A Multi-Elements Isotope Approach to Assess the Geographic Provenance of Manila Clams (Ruditapes philippinarum) via Recombining Appropriate Elements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Stable Isotope Analysis
δX = [(Rsample−Rstd)/Rstd] × 1000 (‰)
2.3. Radiogenic Sr and N Isotope Analysis
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kasai, A.; Horie, H.; Sakamoto, W. Selection of food sources by Ruditapes philippinarum and Mactra veneriformis (Bivalva: Mollusca) determined from stable isotope analysis. Fish. Sci. 2004, 70, 11–20. [Google Scholar] [CrossRef]
- Komorita, T.; Kajihara, R.; Tsutsumi, H.; Shibanuma, S.; Yamada, T.; Montani, S. Food sources for Ruditapes philippinarum in a coastal lagoon determined by mass balance and stable isotope approaches. PLoS ONE 2014, 9, e86732. [Google Scholar] [CrossRef]
- Zhao, L.; Yan, X.; Yang, F. Food sources of the Manila clam Ruditapes philippinarum in intertidal areas: Evidence from stable isotope analysis. Chin. J. Oceanol. Limnol. 2013, 31, 782–788. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO) of the United Nations. Fisheries and Aquaculture Department. Available online: http://www.fao.org/figis (accessed on 5 March 2021).
- Korea Institute of Marine Science and Technology Promotion (KIMST). Development of Practical Technique to Establish Fisheries Forensic Center; KIMST: Seoul, Korea, 2017. [Google Scholar]
- Ministry of Oceans and Fisheries. Ministry of Oceans and Fisheries, Portal of Fisheries Information. Statistics on Marine Products Import and Export. 2020. Available online: http://www.fips.go.kr/p/Main/ (accessed on 3 February 2021).
- Nagalakshmi, K.; Annam, P.-K.; Venkateshwarlu, G.; Pathakota, G.-B.; Lakra, W.S. Mislabeling in Indian seafood: An inves-tigation using DNA barcoding. Food Control 2016, 59, 196–200. [Google Scholar] [CrossRef]
- Hofherr, J.; Martinsohn, J.; Cawthorn, D.; Rasco, B.; Naaum, A.M. Regulatory Frameworks for Seafood Authenticity and Traceability; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 47–82. [Google Scholar]
- Camin, F.; Bontempo, L.; Perini, M.; Piasentier, E. Stable isotope ratio analysis for assessing the authenticity of food of animal origin. Compr. Rev. Food Sci. Food Saf. 2016, 15, 868–877. [Google Scholar] [CrossRef] [Green Version]
- Department of Primary Industries and Regions. Government of South Australia, Authenticity for the Australian Seafood Sector: A Review of Available Tools to Identify Substitution and Mislabelling Information. 2018. Available online: https://www.safefish.com.au/reports/technical-reports/seafood-authenticity (accessed on 10 March 2021).
- Gopi, K.; Mazumder, D.; Sammut, J.; Saintilan, N.; Crawford, J.; Gadd, P. Combined use of stable isotope analysis and elemental profiling to determine provenance of black tiger prawns (Penaeus monodon). Food Control. 2019, 95, 242–248. [Google Scholar] [CrossRef]
- Kang, X.; Zhao, Y.; Shang, D.; Zhai, Y.; Ning, J.; Ding, H.; Sheng, X. Identification of the geographical origins of sea cucumbers in China: The application of stable isotope ratios and compositions of C, N, O and H. Food Control. 2020, 111, 107036. [Google Scholar] [CrossRef]
- Sacco, D.; Brescia, M.A.; Buccolieri, A.; Jambrenghi, A.C. Geographical origin and breed discrimination of Apilian lamb meat samples by means of analytical and spectroscopic determinations. Meat Sci. 2015, 71, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Zanden, H.B.V.; Soto, D.X.; Bowen, G.J.; Hobson, K.A. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies. Front. Ecol. Evol. 2016, 4, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kumar, K.S.; Shin, K.-H. Applicability of stable C and N isotope analysis in inferring the geographical origin and authentication of commercial fish (Mackerel, Yellow Croaker and Pollock). Food Chem. 2015, 172, 523–527. [Google Scholar] [CrossRef]
- Ehleringer, J.R.; Valenzuela, L.O.; Chesson, L.A.; Tipple, B.J.; Martinelli, L.A. Stable isotopes trace the truth: From adulterated foods to crime scenes. Elements 2015, 11, 259–264. [Google Scholar] [CrossRef]
- Li, L.; Boyd, C.E.; Sun, Z. Authentication of fishery and aquaculture products by multi-element and stable isotope analysis. Food Chem. 2016, 194, 1238–1244. [Google Scholar] [CrossRef]
- Mai, Z.; Lai, B.; Sun, M.; Shao, J.; Guo, L. Food adulteration and traceability tests using stable carbon isotope techniques. Trop. J. Pharm. Res. 2019, 18, 1771–1784. [Google Scholar]
- Tanz, N.; Schmidt, H.-L. δ34S-Value measurements in food origin assignments and sulfur isotope fractionations in plants and animals. J. Agric. Food Chem. 2010, 58, 3139–3146. [Google Scholar] [CrossRef] [PubMed]
- Bartelink, E.J.; Chesson, L.A. Recent applications of isotope analysis to forensic anthropology. Forensic Sci. Res. 2018, 4, 29–44. [Google Scholar] [CrossRef]
- Voerkelius, S.; Lorenz, G.D.; Rummel, S.; Quétel, C.R.; Heiss, G.; Baxter, M.; Brach-Papa, C.; Deters-Itzelsberger, P.; Hoelzl, S.; Hoogewerff, J.; et al. Strontium isotopic signatures of natural mineral waters, the reference to a simple geological map and its potential for authentication of food. Food Chem. 2010, 118, 933–940. [Google Scholar] [CrossRef]
- Palmer, M.; Edmond, J. The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett. 1989, 92, 11–26. [Google Scholar] [CrossRef]
- Goldstein, S.; Hemming, S. Long-lived isotopic tracers in oceanography, paleoceanography, and ice-sheet dynamics. Treatise Geochem. 2003, 6, 453–489. [Google Scholar] [CrossRef]
- Frank, M. Radiogenic isotopes: Tracers of past ocean circulation and erosional input. Rev. Geophys. 2002, 40, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Cheng, J.; Han, D.; Zhao, X.; Chen, X.; Liu, Y. Geographical origin traceability and species identification of three scallops (Patinopecten yessoensis, Chlamys farreri, and Argopecten irradians) using stable isotope analysis. Food Chem. 2019, 299, 125107. [Google Scholar] [CrossRef]
- Carter, J.F.; Chesson, L.A. Food Forensics: Stable Isotope as a Guide to Authenticity and Origin Florida; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Esteki, M.; Shahsavari, Z.; Simal-Gandara, J. Review Use of spectroscopic methods in combination with linear discriminant analysis for authentication of food products. Food Control 2018, 91, 100–112. [Google Scholar] [CrossRef]
- Jiang, D.; Du, L.; Guo, Y.; Ma, J.; Li, X.; Han, L.; Xu, Y.; Qian, Y. Potential use of stable isotope and multi-element analyses for regional geographical traceability of bone raw materials for gelatin production. Food Anal. Methods 2020, 13, 762–769. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, B.; Chen, G.; Chen, A.; Yang, S.; Ye, Z. Tracing the geographic origin of beef in China on the basis of the combination of stable isotopes and multielement analysis. J. Agric. Food Chem. 2013, 61, 7055–7060. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. 2019, Vegan: Community Ecology Package. R Package Version 2.5-6. Available online: http://CRAN.Rproject.org/package=vegan (accessed on 10 February 2021).
- Carrera, M.; Gallardo, J.M. Determination of the geographical origin of all commercial hake species by stable isotope ratio (SIR) analysis. J. Agric. Food Chem. 2017, 65, 1070–1077. [Google Scholar] [CrossRef] [Green Version]
- Yi, W.; Jiang, H.; Lihui, A.; Wei, A.; Min, Y.; Mitsuaki, I.; Tatsuya, H.; Shu, T. Determination of trophic relationships within a Bohai bay food web using stable δ15N and δ13C analysis. Chin. Sci. Bull. 2015, 50, 1021–1025. [Google Scholar]
- Dang, C.; De Montaudouin, X.; Savoye, N.; Caill-Milly, N.; Martinez, P.; Sauriau, P.G. Stable isotopes changes in the adductor muscle of diseased bivalve Ruditapes philippinarum. Mar. Biol. 2009, 156, 611–618. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J.; Choy, E.J.; Lee, K.-S.; Kang, C.-K. Trophic transfer between coastal habitats in a seagrass-dominated macrotidal embayment system as determined by stable isotope and fatty acid signatures. Mar. Freshw. Res. 2013, 64, 1169. [Google Scholar] [CrossRef]
- Choi, B.; Lee, C.; Takizawa, Y.; Chikaraishi, Y.; Oh, H.; Chang, K.; Jang, M.; Kim, H.; Lee, K.; Shin, K. Trophic response to ecological conditions of habitats: Evidence from trophic variability of freshwater fish. Ecol. Evol. 2020, 10, 7250–7260. [Google Scholar] [CrossRef]
- Watanabe, S.; Katayama, S.; Kodama, M.; Cho, N.; Nakata, K.; Fukuda, M. Small-scale variation in feeding environments for the Manila clam Ruditapes philippinarum in a tidal flat in Tokyo Bay. Fish. Sci. 2009, 75, 937–945. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Li, D.J.; Wei, H.; Lu, R.X. Isotope variability of particulate organic matter at the PN section in the East China Sea. Biogeochemistry 2003, 65, 31–49. [Google Scholar] [CrossRef]
- Luo, D.; Dong, H.; Luo, H.; Xian, Y.; Wan, J.; Guo, X.; Wu, Y. The application of stable isotope ratio analysis to determine the geographical origin of wheat. Food Chem. 2015, 174, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Bowen, G.J.; Ehleringer, J.R.; Chesson, L.A.; Stange, E.; Cerling, T.E. Stable isotope ratios of tap water in the contiguous United States. Water Resour. Res. 2007, 43, 03419. [Google Scholar] [CrossRef]
- Hondula, K.L.; Pace, M.L.; Cole, J.J.; Batt, R.D. Hydrogen isotope discrimination in aquatic primary producers: Implications for aquatic food web studies. Aquat. Sci. 2013, 76, 217–229. [Google Scholar] [CrossRef]
- Jaffrés, J.B.; Shields, G.A.; Wallmann, K. The oxygen isotope evolution of seawater: A critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Sci. Rev. 2007, 83, 83–122. [Google Scholar] [CrossRef] [Green Version]
- Portarena, S.; Gavrichkova, O.; Lauteri, M.; Brugnoli, E. Authentication and traceability of Italian extra-virgin olive oils by means of stable isotopes techniques. Food Chem. 2014, 164, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Page, H.M.; Cooper, S.D.; Wiseman, S.W.; Bennett, D.; Klose, K.; Sadro, S.; Nelson, C.; Even, T. Comparisons of stable isotope (C, H, N) signatures for revealing organic matter sources and trophic relationships in headwater streams. Can. J. Fish. Aquat. Sci. 2017, 74, 2110–2121. [Google Scholar] [CrossRef] [Green Version]
- Connolly, R.M.; Guest, M.A.; Melville, A.J.; Oakes, J.M. Sulfur stable isotopes separate producers in marine food-web analysis. Oecologia 2004, 138, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Buchardt, B.; Bunch, V.; Helin, P. Fingernails and diet: Stable isotope signatures of a marine hunting community from modern Uummannaq, North Greenland. Chem. Geol. 2007, 244, 316–329. [Google Scholar] [CrossRef]
- Weber, P.K.; Hutcheon, I.D.; McKeegan, K.D.; Ingram, B.L. Otolith sulfur isotope method to reconstruct salmon (Oncorhynchus tshawytscha) life history. Can. J. Fish. Aquat. Sci. 2002, 59, 587–591. [Google Scholar] [CrossRef] [Green Version]
- Ariyama, K.; Shinozaki, M.; Kawasaki, A. Determination of the geographic origin of rice by chemometrics with strontium and lead isotope ratios and multielement concentrations. J. Agric. Food Chem. 2012, 60, 1628–1634. [Google Scholar] [CrossRef] [PubMed]
- Faure, G.; Mensing, T.M. Isotopes: Principles and Applications, 3rd ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Kennedy, B.P.; Klaue, A.; Blum, J.D.; Folt, C.L.; Nislow, K.H. Reconstructing the lives of fish using Sr isotopes in otoliths. Can. J. Fish. Aquat. Sci. 2002, 59, 925–929. [Google Scholar] [CrossRef]
Country | δ13C | δ15N | δ18O | δD | δ34S | 143Nd/144Nd | 87Sr/86Sr |
---|---|---|---|---|---|---|---|
China, Dalian (n = 10) | −17.7 (0.3) B,C | 8.8 (0.20) B,C | 22.0 (0.3) B,C | −86.8 (4.9) B,C | 21.1 (0.5) A,C | 0.5119 (0.00006) A,B,C | 0.7094 (0.00011) |
DPR Korea (n = 10) | −17.7 (0.4) B,C | 9.0 (0.2) A,B,C | 23.0 (1.29) A,B,C | −81.3 (6.2) B,C | 21.9 (0.9) B | 0.5118 (0.0002) B,C | 0.7093 (0.000056) |
Korea (n = 10) | −16.8 (0.4) A | 9.4 (0.6) A,B | 23.9 (2.2) A,B | −97.1 (10.6) A | 20.6 (0.2) A,C | 0.5120 (0.0001) A,C | 0.7093 (0.000025) |
-Yeosu Hwayang (YH) (n = 3) | −17.1 (0.02) a,b | 9.4 (0.05) a | 24.9 (0.7) | −107.1 (7.9) a,b | 20.7 (0.1) a,b,c | 0.5119 (0.00003) a | 0.7093 (0.000026) |
- Yeosu Dolsan (YD) (n = 4) | −17.1 (0.2) a,b | 8.7 (0.3) b | 22.3 (2.8) | −96.8 (9.3) a,b,c | 20.7 (0.2) a,b | 0.5120 (0.00003) b | 0.7093 (0.000015) |
- Jinhae (JH) (n = 3) | −16.3 (0.05) c | 10.1 (0.2) c | 25.2 (0.6) | −87.5 (4.8) b,c | 20.4 (0.1) a,c | 0.5121 (0.00003) c | 0.7093 (0.000023) |
Sample | ID | δ13C | δ15N | δ34S | δ18O | δD | εNd | 87Sr/86Sr |
---|---|---|---|---|---|---|---|---|
Korea | KR1 | 0.6539 | 0.8719 | −0.6792 | 1.417 | −2.805 | −0.4344 | −0.4868 |
KR2 | 0.5998 | 0.7397 | −0.5018 | 0.6678 | −1.395 | −0.09674 | −0.6146 | |
KR3 | 0.6539 | 0.9381 | −0.7385 | 1.411 | −1.458 | −0.4884 | 0.02455 | |
KR4 | 2.078 | 2.657 | −1.009 | 1.137 | −0.4215 | 1.227 | −0.6146 | |
KR5 | 2.150 | 2.239 | −0.9072 | 1.082 | 0.5346 | 1.598 | −1.126 | |
KR6 | 1.988 | 1.908 | −1.237 | 1.758 | 0.1487 | 1.261 | −0.6146 | |
KR7 | 0.8883 | −1.156 | −0.3896 | −1.652 | 0.5005 | 0.5738 | −0.1307 | |
KR8 | 0.1310 | −0.5168 | −0.7679 | −0.9099 | −1.191 | 0.7136 | −0.3590 | |
KR9 | 0.7440 | 0.1665 | −0.7679 | 2.112 | −1.024 | 1.018 | −0.3590 | |
KR10 | 0.4736 | −1.399 | −0.3878 | −1.184 | −1.657 | 0.9838 | −0.6146 | |
China | CHN1 | −0.1394 | −1.156 | −0.1628 | −0.8429 | 1.121 | −0.02921 | −0.3590 |
CHN2 | −0.1665 | −1.141 | 0.6598 | −0.3590 | 0.3592 | 0.04729 | −0.4625 | |
CHN3 | 0.6222 | 0.02967 | 0.5214 | −0.7548 | 0.2213 | −0.2804 | −0.6719 | |
CHN4 | −0.1711 | −0.9010 | 0.4765 | −0.5418 | 0.3978 | 0.004361 | −0.1179 | |
CHN5 | −1.213 | −0.9114 | −0.5979 | −0.7958 | −0.1410 | −0.2603 | 4.073 | |
CHN6 | −0.08372 | −0.5090 | −0.7320 | −0.3374 | −0.3770 | −0.1837 | 1.471 | |
CHN7 | −0.9140 | −0.6960 | −0.1665 | −0.6114 | −0.3036 | −1.018 | 1.140 | |
CHN8 | −0.4917 | −0.2347 | −0.5720 | −0.8027 | −0.5137 | 0.3004 | 0.09759 | |
CHN9 | −1.456 | −0.2082 | −0.09640 | −0.3861 | 0.2868 | 0.2342 | −0.3590 | |
CHN10 | −1.257 | −0.09797 | −0.9579 | −0.6175 | 0.5296 | 0.2477 | −0.1033 | |
DPR Korea | NK1 | 0.6028 | 0.04868 | 1.962 | −0.1968 | 1.310 | −0.6541 | 0.2359 |
NK2 | 0.1674 | −0.8804 | 1.876 | −0.3604 | 1.208 | −0.5670 | 0.01865 | |
NK3 | −0.5489 | −0.3236 | 2.033 | −0.1838 | 0.9059 | −3.999 | 0.06630 | |
NK4 | 0.06214 | 0.6149 | 1.647 | −0.3802 | 1.146 | 0.3288 | −0.6583 | |
NK5 | −1.430 | −0.08148 | 1.194 | −0.5140 | 0.9097 | −0.3504 | −0.8709 | |
NK6 | −0.7793 | −0.6909 | 1.336 | −0.3869 | 1.050 | −0.00767 | −0.6713 | |
NK7 | −1.323 | 0.1682 | 0.9653 | −0.7450 | 0.08906 | 0.09464 | 1.353 | |
NK8 | −0.9508 | 0.2988 | −0.4765 | 1.502 | 0.1739 | 0.5651 | −0.2311 | |
NK9 | −0.7524 | 0.6074 | −0.6792 | 1.417 | 0.9981 | 0.2949 | −0.1033 | |
NK10 | −0.1394 | −0.3845 | −0.8439 | 0.05863 | −0.6029 | −1.123 | 1.047 |
Combination | China (n = 10) | DPR Korea (n = 10) | Korea (n = 10) |
---|---|---|---|
C-N | 6 (6) | 6 (5) | 8 (8) |
C-N-O | 7 (7) | 7 (3) | 8 (7) |
C-N-D | 8 (6) | 8 (7) | 9 (9) |
C-N-S | 9 (8) | 7 (7) | 10 (8) |
C-N-O-D | 8 (6) | 8 (6) | 9 (9) |
C-N-D-S | 9 (9) | 7 (2) | 9 (9) |
C-N-S-O | 10 (7) | 9 (8) | 9 (7) |
C-N-S-Sr | 9 (7) | 7 (7) | 10 (10) |
C-N-S-O-D | 9 (7) | 9 (9) | 10 (9) |
C-N-S-O-Sr | 10 (6) | 9 (7) | 10 (9) |
C-N-S-D-Sr | 9 (7) | 7 (7) | 9 (9) |
C-N-O-D-Sr | 6 (5) | 8 (6) | 9 (9) |
C-N-O-D-Nd | 8 (7) | 8 (7) | 9 (9) |
C-N-S-O-D-Sr | 10 (7) | 9 (8) | 10 (9) |
C-N-S-O-D-Nd | 9 (8) | 9 (9) | 9 (9) |
C-N-S-O-D-Sr-Nd | 10 (6) | 9 (7) | 10 (9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Won, E.-J.; Kim, S.H.; Go, Y.-S.; Kumar, K.S.; Kim, M.-S.; Yoon, S.-H.; Bayon, G.; Kim, J.-H.; Shin, K.-H. A Multi-Elements Isotope Approach to Assess the Geographic Provenance of Manila Clams (Ruditapes philippinarum) via Recombining Appropriate Elements. Foods 2021, 10, 646. https://doi.org/10.3390/foods10030646
Won E-J, Kim SH, Go Y-S, Kumar KS, Kim M-S, Yoon S-H, Bayon G, Kim J-H, Shin K-H. A Multi-Elements Isotope Approach to Assess the Geographic Provenance of Manila Clams (Ruditapes philippinarum) via Recombining Appropriate Elements. Foods. 2021; 10(3):646. https://doi.org/10.3390/foods10030646
Chicago/Turabian StyleWon, Eun-Ji, Seung Hee Kim, Young-Shin Go, K. Suresh Kumar, Min-Seob Kim, Suk-Hee Yoon, Germain Bayon, Jung-Hyun Kim, and Kyung-Hoon Shin. 2021. "A Multi-Elements Isotope Approach to Assess the Geographic Provenance of Manila Clams (Ruditapes philippinarum) via Recombining Appropriate Elements" Foods 10, no. 3: 646. https://doi.org/10.3390/foods10030646
APA StyleWon, E.-J., Kim, S. H., Go, Y.-S., Kumar, K. S., Kim, M.-S., Yoon, S.-H., Bayon, G., Kim, J.-H., & Shin, K.-H. (2021). A Multi-Elements Isotope Approach to Assess the Geographic Provenance of Manila Clams (Ruditapes philippinarum) via Recombining Appropriate Elements. Foods, 10(3), 646. https://doi.org/10.3390/foods10030646