Urban Food Systems: A Bibliometric Review from 1991 to 2020
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. General Performance of Selected Publications
3.2. Country/Region Contribution Analysis
3.3. Institution Contribution Analysis
3.4. Research Shifts and Journal Activity
3.5. Keywords and Highly Cited Publications Analysis
4. Discussion
4.1. Research Hotspots and Trends
4.2. Challenges of UFS in Developing Countries
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Landert, J.; Schader, C.; Moschitz, H.; Stolze, M. A Holistic Sustainability Assessment Method for Urban Food System Governance. Sustainability 2017, 9, 490. [Google Scholar] [CrossRef] [Green Version]
- FAO; IFAD; UNICEF; WFP; WHO. Transforming Food Systems for Affordable Healthy Diets. In Brief to the State of Food Security and Nutrition in the World 2020; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- HLPE Nutrition and Food Systems. A Report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security; FAO: Rome, Italy, 2017; p. 152. [Google Scholar]
- Ericksen, P.J. Conceptualizing Food Systems for Global Environmental Change Research. Glob. Environ. Change-Hum. Policy Dimens. 2008, 18, 234–245. [Google Scholar] [CrossRef]
- Tubiello, F.; Salvatore, M.; Golec, R.; Ferrara, A.; Rossi, S.; Biancalani, R.; Federici, S.; Jacobs, H.; Flammini, A. Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks: 1990–2011 Analysis; FAO: Rome, Italy, 2014. [Google Scholar]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Boerger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global Effects of Land Use on Local Terrestrial Biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Runge, C.F.; Senauer, B.; Foley, J.; Polasky, S. Global Agriculture and Carbon Trade-Offs. Proc. Natl. Acad. Sci. USA 2014, 111, 12342–12347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nouri, H.; Stokvis, B.; Blatchford, M.; Galindo, A.; Hoekstra, A. Water Scarcity Alleviation through Water Footprint Reduction in Agriculture: The Effect of Soil Mulching and Drip Irrigation. Sci. Total Environ. 2018. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, M.; Spangberg, J. Carbon Footprint and Energy Use of Food Waste Management Options for Fresh Fruit and Vegetables from Supermarkets. Waste Manag. 2017, 60, 786–799. [Google Scholar] [CrossRef]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food Waste within Food Supply Chains: Quantification and Potential for Change to 2050. Philos. Trans. R. Soc. B-Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UN. The New Urban Agenda; UN-Habitat: Quito, Ecuador, 2016. [Google Scholar]
- Seto, K.C.; Ramankutty, N. Hidden Linkages between Urbanization and Food Systems. Science 2016, 352, 943–945. [Google Scholar] [CrossRef]
- d’Amour, C.B.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Guneralp, B.; Erb, K.H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future Urban Land Expansion and Implications for Global Croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [Green Version]
- Armanda, D.T.; Guinée, J.B.; Tukker, A. The Second Green Revolution: Innovative Urban Agriculture’s Contribution to Food Security and Sustainability—A Review. Glob. Food Secur. 2019, 22, 13–24. [Google Scholar] [CrossRef]
- Poulsen, M.N.; McNab, P.R.; Clayton, M.L.; Neff, R.A. A Systematic Review of Urban Agriculture and Food Security Impacts in Low-Income Countries. Food Policy 2015, 55, 131–146. [Google Scholar] [CrossRef]
- Specht, K.; Siebert, R.; Hartmann, I.; Freisinger, U.B.; Sawicka, M.; Werner, A.; Thomaier, S.; Henckel, D.; Walk, H.; Dierich, A. Urban Agriculture of the Future: An Overview of Sustainability Aspects of Food Production in and on Buildings. Agric. Hum. Values 2014, 31, 33–51. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M. Global Diets Link Environmental Sustainability and Human Health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef]
- Popkin, B.M. Global Nutrition Dynamics: The World Is Shifting Rapidly toward a Diet Linked with Noncommunicable Diseases. Am. J. Clin. Nutr. 2006, 84, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockstrom, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Alexander, P.; Brown, C.; Arneth, A.; Finnigan, J.; Rounsevell, M.D.A. Human Appropriation of Land for Food: The Role of Diet. Glob. Environ. Chang. Hum. Policy Dimens. 2016, 41, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Huang, Y.; Huang, W.; Shi, Y.; Bai, X.; Cui, S. Driving Forces and Impacts of Food System Nitrogen Flows in China, 1990 to 2012. Sci. Total Environ. 2018, 610, 430–441. [Google Scholar] [CrossRef]
- Wang, L.; Gao, B.; Hu, Y.; Huang, W.; Cui, S. Environmental Effects of Sustainability-Oriented Diet Transition in China. Resour. Conserv. Recycl. 2020, 158, 104802. [Google Scholar] [CrossRef]
- Zhou, Y.; Shan, Y.; Guan, D.; Liang, X.; Cai, Y.; Liu, J.; Xie, W.; Xue, J.; Ma, Z.; Yang, Z. Sharing Tableware Reduces Waste Generation, Emissions and Water Consumption in China’s Takeaway Packaging Waste Dilemma. Nat. Food 2020, 1, 552–561. [Google Scholar] [CrossRef]
- Gallego-Schmid, A.; Mendoza, J.M.F.; Azapagic, A. Environmental Impacts of Takeaway Food Containers. J. Clean. Prod. 2019, 211, 417–427. [Google Scholar] [CrossRef]
- Curry, N.; Pillay, P. Biogas Prediction and Design of a Food Waste to Energy System for the Urban Environment. Renew. Energy 2012, 41, 200–209. [Google Scholar] [CrossRef]
- Thyberg, K.L.; Tonjes, D.J. Drivers of Food Waste and Their Implications for Sustainable Policy Development. Resour. Conserv. Recycl. 2016, 106, 110–123. [Google Scholar] [CrossRef]
- Eigenbrod, C.; Gruda, N. Urban Vegetable for Food Security in Cities. A Review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Zhang, Y.; Duan, K. Evolutionary Overview of Urban Expansion Based on Bibliometric Analysis in Web of Science from 1990 to 2019. Habitat Int. 2020, 95, 102100. [Google Scholar] [CrossRef]
- Fairthorne, R. Progress in Documentation—Empirical Hyperbolic Distributions (Bradford-Zipf-Mandelbrot) for Bibliometric Description and Prediction. J. Doc. 1969, 25, 319–343. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Garfield, E. Citation Indexes for Science: A New Dimension in Documentation through Association of Ideas. Science 1955, 122, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Garfield, E. Citation Analysis as a Tool in Journal Evaluation. Science 1972, 178, 471–479. [Google Scholar] [CrossRef]
- Garfield, E. The Agony and the Ecstasy—The History and Meaning of the Journal Impact Factor. Int. J. Clin. Health Psychol. 2003, 295, 90–93. [Google Scholar]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and Weaknesses. Faseb J. 2008, 22, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J. Rapid Urbanization in China: A Real Challenge to Soil Protection and Food Security. Catena 2007, 69, 1–15. [Google Scholar] [CrossRef]
- Jiang, L.; Seto, K.C.; Bai, J. Urban Economic Development, Changes in Food Consumption Patterns and Land Requirements for Food Production in China. China Agric. Econ. Rev. 2015, 7, 240–261. [Google Scholar] [CrossRef]
- Liu, J.; Jin, X.; Xu, W.; Gu, Z.; Yang, X.; Ren, J.; Fan, Y.; Zhou, Y. A New Framework of Land Use Efficiency for the Coordination among Food, Economy and Ecology in Regional Development. Sci. Total Environ. 2020, 710, 135670. [Google Scholar] [CrossRef]
- Gren, A.; Andersson, E. Being Efficient and Green by Rethinking the Urban-Rural Divide-Combining Urban Expansion and Food Production by Integrating an Ecosystem Service Perspective into Urban Planning. Sustain. Cities Soc. 2018, 40, 75–82. [Google Scholar] [CrossRef]
- Wang, L.E.; Liu, G.; Liu, X.J.; Liu, Y.; Gao, J.; Zhou, B.; Gao, S.; Cheng, S.K. The Weight of Unfinished Plate: A Survey Based Characterization of Restaurant Food Waste in Chinese Cities. Waste Manag. 2017, 66, 3–12. [Google Scholar] [CrossRef]
- FAO. Declaration on World Food Security; World Food Summit, FAO: Rome, Italy, 1996. [Google Scholar]
- Boyer, D.; Sarkar, J.; Ramaswami, A. Diets, Food Miles, and Environmental Sustainability of Urban Food Systems: Analysis of Nine Indian Cities. Earths Future 2019, 7, 911–922. [Google Scholar] [CrossRef] [Green Version]
- Wenban-Smith, H.; Fasse, A.; Grote, U. Food Security in Tanzania: The Challenge of Rapid Urbanisation. Food Secur. 2016, 8, 973–984. [Google Scholar] [CrossRef]
- He, P.; Baiocchi, G.; Feng, K.; Hubacek, K.; Yu, Y. Environmental Impacts of Dietary Quality Improvement in China. J. Environ. Manage. 2019, 240, 518–526. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Garnett, T. Food Security and Sustainable Intensification. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369. [Google Scholar] [CrossRef]
- Filippini, R.; Mazzocchi, C.; Corsi, S. The Contribution of Urban Food Policies toward Food Security in Developing and Developed Countries: A Network Analysis Approach. Sustain. Cities Soc. 2019, 47, 101506. [Google Scholar] [CrossRef]
- Campbell, L.K. Getting Farming on the Agenda: Planning, Policymaking, and Governance Practices of Urban Agriculture in New York City. Urban For. Urban Green. 2016, 19, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Zezza, A.; Tasciotti, L. Urban Agriculture, Poverty, and Food Security: Empirical Evidence from a Sample of Developing Countries. Food Policy 2010, 35, 265–273. [Google Scholar] [CrossRef]
- Vandermeersch, T.; Alvarenga, R.A.F.; Ragaert, P.; Dewulf, J. Environmental Sustainability Assessment of Food Waste Valorization Options. Resour. Conserv. Recycl. 2014, 87, 57–64. [Google Scholar] [CrossRef]
- Mathijs, E. Exploring Future Patterns of Meat Consumption. Meat Sci. 2015, 109, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, Regional, and National Prevalence of Overweight and Obesity in Children and Adults during 1980-2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [Green Version]
- King, T.; Cole, M.; Farber, J.M.; Eisenbrand, G.; Zabaras, D.; Fox, E.M.; Hill, J.P. Food Safety for Food Security: Relationship between Global Megatrends and Developments in Food Safety. Trends Food Sci. Technol. 2017, 68, 160–175. [Google Scholar] [CrossRef]
- Bellemare, M.F.; Cakir, M.; Peterson, H.H.; Novak, L.; Rudi, J. On the Measurement of Food Waste. Am. J. Agric. Econ. 2017, 99, 1148–1158. [Google Scholar] [CrossRef]
- Stoknes, K.; Scholwin, F.; Krzesinski, W.; Wojciechowska, E.; Jasinska, A. Efficiency of a Novel “Food to Waste to Food” System Including Anaerobic Digestion of Food Waste and Cultivation of Vegetables on Digestate in a Bubble-Insulated Greenhouse. Waste Manag. 2016, 56, 466–476. [Google Scholar] [CrossRef]
- Zhou, Y.; Engler, N.; Nelles, M. Symbiotic Relationship between Hydrothermal Carbonization Technology and Anaerobic Digestion for Food Waste in China. Bioresour. Technol. 2018, 260, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Schandl, H.; Fischer-Kowalski, M.; West, J.; Giljum, S.; Dittrich, M.; Eisenmenger, N.; Geschke, A.; Lieber, M.; Wieland, H.; Schaffartzik, A.; et al. Global Material Flows and Resource Productivity: Forty Years of Evidence. J. Ind. Ecol. 2018, 22, 827–838. [Google Scholar] [CrossRef]
- Arvidsson, R.; Tillman, A.-M.; Sanden, B.A.; Janssen, M.; Nordelof, A.; Kushnir, D.; Molander, S. Environmental Assessment of Emerging Technologies: Recommendations for Prospective LCA. J. Ind. Ecol. 2018, 22, 1286–1294. [Google Scholar] [CrossRef] [Green Version]
- Genovese, A.; Acquaye, A.A.; Figueroa, A.; Koh, S.C.L. Sustainable Supply Chain Management and the Transition towards a Circular Economy: Evidence and Some Applications. Omega Int. J. Manag. Sci. 2017, 66, 344–357. [Google Scholar] [CrossRef]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global Nutrition Transition and the Pandemic of Obesity in Developing Countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mok, H.-F.; Williamson, V.G.; Grove, J.R.; Burry, K.; Barker, S.F.; Hamilton, A.J. Strawberry Fields Forever? Urban Agriculture in Developed Countries: A Review. Agron. Sustain. Dev. 2014, 34, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Kearney, J. Food Consumption Trends and Drivers. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- Orsini, F.; Gasperi, D.; Marchetti, L.; Piovene, C.; Draghetti, S.; Ramazzotti, S.; Bazzocchi, G.; Gianquinto, G. Exploring the Production Capacity of Rooftop Gardens (RTGs) in Urban Agriculture: The Potential Impact on Food and Nutrition Security, Biodiversity and Other Ecosystem Services in the City of Bologna. Food Secur. 2014, 6, 781–792. [Google Scholar] [CrossRef]
- Pingali, P. Westernization of Asian Diets and the Transformation of Food Systems: Implications for Research and Policy. Food Policy 2007, 32, 281–298. [Google Scholar] [CrossRef] [Green Version]
- Satterthwaite, D.; McGranahan, G.; Tacoli, C. Urbanization and Its Implications for Food and Farming. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2809–2820. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Kulak, M.; Graves, A.; Chatterton, J. Reducing Greenhouse Gas Emissions with Urban Agriculture: A Life Cycle Assessment Perspective. Landsc. Urban Plan. 2013, 111, 68–78. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockstrom, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Cui, S.; Bai, X.; Zhu, Y.-G.; Gao, B.; Ramaswami, A.; Tang, J.; Yang, M.; Zhang, Q.; Huang, Y. Transboundary Environmental Footprints of the Urban Food Supply Chain and Mitigation Strategies. Environ. Sci. Technol. 2020, 54, 10460–10471. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, S.; van den Bold, M. Agriculture, Food Systems, and Nutrition: Meeting the Challenge. Glob. Chall. 2017, 1, 1600002. [Google Scholar] [CrossRef] [PubMed]
- Morillo, F.; Bordons, M.; Gomez, I. An Approach to Interdisciplinarity through Bibliometric Indicators. Scientometrics 2001, 51. [Google Scholar] [CrossRef]
- Ackerman, K.; Conard, M.; Culligan, P.; Plunz, R.; Sutto, M.-P.; Whittinghill, L. Sustainable Food Systems for Future Cities: The Potential of Urban Agriculture. Econ. Soc. Rev. 2014, 45, 189–206. [Google Scholar]
- Clonan, A.; Roberts, K.E.; Holdsworth, M. Socioeconomic and Demographic Drivers of Red and Processed Meat Consumption: Implications for Health and Environmental Sustainability. Proc. Nutr. Soc. 2016, 75, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Tendall, D.M.; Joerin, J.; Kopainsky, B.; Edwards, P.; Shreck, A.; Le, Q.B.; Kruetli, P.; Grant, M.; Six, J. Food System Resilience: Defining the Concept. Glob. Food Secur. Agric. Policy Econ. Environ. 2015, 6, 17–23. [Google Scholar] [CrossRef]
- Fan, S.; Teng, P.; Chew, P.; Smith, G.; Copeland, L. Food System Resilience and COVID-19—Lessons from the Asian Experience. Glob. Food Secur. 2021, 28, 100501. [Google Scholar] [CrossRef]
- Zhan, Y.; Chen, K.Z. Building Resilient Food System amidst COVID-19: Responses and Lessons from China. Agric. Syst. 2021, 190, 103102. [Google Scholar] [CrossRef]
- Boyaciota-Gunduz, C.P.; Ibrahim, S.A.; Wei, O.C.; Galanakis, C.M. Transformation of the Food Sector: Security and Resilience during the COVID-19 Pandemic. Foods Basel Switz. 2021, 10, 497. [Google Scholar] [CrossRef]
- Chandra, A.J.; Diehl, J.A. Urban Agriculture, Food Security, and Development Policies in Jakarta: A Case Study of Farming Communities at Kalideres—Cengkareng District, West Jakarta. Land Use Policy 2019, 89, 104211. [Google Scholar] [CrossRef]
- Edwards-Jones, G. Does Eating Local Food Reduce the Environmental Impact of Food Production and Enhance Consumer Health? Proc. Nutr. Soc. 2010, 69, 582–591. [Google Scholar] [CrossRef] [Green Version]
- Barrett, C.; Benton, T.; Cooper, K.; Fanzo, J.; Gandhi, R.; Herrero, M.; James, S.; Kahn, M.; Mason-D’Croz, D.; Mathys, A.; et al. Bundling Innovations to Transform Agri-Food Systems. Nat. Sustain. 2020, 3, 974–976. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Mason-D’Croz, D.; Palmer, J.; Benton, T.G.; Bodirsky, B.L.; Bogard, J.R.; Hall, A.; Lee, B.; Nyborg, K.; et al. Innovation Can Accelerate the Transition towards a Sustainable Food System. Nat. Food 2020, 1, 266–272. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, M.; Miller, S.A. Overview of Cold Chain Development in China and Methods of Studying Its Environmental Impacts. Environ. Res. Commun. 2020, 2, 122002. [Google Scholar] [CrossRef]
- Kalpana, S.; Priyadarshini, S.R.; Leena, M.M.; Moses, J.A.; Anandharamakrishnan, C. Intelligent Packaging: Trends and Applications in Food Systems. Trends Food Sci. Technol. 2019, 93, 145–157. [Google Scholar] [CrossRef]
- Li, Y.; Chu, F.; Feng, C.; Chu, C.; Zhou, M. Integrated Production Inventory Routing Planning for Intelligent Food Logistics Systems. IEEE Trans. Intell. Transp. Syst. 2019, 20, 867–878. [Google Scholar] [CrossRef]
- FAO-FCIT. Food for the Cities Initiative; FAO: Rome, Italy, 2011. [Google Scholar]
- Nagib, G.; Nakamura, A.C. Urban Agriculture in the City of São Paulo: New Spatial Transformations and Ongoing Challenges to Guarantee the Production and Consumption of Healthy Food. Glob. Food Secur. 2020, 26, 100378. [Google Scholar] [CrossRef]
- Tian, X.; Geng, Y.; Sarkis, J.; Zhong, S. Trends and Features of Embodied Flows Associated with International Trade Based on Bibliometric Analysis. Resour. Conserv. Recycl. 2018, 131, 148–157. [Google Scholar] [CrossRef]
- Niles, M.T.; Ahuja, R.; Barker, T.; Esquivel, J.; Gutterman, S.; Heller, M.C.; Mango, N.; Portner, D.; Raimond, R.; Tirado, C.; et al. Climate Change Mitigation beyond Agriculture: A Review of Food System Opportunities and Implications. Renew. Agric. Food Syst. 2018, 33, 297–308. [Google Scholar] [CrossRef]
- Liao, H.; Tang, M.; Luo, L.; Li, C.; Chiclana, F.; Zeng, X.-J. A Bibliometric Analysis and Visualization of Medical Big Data Research. Sustainability 2018, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Song, L.J.; Zhu, L.; Johnson, R.E. Visualizing the Landscape and Evolution of Leadership Research. Leadersh. Q. 2019, 30, 215–232. [Google Scholar] [CrossRef]
Initial Period | Stable-Growth Period | Rapid-Growth Period | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Country | TP | UR | RDE | Country | TP | UR | RDE | Country | TP | UR | RDE |
USA | 92 | 77.42 | 2.52 | USA | 247 | 80.01 | 2.63 | USA | 1148 | 81.68 | 2.75 |
Canada | 25 | 77.93 | 1.71 | China * | 85 | 43.17 | 1.32 | China * | 619 | 55.47 | 2.03 |
India * | 14 | 26.72 | 0.70 | UK | 73 | 80.04 | 1.61 | UK | 372 | 82.62 | 1.67 |
UK | 11 | 78.38 | 1.59 | Canada | 57 | 80.27 | 1.94 | Brazil * | 323 | 85.75 | 1.23 |
Finland | 11 | 81.06 | 2.83 | Brazil * | 51 | 82.97 | 1.05 | Canada | 269 | 85.71 | 2.05 |
France | 10 | 75.01 | 2.13 | Australia | 50 | 84.64 | 2.11 | Australia | 252 | 69.57 | 1.33 |
Italy | 10 | 66.95 | 0.99 | France | 41 | 77.25 | 2.11 | Italy | 244 | 81.27 | 1.71 |
Brazil * | 9 | 77.96 | 1.05 | Germany | 38 | 76.07 | 2.51 | Germany | 229 | 77.23 | 2.91 |
Japan | 9 | 78.07 | 2.83 | India * | 38 | 29.41 | 0.79 | Netherlands | 190 | 32.82 | 0.70 |
Sweden | 8 | 83.74 | 3.37 | Netherlands | 38 | 82.84 | 1.73 | Spain | 183 | 79.61 | 1.25 |
Journal | TP | Percentage (%) | IF | LCS | Rank |
---|---|---|---|---|---|
Sustainability | 202 | 3.77 | 2.576 | 18 | 63 |
Journal of Cleaner Production | 148 | 2.76 | 7.246 | 248 | 1 |
Public Health Nutrition | 140 | 2.61 | 3.182 | 160 | 6 |
Science of The Total Environment | 101 | 1.88 | 6.551 | 191 | 4 |
PLOS One | 87 | 1.62 | 2.740 | 0 | N/A |
International Journal of Environmental Research and Public Health | 85 | 1.59 | 2.849 | 1 | 252 |
British Food Journal | 73 | 1.36 | 2.102 | 65 | 19 |
Waste Management | 69 | 1.29 | 5.448 | 196 | 3 |
Appetite | 58 | 1.08 | 3.608 | 65 | 18 |
BMC Public Health | 57 | 1.06 | 2.521 | 0 | N/A |
Nutrients | 54 | 1.01 | 4.546 | 12 | 86 |
Agriculture and Human Values | 52 | 0.97 | 2.442 | 218 | 2 |
Food Security | 51 | 0.95 | 2.095 | 74 | 15 |
Food Control | 47 | 0.88 | 4.258 | 33 | 37 |
Food Policy | 47 | 0.88 | 4.189 | 170 | 5 |
Environmental Science and Pollution Research | 43 | 0.80 | 3.056 | 21 | 53 |
Asia Pacific Journal of Clinical Nutrition | 41 | 0.77 | 1.236 | 36 | 32 |
Resources Conservation and Recycling | 40 | 0.75 | 8.086 | 83 | 13 |
Journal of Environmental Management | 39 | 0.73 | 5.647 | 67 | 17 |
Urban Forestry Urban Greening | 39 | 0.73 | 4.021 | 112 | 11 |
European Journal of Clinical Nutrition | 36 | 0.67 | 3.291 | 18 | 63 |
Stable-Growth Period | TP | Rapid-Growth Period | TP |
---|---|---|---|
Food security | 37 | Food security | 201 |
Diet | 29 | Urban agriculture | 191 |
Food consumption | 25 | Food waste | 137 |
China | 23 | Sustainability | 117 |
Food | 22 | China | 114 |
Children | 22 | Obesity | 106 |
Obesity | 21 | Food consumption | 104 |
Sustainability | 20 | Diet | 99 |
Urban agriculture | 17 | Nutrition | 96 |
Urban | 15 | Food safety | 75 |
Urbanization | 15 | Urbanization | 75 |
Irrigation | 15 | Anaerobic digestion | 74 |
Dietary intake | 15 | Food | 71 |
Consumption | 14 | Climate change | 70 |
Adolescents | 14 | Ecosystem services | 67 |
Food production | 13 | Children | 60 |
Poverty | 12 | Food systems | 59 |
Nutrition transition | 12 | Agriculture | 56 |
Food safety | 12 | Municipal solid waste | 48 |
Environment | 11 | Nutrition transition | 46 |
TI | SO | DT | PY | LCS | GCS |
---|---|---|---|---|---|
Global nutrition transition and the pandemic of obesity in developing countries | Nutrition Reviews [60] | Review | 2012 | 79 | 1742 |
Strawberry fields forever? Urban agriculture in developed countries: a review | Agronomy for Sustainable Development [61] | Review | 2014 | 57 | 161 |
Urban agriculture of the future: an overview of sustainability aspects of food production in and on buildings | Agriculture and Human Values [17] | Article | 2014 | 52 | 153 |
Global diets link environmental sustainability and human health | Nature [18] | Article | 2014 | 47 | 1003 |
Food consumption trends and drivers | Philosophical Transactions of The Royal Society B-Biological Sciences [62] | Review | 2010 | 46 | 753 |
Exploring the production capacity of rooftop gardens (RTGs) in urban agriculture: the potential impact on food and nutrition security, biodiversity and other ecosystem services in the city of Bologna | Food Security [63] | Article | 2014 | 44 | 96 |
Westernization of Asian diets and the transformation of food systems: Implications for research and policy | Food Policy [64] | Article | 2007 | 42 | 361 |
Urbanization and its implications for food and farming | Philosophical Transactions of The Royal Society B-Biological Sciences [65] | Review | 2010 | 42 | 263 |
Global consequences of land use | Science [66] | Review | 2005 | 40 | 5934 |
Reducing greenhouse gas emissions with urban agriculture: A Life Cycle Assessment perspective | Landscape and Urban Planning [67] | Article | 2013 | 40 | 93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Q.; Wang, L.; Cui, S. Urban Food Systems: A Bibliometric Review from 1991 to 2020. Foods 2021, 10, 662. https://doi.org/10.3390/foods10030662
Zhong Q, Wang L, Cui S. Urban Food Systems: A Bibliometric Review from 1991 to 2020. Foods. 2021; 10(3):662. https://doi.org/10.3390/foods10030662
Chicago/Turabian StyleZhong, Qiumeng, Lan Wang, and Shenghui Cui. 2021. "Urban Food Systems: A Bibliometric Review from 1991 to 2020" Foods 10, no. 3: 662. https://doi.org/10.3390/foods10030662
APA StyleZhong, Q., Wang, L., & Cui, S. (2021). Urban Food Systems: A Bibliometric Review from 1991 to 2020. Foods, 10(3), 662. https://doi.org/10.3390/foods10030662