]
- Hassenberg, K.; Herppich, W.B.; Praeger, U. Chlorine dioxide for the reduction of human pathogens in lettuce washing process. Landtechnik 2014, 69, 185–189. [Google Scholar] [CrossRef]
- Hassenberg, K.; Geyer, M.; Mauerer, M.; Praeger, U.; Herppich, W.B. Influence of temperature and organic matter load on chlorine dioxide efficacy on Escherichia coli inactivation. LWT Food Sci. Technol. 2017, 79, 349–354. [Google Scholar] [CrossRef]
- Praeger, U.; Herppich, W.B.; Hassenberg, K. Aqueous chlorine dioxide treatment for sanitation of horticultural produces; Effects of ClO2 treatment on microorganisms and produce quality. Crit. Rev. Food Sci. Nutr. 2018, 58, 318–333. [Google Scholar] [CrossRef] [PubMed]
- Costilow, R.N.; Uebersax, M.A.; Ward, P.J. Use of chlorine dioxide for controlling microorganisms during the handling and storage of fresh cucumbers. J. Food Sci. 1984, 49, 396–401. [Google Scholar] [CrossRef]
- Reina, L.D.; Fleming, H.P.; Humphries, E.G. Microbiological control of cucumber hydrocooling water with chlorine dioxide. J. Food Protect. 1995, 58, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Gray, P.M.; Dougherty, R.H.; Kang, D.H. The use of chlorine dioxide to control Alicyclobacillus acidoterrestris spores in aqueous suspension and on apples. Int. J. Food Microbiol. 2004, 92, 121–127. [Google Scholar] [CrossRef]
- Rodgers, S.L.; Cash, J.N.; Siddiq, M.; Ryser, E.T. A comparison of different chemical sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes in solution and on apples, lettuce, strawberries, and cantaloupe. J. Food Protect. 2004, 67, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.R.; Hartley, A.D.; Cox, L.J. Factors affecting the efficacy of washing procedures used in the production of prepared salads. Food Microbiol. 1989, 6, 69–78. [Google Scholar] [CrossRef]
- Pao, S.; Kelsey, D.F.; Long, W. Spray washing of tomatoes with chlorine dioxide to minimize Salmonella on inoculated fruit surfaces and cross-contamination from revolving brushes. J. Food Protect. 2009, 72, 2448–2452. [Google Scholar] [CrossRef]
- Banach, J.L.; van Overbeek, L.S.; Nierop Groot, M.N.; van der Zouwen, P.S.; van der Fels-Klerx, H.J. Efficacy of chlorine dioxide on Escherichia coli inactivation during pilot-scale fresh-cut lettuce processing. Int. J. Food Microbiol. 2018, 269, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Tomas-Callejas, A.; Lopez-Galvez, F.; Sbodio, A.; Artes, F.; Artes-Hernandez, F.; Suslow, T.V. Chlorine dioxide and chlorine effectiveness to prevent Escherichia coli O157:H7 and Salmonella cross-contamination on fresh-cut Red Chard. Food Control 2012, 23, 325–332. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Chen, F.; Zhang, Y.; Liao, X. Chlorine dioxide treatment for the removal of pesticide residues on fresh lettuce and in aqueous solution. Food Control 2014, 40, 106–112. [Google Scholar] [CrossRef]
- Narkis, N.; Armon, R.; Offer, R.; Orshansky, F.; Friedland, E. Effect of suspended solids on waste-water disinfection efficiency by chlorine dioxide. Water Res. 1995, 29, 227–236. [Google Scholar] [CrossRef]
Duration (min) | |||
---|---|---|---|
0 (Control) | 1 | 2 | |
cClO2 (mg L−1) | E. coli (cfu mL−1) | ||
0 (control) | a 1.1 × 104 ± 5.1 × 103 | ||
20 | b 1.6 × 103 ± 9.5 × 102 | b 2.8 × 103 ± 1.7 × 103 | |
30 | b 1.3 × 103 ± 1.1 × 103 | b 1.5 × 103 ± 1.0 × 103 | |
S. enterica (cfu mL−1) | |||
0 (control) | a 2.0 × 104 ± 6.5 × 103 | ||
20 | b 2.2 × 103 ± 1.1 × 103 | b 3.4 × 103 ± 2.4 × 103 | |
30 | b 2.3 × 103 ± 4.0 × 102 | b 2.0 × 103 ± 9.7 × 102 | |
L. monocytogenes (cfu mL−1) | |||
0 (control) | a 1.7 × 105 ± 6.5 × 103 | ||
20 | a 5.5 × 104 ± 2.9 × 104 | a 4.8 × 104 ± 2.4 × 104 | |
30 | a 5.0 × 104 ± 2.0 × 104 | a 7.2 × 104 ± 5.0 × 104 |
Species | Initial Surface Loads (cfu g−1) | Loads in Wash Water (cfu mL−1) | Surface Loads after Treatment (cfu g−1) cClO2 (mg L−1; Duration (min)) | |||
---|---|---|---|---|---|---|
20; 1 | 20; 2 | 30; 1 | 30; 2 | |||
E. coli | a 3.5 × 101 ± 7.0 × 100 | 2.0 × 105 ± 8.0 × 104 | a 1.9 × 101 ± 8.0 × 100 | a 1.1 × 101 ± 2.0 × 100 | a 1.8 × 101 ± 5.0 × 100 | a 2.3 × 101 ± 1.2 × 101 |
S. enterica | a 2.4 × 102 ± 2.9 × 102 | 3.3 × 105 ± 4.3 × 105 | a 1.2 × 102 ± 1.0 × 102 | a 7.3 × 102 ± 8.4 × 102 | a 5.0 × 101 ± 1.8 × 101 | a 4.4 × 101 ± 3.0 × 101 |
L. monocytogenes | a 2.3 × 103 ± 3.2 × 103 | 8.7 × 104 ± 6.4 × 104 | a 9.3 × 102 ± 1.4 × 103 | a 3.8 × 102 ± 1.9 × 102 | a 4.7 × 102 ± 4.6 × 102 | a 2.4 × 102 ± 2.8 × 102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassenberg, K.; Praeger, U.; Herppich, W.B. Effect of Chlorine Dioxide Treatment on Human Pathogens on Iceberg Lettuce. Foods 2021, 10, 574. https://doi.org/10.3390/foods10030574
Hassenberg K, Praeger U, Herppich WB. Effect of Chlorine Dioxide Treatment on Human Pathogens on Iceberg Lettuce. Foods. 2021; 10(3):574. https://doi.org/10.3390/foods10030574
Chicago/Turabian StyleHassenberg, Karin, Ulrike Praeger, and Werner B. Herppich. 2021. "Effect of Chlorine Dioxide Treatment on Human Pathogens on Iceberg Lettuce" Foods 10, no. 3: 574. https://doi.org/10.3390/foods10030574
APA StyleHassenberg, K., Praeger, U., & Herppich, W. B. (2021). Effect of Chlorine Dioxide Treatment on Human Pathogens on Iceberg Lettuce. Foods, 10(3), 574. https://doi.org/10.3390/foods10030574