Whey Protein Derived Mouthdrying Found to Relate Directly to Retention Post Consumption but Not to Induced Differences in Salivary Flow Rate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Overview
2.2. Materials
2.3. Model Beverage Preparation
2.4. Sensory Methods
2.5. Sensory Profile
2.6. Mouthdrying 2-Alterative Forced Choice Test (2-AFC)
2.7. Whey Beverage Individual Perception and Liking
2.8. Modulating Saliva Flow and Mouthdrying Perception
2.9. Salivary Flow Rates
2.10. Saliva Samples Post Beverage Consumption and Mouthdrying Perception
2.11. Protein Analysis of Saliva Samples
2.12. Statistical Analysis
3. Results
3.1. Sensory Profile
3.2. Mouthdrying 2-Alterative Forced Choice Test (2-AFC)
3.3. Whey Beverage Individual Perception and Liking
3.4. Modulating Saliva Flow and Mouthdrying Perception
3.5. Salivary Flow Rates
3.6. Saliva Samples Post Beverage Consumption and Mouthdrying Perception
4. Discussion
4.1. Sensory Profile and Whey Beverage Individual Perception and Liking
4.2. Modulating Saliva Flow and Mouthdrying Perception
4.3. Saliva Samples Post Beverage Consumption and Mouthdrying Perception
- (1)
- movement of the sample in the mouth provides a greater surface area for whey protein to adhere to the oral cavity;
- (2)
- (3)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Philips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence based recommendation for optimal dietary protein intake in older people: A position paper from the PROT-AGE study group. JAMA 2013, 14, 542–559. [Google Scholar] [CrossRef] [PubMed]
- Department of Health. 1991. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/743790/Dietary_Reference_Values_-_A_Guide__1991_.pdf (accessed on 4 January 2019).
- Stevenson, E.J.; Watson, A.W.; Brunstrom, J.M.; Corfe, B.M.; Green, M.A.; Johnstone, A.M.; Williams, E.A. Protein for life: Towards a focussed dietary framework for healthy ageing. Nutr. Bull. 2018, 43, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, E.; Brunstrom, J.; Johnstone, A.; Green, M.; Williams, L.; Corfe, B. Protein for Life Team. 2019. Available online: https://ktn-uk.co.uk/news/protein-for-life-a-framework-for-action (accessed on 20 July 2019).
- Philips, S.M.; Chevalier, S.; Leidy, H.J. Protein ‘requirements’ beyond the RDA: Implications for optimisizing health. Appl. Physiol. Nutr. Metab. 2015, 41, 565–572. [Google Scholar] [CrossRef] [Green Version]
- Pennings, B.; Boirie, Y.; Senden, J.M.; Gijsen, A.P.; Kuipers, H.; van Loon, L.J. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am. J. Clin. Nutr. 2011, 93, 997–1005. [Google Scholar] [CrossRef] [Green Version]
- Nieuwenhuizen, W.F.; Weenen, H.; Rigby, P.; Hetherington, M.M. Older adults and patients in need of nutritional support: Review of current treatment options and factors influencing nutritional intake. Clin. Nutr. 2010, 29, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, G.P.; Elia, M.; Holdoway, A.; Stratton, R.J. A systematic review of compliance to oral nutritional supplements. Clin. Nutr. 2012, 31, 293–312. [Google Scholar] [CrossRef]
- Gosney, M. Are we wasting our money on food supplements in elder care wards? J. Adv. Nurs. 2003, 43, 275–280. [Google Scholar] [CrossRef]
- Szczesniak, A.S.; Kahn, E.L. Consumer awareness of and attitudes to food texture I: Adults. J. Texture Stud. 1971, 2, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Methven, L.; Rahelu, K.; Economou, N.; Kinneavy, L.; Ladbrooke-Davis, L.; Kennedy, O.B.; Mottram, D.S.; Gosney, M.A. The effect of consumption volume of profile and liking of oral nutritional supplements of varied sweetness: Sequential profiling and boredom tests. Food Qual. Prefer. 2010, 21, 948–955. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.; van der Stelt, A.J.; Prokop, J.; Lawlor, J.B.; Schlich, P. Alternating temporal dominance of sensations and liking scales during the intake of a full portion of an oral nutritional supplement. Food Qual. Prefer. 2016, 53, 159–167. [Google Scholar] [CrossRef]
- Thomas, A.; van der Stelt, A.J.; Schlich, P.; Lawlor, J.B. Temporal drivers of liking for oral nutritional supplements for older adults throughout the day with monitoring of hunger and thirst status. Food Qual. Prefer. 2018, 70, 40–48. [Google Scholar] [CrossRef]
- Withers, C.A.; Lewis, M.J.; Gosney, M.A.; Methven, L. Potential sources of mouth drying in beverages fortified with dairy proteins: A comparison of casein- and whey-rich ingredients. J. Dairy Sci. 2014, 97, 1233–1247. [Google Scholar] [CrossRef] [Green Version]
- Bull, S.P.; Hong, Y.; Khutoryanskiy, V.V.; Parker, J.K.; Faka, M.; Methven, L. Whey protein mouth drying influenced by thermal denaturation. Food Qual. Prefer. 2017, 56, 233–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norton, V.; Lignou, S.; Bull, S.P.; Gosney, M.A.; Methven, L. Consistent effects of whey protein fortification on consumer perception and liking of solid food matrices (cakes and biscuits) regardless of age and saliva flow. Foods 2020, 9, 1328. [Google Scholar] [CrossRef]
- Tsikritzi, R.; Wang, J.; Collins, V.J.; Allen, V.J.; Mavrommatis, Y.; Moynihan, P.J.; Gosney, M.A.; Kennedy, O.B.; Methven, L. The effect of nutrient fortification of sauces on product stability, sensory properties, and subsequent liking by older adults. J. Food Sci. 2015, 80, 1100–1110. [Google Scholar] [CrossRef]
- Tsikritzi, R.; Moynihan, P.J.; Gosney, M.A.; Allen, V.J.; Methven, L. The effect of macro- and micro-nutrient fortification of biscuits on their sensory properties and on hedonic liking of older people. J. Sci. Food Agric. 2014, 94, 2040–2048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norton, V.; Lignou, S.; Bull, S.P.; Gosney, M.A.; Methven, L. An investigation of the influence of age and saliva flow on the oral retention of whey protein and its potential effect on the perception and acceptance of whey protein beverages. Nutrients 2020, 12, 2506. [Google Scholar] [CrossRef]
- Lemieux, L.; Simard, R.E. Astringency, a textural defect in dairy products. Lait 1994, 74, 217–240. [Google Scholar] [CrossRef] [Green Version]
- ASTM E253-20. Available online: http://www.astm.org/cgi-bin/resolver.cgi?E253 (accessed on 1 July 2020).
- Smart, J.D. The basics and underlying mechanisms of mucoadhesion. Adv. Drug Deliv. Rev. 2005, 57, 1556–1568. [Google Scholar] [CrossRef] [PubMed]
- Andrews, G.P.; Laverty, T.P.; Jones, D.S. Mucoadhesive polymeric platforms for controlled drug delivery. Eur. J. Pharm. Biopharm. 2009, 71, 505–518. [Google Scholar] [CrossRef]
- Carvalho, F.C.; Bruschi, M.L.; Evangelista, R.C.; Gremiao, M.P.D. Mucoadhesive drug delivery systems. Braz. J. Pharm. Sci. 2010, 46, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Khutoryanskiy, V.V. Advances in mucoadhesion and mucoadhesive polymers. Macromol. Biosci. 2011, 11, 748–764. [Google Scholar] [CrossRef]
- Cook, S.L.; Bull, S.P.; Methven, L.; Parker, J.K.; Khutoryanskiy, V.V. Mucoadhesion: A food perspective. Food Hydrocoll. 2017, 72, 281–296. [Google Scholar] [CrossRef]
- Carpenter, G.H. The secretion, components, and properties of saliva. Annu. Rev. Food Sci. Technol. 2013, 4, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Vandenberghe-Descamps, M.; Laboure, H.; Prot, A.; Septier, C.; Tournier, C.; Feron, G.; Sulmont-Rosse, C. Salivary flow decreases in healthy elderly people independently of dental status and drug intake. J. Texture Stud. 2016, 47, 353–360. [Google Scholar] [CrossRef]
- Vandenberghe-Descamps, M.; Sulmont-Rosse, C.; Septier, C.; Feron, G.; Laboure, H. Using food comfortability to compare foods sensory characteristics expectations of elderly people with or without oral health problems. J. Texture Stud. 2017, 48, 280–287. [Google Scholar] [CrossRef]
- Engelen, L.; de Wijk, R.A.; Prinz, J.F.; Janssen, A.M.; van der Bilt, A.; Weenen, H.; Bosman, F. A comparison of the effects of added saliva, amylase and water on texture perception in semisolids. Physiol. Behav. 2003, 78, 805–811. [Google Scholar] [CrossRef]
- Nayak, A.; Carpenter, G.H. A physiological model of tea-induced astringency. Physiol. Behav. 2008, 95, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Fischer, U.; Boulton, R.B.; Noble, A.C. Physiological factors contributing to the variability of sensory assessments: Relationship between salivary flow rate and temporal perception of gustatory stimuli. Food Qual. Prefer. 1994, 5, 55–64. [Google Scholar] [CrossRef]
- Mosca, A.C.; Chen, J. Food-saliva interactions: Mechanisms and implications. Trends Food Sci. Technol. 2017, 66, 125–134. [Google Scholar] [CrossRef]
- Munoz-Gonzalez, C.; Feron, G.; Canon, F. Main effects of human saliva on flavour perception and the potential contribution to food consumption. Proc. Nutr. Soc. 2018, 77, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Kelly, M.; Vardhanabhuti, B.; Luck, P.; Drake, M.A.; Osborne, J.; Foegeding, E.A. Role of protein concentration and protein–saliva interactions in the astringency of whey proteins at low pH. J. Dairy Sci. 2010, 93, 1900–1909. [Google Scholar] [CrossRef] [Green Version]
- Withers, C.; Gosney, M.A.; Methven, L. Perception of thickness, mouth coating and mouth drying of dairy beverages by younger and older volunteers. J. Sens. Stud. 2013, 28, 230–237. [Google Scholar] [CrossRef]
- Luiking, Y.C.; Deutz, N.E.P.; Memelink, R.G.; Verlaan, S.; Wolfe, R.R. Postprandial muscle protein synthesis is higher after a high whey protein, leucine enriched supplement than after a dairy like product in healthy older people: A randomised controlled trial. Nutr. J. 2014, 13, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buzalaf, M.A.R.; Hannas, A.R.; Kato, M.T. Saliva and dental erosion. J. Appl. Oral Sci. 2012, 20, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Food Chemistry, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 245–339. [Google Scholar]
- Stone, H.; Sidel, J.; Oliver, R.S.; Woolsey, A.; Singleton, R.C. Sensory evaluation by quantitative descriptive analysis. Food Technol. 1974, 28, 24–34. [Google Scholar]
- International Organisation for Standardization. Sensory Analysis—Methodology—Paired Comparison Test. ISO Standard No. 5495. 2005. Available online: https://www.iso.org/standard/31621.html (accessed on 1 July 2020).
- Adjei, M.Y.B. Applications and limitations of discrimination testing. In Discrimination Testing in Sensory Science: A Practical Handbook; Rogers, L., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 85–105. [Google Scholar]
- Hayes, J.E.; Allen, L.; Bennett, S. Direct comparison of the generalized visual analog scale (gVAS) and general labeled magnitude scale (gLMS). Food Qual. Prefer. 2013, 28, 36–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartoshuk, L.M.; Duffy, V.B.; Green, B.G.; Hoffman, H.J.; Ko, C.-W.; Lucchina, L.A.; Marks, L.E.; Snyder, D.J.; Weiffenbach, J.M. Valid across-group comparisons with labeled scales: The gLMS versus magnitude matching. Physiol. Behav. 2004, 82, 109–114. [Google Scholar] [CrossRef]
- Brunstrom, J.M.; Macrae, A.W.; Roberts, B. Mouth-state dependent changes in the judged pleasantness of water at different temperatures. Physiol. Behav. 1997, 61, 667–669. [Google Scholar] [CrossRef]
- Bull, S.P.; Khutoryanskiy, V.V.; Parker, J.K.; Faka, M.; Methven, L. Oral retention of whey protein: Measurement and mechanisms. Food Chem. 2020. submitted. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Zor, T.; Selinger, Z. Linerization of the Bradford protein assay increases its sensitivity: Theoretical and experimental studies. Anal. Biochem. 1996, 236, 302–308. [Google Scholar] [CrossRef] [Green Version]
- Hasted, A. Statistical analysis of descriptive data. In Descriptive Analysis in Sensory Evaluation; Kemp, S.E., Hort, J., Hollowood, T., Eds.; Wiley-Blackwell: West Sussex, UK, 2018; pp. 165–213. [Google Scholar]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food—Principles and Practices, 2nd ed.; Springer: New York, NY, USA, 2010; pp. 227–253. [Google Scholar]
- Ennis, J.M.; Jesionka, V. The power of sensory discrimination methods revisited. J. Sens. Stud. 2011, 26, 371–382. [Google Scholar] [CrossRef]
- Zhou, X.; Shen, Y.; Parker, J.K.; Kennedy, O.B.; Methven, L. Relative effects of sensory modalities and importance of fatty acid sensitivity on fat perception in a real food model. Chem. Percept. 2016, 9, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Villegas, B.; Tarrega, A.; Carbonell, I.; Costell, E. Optimising acceptability of new prebiotic low-fat milk beverages. Food Qual. Prefer. 2010, 21, 234–242. [Google Scholar] [CrossRef]
- National dysphagia diet task force. National Dysphagia Diet: Standardisation for Optimal Care; American Dietetic Association: Chicago, IL, USA, 2002; pp. 1–43. [Google Scholar]
- Camacho, S.; Dop, M.; de Graaf, C.; Stieger, M. Just noticeable differences and weber fraction of oral thickness perception of model beverages. J. Food Sci. 2015, 80, S1583–S1588. [Google Scholar] [CrossRef]
- Beecher, J.W.; Drake, M.A.; Luck, P.J.; Foegeding, E.A. Factors regulating astringency of whey protein beverages. J. Dairy Sci. 2008, 91, 2553–2560. [Google Scholar] [CrossRef] [Green Version]
- Engelen, L.; de Wijk, R.A.; Prinz, J.F.; van der Bilt, A.; Bosman, F. The relation between saliva flow after different stimulations and the perception of flavor and texture attributes in custard desserts. Physiol. Behav. 2003, 78, 165–169. [Google Scholar] [CrossRef]
- Engelen, L.; van den Keybus, P.A.M.; de Wijk, R.A.; Veerman, E.C.I.; Nieuw Amerongen, A.V.; Bosman, F.; Prinz, J.F.; van der Bilt, A. The effect of saliva composition on texture perception of semi-solids. Arch. Oral Biol. 2007, 52, 518–525. [Google Scholar] [CrossRef]
- Crawford, C.R.; Running, C.A. Addition of chocolate milk to diet corresponds to protein concentration changes in human saliva. Physiol. Behav. 2020, 225, 113080. [Google Scholar] [CrossRef]
- Withers, C.A.; Cook, M.T.; Methven, L.; Gosney, M.A.; Khutoryanskiy, V.V. Investigation of milk proteins binding to the oral mucosa. Food Funct. 2013, 4, 1668–1674. [Google Scholar] [CrossRef] [Green Version]
- Norton, V.; Lignou, S.; Methven, L. Influence of age and individual differences on mouthfeel perception of whey protein fortified products: A review. Foods 2021, 10, 433. [Google Scholar] [CrossRef]
- Vardhanabhuti, B.; Cox, P.W.; Norton, I.T.; Foegeding, E.A. Lubricating properties of human whole saliva as affected by beta-lactoglobulin. Food Hydrocoll. 2011, 25, 1499–1506. [Google Scholar] [CrossRef]
Variable | Total (n = 40) | |
---|---|---|
n | % | |
Sex | ||
Male | 12 | 30 |
Female | 28 | 70 |
Medication | ||
Yes | 2 | 5 |
No | 38 | 95 |
Unstimulated Saliva Flow (mL/min) | ||
Low (0.10–0.70) | 19 | 49 |
High (0.70–1.4) | 20 | 51 |
Stimulated Saliva Flow (mL/min) | ||
Low (0.78–2.23) | 21 | 54 |
High (2.23–4.08) | 18 | 46 |
WPeB | WPeBS | WPB | WPBS | |||||
---|---|---|---|---|---|---|---|---|
Per 10 mL | Per 100 mL | Per 10 mL | Per 100 mL | Per 10 mL | Per 100 mL | Per 10 mL | Per 100 mL | |
Energy (kcal) | 1.5 | 14.7 | 2.4 | 23.7 | 4.0 | 39.7 | 5.1 | 50.7 |
Fat (g) | 0.0008 | 0.008 | 0.0008 | 0.008 | 0.07 | 0.7 | 0.07 | 0.7 |
of which saturates (g) | - | - | - | - | 0.03 | 0.3 | 0.03 | 0.3 |
Carbohydrate (g) | 0.4 | 3.6 | 0.5 | 5.1 | 0.04 | 0.4 | 0.2 | 2.4 |
of which sugars (g) | 0.4 | 3.6 | 0.5 | 5.1 | 0.04 | 0.4 | 0.2 | 2.4 |
Protein (g) | 0.01 | 0.1 | 0.01 | 0.1 | 0.8 | 8.2 | 0.8 | 8.2 |
Moisture (g) | 0.004 | 0.04 | 0.004 | 0.04 | 0.05 | 0.5 | 0.05 | 0.5 |
Ash (g) | 0.02 | 0.2 | 0.02 | 0.2 | 0.04 | 0.4 | 0.04 | 0.4 |
Modality | Attribute | Reference and/or Description | WPeB | WPeBS | WPB | WPBS | Significant of Sample (p Value) |
---|---|---|---|---|---|---|---|
Aroma | Cooked milk | Heated pasteurised semi-skimmed milk | 9.2 ± 2.7 | 8.1 ± 2.9 | 20.6 ± 4.4 | 18.4 ± 3.9 | 0.12 |
Powdered milk (wet) | Skimmed milk powder (10% w/v, skimmed milk powder in deionised water) | 7.7 ± 2.6 | 20.7 ± 3.9 | 11.9 ± 3.9 | 17.8 ± 3.8 | 0.07 | |
Whey isolate | Volactive Ultra-Whey 90 Instant (5% w/v, WPI powder in deionised water) | 8.8 ± 2.4 | 6.3 ± 3.8 | 7.6 ± 2.8 | 10.1 ± 3.7 | 0.80 | |
Vanilla | Vanilla extract (Nielsen-Massey) | 0.7 ± 1.9 c | 42.1± 5.1 a | 1.1 ± 1.9 c | 31.8 ± 4.8 b | <0.0001 | |
Flavour | Sour | Citric acid (0.76 g/L) | 17.5 ± 3.5 a,b | 8.0± 4.9 b | 23.9 ± 4.0 a | 17.5 ± 4.9 a,b | 0.048 |
Metallic | Iron (II) sulphate heptahydrate (0.0036 g/L) | 8.7 ± 3.3 | 8.2 ± 2.5 | 10.1 ± 3.7 | 5.9 ± 3.7 | 0.44 | |
Salty | Sodium chloride (1.19 g/L) | 7.7 ± 2.2 | 5.0 ± 2.2 | 9.4 ± 2.6 | 6.3 ± 1.9 | 0.27 | |
Sweet | Sucrose (5.76 g/L) | 19.6 ± 3.0 b | 52.2 ± 6.4 a | 12.1 ± 2.5 b | 46.6 ± 5.8 a | <0.0001 | |
Cooked butter | Melted unsalted butter | 9.6 ± 3.0 | 3.3 ± 6.6 | 9.8 ± 2.6 | 9.7 ± 6.0 | 0.43 | |
Cooked milk | Heated pasteurised semi-skimmed milk | 15.2 ± 3.3 | 12.1 ± 2.9 | 24.4 ± 4.0 | 24.3 ± 4.4 | 0.17 | |
Powdered milk (wet) | Skimmed milk powder (10% w/v, skimmed milk powder in deionised water) | 6.1 ± 3.4 | 16.4 ± 3.8 | 14.3 ± 4.3 | 19.2 ± 4.1 | 0.12 | |
Whey isolate | Volactive Ultra-Whey 90 Instant (5% w/v, WPI powder in deionised water) | 14.7 ± 2.8 | 8.6 ± 3.8 | 17.5 ± 3.4 | 14.2 ± 4.1 | 0.32 | |
Vanilla | Vanilla extract (Nielsen-Massey) | 2.5 ± 2.6 b | 41.3 ± 5.3 a | 0.0 ± 2.9 b | 33.5 ± 5.0 a | <0.0001 | |
Mouthfeel | Body | Fullness of sample | 21.0 ± 3.3 b | 21.4 ± 4.2 b | 31.2 ± 4.6 a | 31.4 ± 4.2 a | 0.006 |
Chalky | Dry fine insoluble powder | 4.3 ± 3.4 b | 3.9 ± 3.1 b | 27.3 ± 5.1 a | 16.8 ± 3.8 a | 0.0003 | |
Mouthdrying | Drying sensation in the mouth | 26.5 ± 4.1 c | 30.3 ± 4.5 c | 51.2 ± 6.3 a | 42.7 ± 4.5 b | <0.0001 | |
Aftertaste | Aftertaste strength | The strength of the overall aftertaste | 17.9 ± 3.3 b | 38.1 ± 4.0 a | 23.7 ± 5.1 b | 38.2 ± 3.6 a | <0.0001 |
Mouthdrying | Drying sensation in the mouth | 24.6 ± 2.8 b | 30.2 ± 4.3 b | 50.4 ± 4.6 a | 44.0 ± 3.6 a | <0.0001 | |
Metallic | Iron (II) sulphate heptahydrate (0.0036 g/L) | 4.9 ± 3.3 b | 3.3 ± 4.7 b | 9.2 ± 5.8 a | 5.7 ± 5.2 a,b | 0.02 | |
Vanilla | Vanilla extract (Nielsen-Massey) | 1.7 ± 1.1 b | 27.4 ± 4.1 a | 0.0 ± 1.8 b | 26.7 ± 4.8 a | <0.0001 | |
Sweet | Sucrose (5.76 g/L) | 12.7 ± 2.2 b | 35.6 ± 3.8 a | 7.5 ± 1.9 b | 34.2 ± 5.0 a | <0.0001 |
Overall (n = 40) | Significance of Sample (p Value) | Penalty Analysis | ||||
---|---|---|---|---|---|---|
Too Little | Too Much | |||||
Mean Drop | Frequency (%) | Mean Drop | Frequency (%) | |||
JAR Flavour | ||||||
WPeBS | 2.8 ± 0.1 | 0.82 | 1.48 # | 25 | 1.21 | 15 |
WPBS | 2.9 ± 0.1 | 1.34 # | 25 | 2.54 | 15 | |
JAR Thickness | ||||||
WPeBS | 2.6 ± 0.1 | 0.17 | 0.11 | 48 | −1.18 * | 5 |
WPBS | 2.8 ± 0.1 | 0.71 | 35 | 3.40 * | 13 |
Pair Number | Sample | Preference | Significance of Sample (p Value) |
---|---|---|---|
1 | WPeBS | 24 | |
1 | WPBS | 16 | 0.13 |
2 | WPB | 5 | |
2 | WPBS | 35 | <0.0001 |
3 | WPeB | 5 | |
3 | WPeBS | 35 | <0.0001 |
Sample | Comments and Volunteers Details |
---|---|
WPeBS | “Thin, almost like drinking water (v2, female, aged 28). Nice sweet taste, but not too strong (v4, male, aged 26). There wasn’t much flavour to detect (v6, female, aged 25). Texture was OK (v9, female, aged 21)” |
WPBS | “Very soothing (v1, male, aged 27). Smooth texture, bit mouthdrying (v4, male, aged 26). It is quite powdery (v7, female, aged 24). A bit too watery and thin (v30, male, aged 19)” |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norton, V.; Lignou, S.; Methven, L. Whey Protein Derived Mouthdrying Found to Relate Directly to Retention Post Consumption but Not to Induced Differences in Salivary Flow Rate. Foods 2021, 10, 587. https://doi.org/10.3390/foods10030587
Norton V, Lignou S, Methven L. Whey Protein Derived Mouthdrying Found to Relate Directly to Retention Post Consumption but Not to Induced Differences in Salivary Flow Rate. Foods. 2021; 10(3):587. https://doi.org/10.3390/foods10030587
Chicago/Turabian StyleNorton, Victoria, Stella Lignou, and Lisa Methven. 2021. "Whey Protein Derived Mouthdrying Found to Relate Directly to Retention Post Consumption but Not to Induced Differences in Salivary Flow Rate" Foods 10, no. 3: 587. https://doi.org/10.3390/foods10030587
APA StyleNorton, V., Lignou, S., & Methven, L. (2021). Whey Protein Derived Mouthdrying Found to Relate Directly to Retention Post Consumption but Not to Induced Differences in Salivary Flow Rate. Foods, 10(3), 587. https://doi.org/10.3390/foods10030587