Differentiation between Fresh and Thawed Cephalopods Using NIR Spectroscopy and Multivariate Data Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. NIR Instruments (and Software)
2.2. Samples and Spectra Acquisition
2.3. Statistical Analyses and Chemometric Methods
2.3.1. Raw Data Pre-Treatment and Quality Assessment
2.3.2. Exploratory Data Analysis
2.3.3. Classification Modeling
- Specificity (Spec), which is the ability to avoid false positives i.e., fresh samples wrongly classified as thawed;
- Sensitivity (Sens), which is the ability to avoid false negatives i.e., thawed samples wrongly classified as fresh;
- Non-error rate (NER), which is computed as the mean of the sensitivities (one for each class) and corresponds to the model’s capability to correctly classify the samples;
- Accuracy (Acc), which is an estimation of the model’s error and is computed as the sum of the true positives (TP, correctly classified thawed samples) and true negatives (TN, correctly classified fresh samples) divided by the total number of samples (Equation (1)).
2.3.4. Overview of the Exploratory and Classification Models
- Three corresponding to cuttlefishes;
- Three corresponding to musky octopuses;
- Three “general” ones, corresponding to the union of cuttlefishes and musky octopuses.
2.3.5. Software and Toolboxes
3. Results
3.1. PCA Exploratory Analysis Results
3.2. Classification Results of the Cuttlefish’ (SE) Samples
- SCiO, cuttlefish: Several individual peaks along the whole wavelength range;
- MicroNIR, cuttlefish: 1400–1550 nm and >1600 nm;
- MPA, cuttlefish: A group of peaks within the interval 1250–1667 nm (6000–8000 cm−1).
3.3. Classification Results of the Musky Octopus’ (MO) Samples
- SCiO, musky octopus: Two interesting groups of signals located around 950 nm and 1020 nm;
- MicroNIR, musky octopus: Mainly three groups of signals at 990 nm, 1350 nm and 1450 nm;
- MPA, musky octopus: Two groups of signals within the interval 5800–7500 cm−1 (1333–1724 nm).
3.4. Classification Results of the Global (SE + MO) Cephalopods Model for Fresh and Thawed Classification
- SCiO, global (SE + MO): Two interesting groups of signals located around 790 nm, 950 nm and 1020 nm;
- MicroNIR, global (SE + MO): Mainly three groups of signals at 990 nm, 1350 nm and 1450 nm;
- MPA, global (SE + MO): Two groups of signals within the interval 1333–1724 nm (5800–7500 cm−1).
3.5. Classification Results Obtained Using Pre-Defined Models in the SCiO the Lab Web Application
4. Discussion
4.1. PCA Exploratory Analysis
4.2. PLS-DA Classification Models
4.2.1. Cuttlefish (SE) Models
4.2.2. Musky Octopus (MO) Models
4.2.3. Global Cephalopods (SE + MO) Models
4.3. VIP Scores Interpretation
4.4. Interpretation of SCiO Results Obtained Using Pre-Defined Models in the SCiO the Lab Web Application
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reilly, A. Overview of Food Fraud in the Fisheries Sector, FAO Fisheries and Aquaculture Circular 2018, (C1165), I-21. Available online: http://www.fao.org/documents/card/en/c/I8791EN/ (accessed on 11 December 2020).
- Calosso, M.C.; Claydon, J.A.B.; Mariani, S.; Cawthorn, D.M. Global Footprint of Mislabelled Seafood on a Small Island Nation. Biol. Conserv. 2020, 245, 108557. [Google Scholar] [CrossRef]
- Donlan, C.J.; Luque, G.M. Exploring the Causes of Seafood Fraud: A Meta-Analysis on Mislabeling and Price. Mar. Policy 2019, 100, 258–264. [Google Scholar] [CrossRef]
- Carvalho, D.C.; Guedes, D.; da Gloria Trindade, M.; Coelho, R.M.S.; de Lima Araujo, P.H. Nationwide Brazilian Governmental Forensic Programme Reveals Seafood Mislabelling Trends and Rates Using DNA Barcoding. Fish. Res. 2017, 191, 30–35. [Google Scholar] [CrossRef]
- Di Pinto, A.; Mottola, A.; Marchetti, P.; Bottaro, M.; Terio, V.; Bozzo, G.; Bonerba, E.; Ceci, E.; Tantillo, G. Packaged Frozen Fishery Products: Species Identification, Mislabeling Occurrence and Legislative Implications. Food Chem. 2016, 194, 279–283. [Google Scholar] [CrossRef]
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011; Official Journal of the European Union. 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R1169 (accessed on 4 January 2021).
- Zotta, T.; Parente, E.; Ianniello, R.G.; de Filippis, F.; Ricciardi, A. Dynamics of Bacterial Communities and Interaction Networks in Thawed Fish Fillets during Chilled Storage in Air. Int. J. Food Microbiol. 2019, 293, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, А. Changes in the meat from aquaculture species during storage at low temperature and attempts for differentiation between thawed-frozen and fresh chilled meat: A review. Bulg. J. Vet. Med. 2007, 10, 67–75. [Google Scholar]
- Howell, N.; Shavila, Y.; Grootveld, M.; Williams, S. High-Resolution NMR and Magnetic Resonance Imaging (MRI) Studies on Fresh and Frozen Cod (Gadus morhua) and Haddock (Melanogrammus aeglefinus). J. Sci. Food Agric. 1996, 72, 49–56. [Google Scholar] [CrossRef]
- Duflos, G.; le Fur, B.; Mulak, V.; Becel, P.; Malle, P. Comparison of Methods of Differentiating between Fresh and Frozen-Thawed Fish or Fillets. J. Sci. Food Agric. 2002, 82, 1341–1345. [Google Scholar] [CrossRef]
- Uddin, M. Differentiation of fresh and frozen–thawed fish. In Handbook of Seafood and Seafood Product Analysis; Nollet, L.M.L., Toldrá, F., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 735–750. [Google Scholar]
- Bozzetta, E.; Pezzolato, M.; Cencetti, E.; Varello, K.; Abramo, F.; Mutinelli, F.; Ingravalle, F.; Teneggi, E. Histology as a Valid and Reliable Tool to Differentiate Fresh from Frozen-Thawed Fish. J. Food Prot. 2012, 75, 1536–1541. [Google Scholar] [CrossRef]
- Guglielmetti, C.; Manfredi, M.; Brusadore, S.; Sciuto, S.; Esposito, G.; Ubaldi, P.G.; Magnani, L.; Gili, S.; Marengo, E.; Acutis, P.L.; et al. Two-Dimensional Gel and Shotgun Proteomics Approaches to Distinguish Fresh and Frozen-Thawed Curled Octopus (Eledone cirrhosa). J. Proteom. 2018, 186, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Tinacci, L.; Armani, A.; Guidi, A.; Nucera, D.; Shvartzman, D.; Miragliotta, V.; Coli, A.; Giannessi, E.; Stornelli, M.R.; Fronte, B.; et al. Histological Discrimination of Fresh and Frozen/Thawed Fish Meat: European Hake (Merluccius merluccius) as a Possible Model for White Meat Fish Species. Food Control 2018, 92, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.; Okazaki, E.; Turza, S.; Yumiko, Y.; Tanaka, M.; Fukuda, Y. Non-Destructive Visible/NIR Spectroscopy for Differentiation of Fresh and Frozen-Thawed Fish. J. Food Sci. 2005, 70, C506–C510. [Google Scholar] [CrossRef]
- Alander, J.T.; Bochko, V.; Martinkauppi, B.; Saranwong, S.; Mantere, T. A Review of Optical Nondestructive Visual and Near-Infrared Methods for Food Quality and Safety. Int. J. Spectrosc. 2013, 2013, 1–36. [Google Scholar] [CrossRef]
- Kaffka, K. How the NIR Technology Came to and Spread in Europe for Quality Assessment and Control in the Food Industry. Acta Aliment. 2008, 37, 141–145. [Google Scholar] [CrossRef]
- Osborne, B.G.; Fearn, T.; Hindle, P.H. Practical NIR Spectroscopy with Applications in Food and Beverage Analysis, 2nd ed.; Longman Scientific and Technical: Harlow, UK, 1993. [Google Scholar]
- Kimiya, T.; Sivertsen, A.H.; Heia, K. VIS/NIR Spectroscopy for Non-Destructive Freshness Assessment of Atlantic Salmon (Salmo Salar L.) Fillets. J. Food Eng. 2013, 116, 758–764. [Google Scholar] [CrossRef]
- Sivertsen, A.H.; Kimiya, T.; Heia, K. Automatic Freshness Assessment of Cod (Gadus morhua) Fillets by Vis/Nir Spectroscopy. J. Food Eng. 2011, 103, 317–323. [Google Scholar] [CrossRef]
- Ottavian, M.; Fasolato, L.; Serva, L.; Facco, P.; Barolo, M. Data Fusion for Food Authentication: Fresh/Frozen-Thawed Discrimination in West African Goatfish (Pseudupeneus prayensis) Fillets. Food Bioprocess Technol. 2014, 7, 1025–1036. [Google Scholar] [CrossRef]
- Ottavian, M.; Fasolato, L.; Facco, P.; Barolo, M. Foodstuff Authentication from Spectral Data: Toward a Species-Independent Discrimination between Fresh and Frozen-Thawed Fish Samples. J. Food Eng. 2013, 119, 765–775. [Google Scholar] [CrossRef]
- Fasolato, L.; Balzan, S.; Riovanto, R.; Berzaghi, P.; Mirisola, M.; Ferlito, J.C.; Serva, L.; Benozzo, F.; Passera, R.; Tepedino, V.; et al. Comparison of Visible and Near-Infrared Reflectance Spectroscopy to Authenticate Fresh and Frozen-Thawed Swordfish (Xiphias gladius L.). J. Aquat. Food Prod. Technol. 2012, 21, 493–507. [Google Scholar] [CrossRef]
- Sannia, M.; Serva, L.; Balzan, S.; Segato, S.; Novelli, E.; Fasolato, L. Application of Near-Infrared Spectroscopy for Frozen-Thawed Characterization of Cuttlefish (Sepia officinalis). J. Food Sci. Technol. 2019, 56, 4437–4447. [Google Scholar] [CrossRef]
- Jereb, P.; Roper, C.F.E. (Eds.) Cephalopods of the World. An Annotated and Illustrated Catalogue of Cephalopod Species Known to Date. Volume 1. Chambered Nautiluses and Sepioids (Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae); FAO Species Catalogue for Fishery Purposes. No. 4; FAO: Rome, Italy, 2005; Volume 1. [Google Scholar]
- FAO. FAO Yearbook. In Fishery and Aquaculture Statistics 2017/FAO Annuaire. Statistiques Des Pêches et de l’aquaculture 2017/FAO Anuario. Estadísticas de Pesca y Acuicultura 2017; FAO: Rome, Italy, 2019. [Google Scholar]
- The Lab–Consumer Physics. Available online: https://thelab.consumerphysics.com (accessed on 15 January 2021).
- Rinnan, Å.; Nørgaard, L.; van den Berg, F.; Thygesen, J.; Bro, R.; Engelsen, S.B. Data Pre-Processing. In Infrared Spectroscopy for Food Quality Analysis and Control; Sun, D.-W., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2009; pp. 29–50. ISBN 9780123741363. [Google Scholar]
- Bro, R.; Smilde, A.K. Principal Component Analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Ballabio, D.; Consonni, V. Classification Tools in Chemistry. Part 1: Linear Models. PLS-DA. Anal. Methods 2013, 5, 3790–3798. [Google Scholar] [CrossRef]
- Daszykowski, M.; Walczak, B.; Massart, D.L. Representative Subset Selection. Anal. Chim. Acta 2002, 468, 91–103. [Google Scholar] [CrossRef]
- Farrés, M.; Platikanov, S.; Tsakovski, S.; Tauler, R. Comparison of the Variable Importance in Projection (VIP) and of the Selectivity Ratio (SR) Methods for Variable Selection and Interpretation. J. Chemom. 2015, 29, 528–536. [Google Scholar] [CrossRef]
- MATLAB Code for the Duplex Uniform Subset Selection Algorithm. Available online: https://www.researchgate.net/publication/305536996 (accessed on 17 December 2020).
- Reis, M.M.; Martínez, E.; Saitua, E.; Rodríguez, R.; Pérez, I.; Olabarrieta, I. Non-Invasive Differentiation between Fresh and Frozen/Thawed Tuna Fillets Using near Infrared Spectroscopy (Vis-NIRS). LWT-Food Sci. Technol. 2017, 78, 129–137. [Google Scholar] [CrossRef]
- Grassi, S.; Casiraghi, E.; Alamprese, C. Handheld NIR Device: A Non-Targeted Approach to Assess Authenticity of Fish Fillets and Patties. Food Chem. 2018, 243, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Tsenkova, R.; Kovacs, Z.; Kubota, Y. Aquaphotomics: Near Infrared Spectroscopy and Water States in Biological Systems. Sub-Cell. Biochem. 2015, 71, 189–211. [Google Scholar] [CrossRef]
Size (cm, W × L × H) | Weight (g) | Cost ($) | Spectral Range (nm) | |
---|---|---|---|---|
MPA (Bruker) | 37.5 × 59.3 × 26.2 | 3500 | ≈150,000 | 800–2500 |
MicroNIR (VIAVI) | 4.6 × 4.6 × 5 | 250 | ≈35,000 | 908–1676 |
SCiO (Consumer Physics) | 1.5 × 4 × 6.5 | <50 | <5000 | 740–1070 |
SCiO | MicroNIR | MPA | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LVs | Spec | Sens | NER | Acc | LVs | Spec | Sens | NER | Acc | LVs | Spec | Sens | NER | Acc | ||
SE | Cal | 97.0 | 87.9 | 92.4 | 92.4 | 97.0 | 100 | 98.5 | 98.5 | 100 | 97.0 | 98.5 | 98.5 | |||
CV | 9 | 84.8 | 69.7 | 77.3 | 77.3 | 6 | 97.0 | 97.0 | 97.0 | 97.0 | 8 | 87.9 | 81.8 | 84.8 | 84.8 | |
Test | 70.6 | 94.1 | 82.3 | 82.3 | 94.1 | 94.1 | 94.1 | 94.1 | 82.3 | 88.2 | 85.3 | 85.3 | ||||
MO | Cal | 97.0 | 97.0 | 97.0 | 97.0 | 100 | 100 | 100 | 100 | 97.0 | 93.9 | 95.4 | 95.4 | |||
CV | 9 | 97.0 | 93.9 | 95.4 | 95.4 | 7 | 100 | 100 | 100 | 100 | 6 | 93.9 | 90.9 | 92.4 | 92.4 | |
Test | 94.1 | 94.1 | 94.1 | 94.1 | 94.1 | 100 | 97.1 | 97.1 | 88.4 | 94.1 | 91.2 | 91.2 | ||||
global | Cal | 93.9 | 75.8 | 84.8 | 84.8 | 98.5 | 95.4 | 97.0 | 97.0 | 90.9 | 84.8 | 87.9 | 87.9 | |||
CV | 6 | 95.4 | 71.2 | 83.3 | 83.3 | 5 | 97.0 | 93.9 | 95.4 | 95.4 | 5 | 87.9 | 81.8 | 84.8 | 84.8 | |
Test | 85.3 | 88.2 | 86.8 | 86.8 | 97.1 | 94.1 | 95.6 | 95.6 | 91.2 | 97.1 | 94.1 | 94.1 |
Known Class | |||
---|---|---|---|
SE-t | SE-f | ||
Classified | SE-t | 87 | 14 |
SE-f | 13 | 86 |
Known Class | |||
---|---|---|---|
MO-t | MO-f | ||
Classified | MO-t | 90 | 0 |
MO-f | 10 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pennisi, F.; Giraudo, A.; Cavallini, N.; Esposito, G.; Merlo, G.; Geobaldo, F.; Acutis, P.L.; Pezzolato, M.; Savorani, F.; Bozzetta, E. Differentiation between Fresh and Thawed Cephalopods Using NIR Spectroscopy and Multivariate Data Analysis. Foods 2021, 10, 528. https://doi.org/10.3390/foods10030528
Pennisi F, Giraudo A, Cavallini N, Esposito G, Merlo G, Geobaldo F, Acutis PL, Pezzolato M, Savorani F, Bozzetta E. Differentiation between Fresh and Thawed Cephalopods Using NIR Spectroscopy and Multivariate Data Analysis. Foods. 2021; 10(3):528. https://doi.org/10.3390/foods10030528
Chicago/Turabian StylePennisi, Francesco, Alessandro Giraudo, Nicola Cavallini, Giovanna Esposito, Gabriele Merlo, Francesco Geobaldo, Pier Luigi Acutis, Marzia Pezzolato, Francesco Savorani, and Elena Bozzetta. 2021. "Differentiation between Fresh and Thawed Cephalopods Using NIR Spectroscopy and Multivariate Data Analysis" Foods 10, no. 3: 528. https://doi.org/10.3390/foods10030528
APA StylePennisi, F., Giraudo, A., Cavallini, N., Esposito, G., Merlo, G., Geobaldo, F., Acutis, P. L., Pezzolato, M., Savorani, F., & Bozzetta, E. (2021). Differentiation between Fresh and Thawed Cephalopods Using NIR Spectroscopy and Multivariate Data Analysis. Foods, 10(3), 528. https://doi.org/10.3390/foods10030528