Evaluation and Dietary Exposure Assessment of Selected Toxic Trace Elements in Durum Wheat (Triticum durum) Imported into the Italian Market: Six Years of Official Controls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Chemicals and Working Standard Solutions
2.3. Analytical Procedure and Quality Control
2.4. Statistical Analysis
3. Results and Discussion
3.1. General Considerations and Comparison with Previous Studies
3.2. Cadmium Levels–Seasonal, Regional, and Temporal Variations
3.3. Lead Levels–Seasonal, Regional, and Temporal Variations
3.4. Dietary Exposure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD—Organisation for Economic Cooperation and Development; FAO—Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2020–2029; OECD-FAO Agricultural Outlook: Paris, France, 2020; ISBN 978-92-64-58295-8. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. World Food and Agriculture—Statistical Yearbook 2020; FAO Statistical Yearbook: Rome, Italy, 2020; ISBN 978-92-5-133394-5. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. Crop Prospects and Food Situation #1, March 2020; Quarterly Global Report No. 1; FAO: Rome, Italy, 2020; ISBN 978-92-5-132262-8. [Google Scholar] [CrossRef]
- Tidiane Sall, A.; Chiari, T.; Legesse, W.; Seid-Ahmed, K.; Ortiz, R.; van Ginkel, M.; Bassi, F.M. Durum Wheat (Triticum Durum Desf.): Origin, Cultivation and Potential Expansion in Sub-Saharan Africa. Agronomy 2019, 9, 263. [Google Scholar] [CrossRef] [Green Version]
- EUROSTAT—European Statistical Office. Agriculture, Forestry and Fishery Statistics—2020 Edition; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-21522-6. [Google Scholar] [CrossRef]
- EFSA—European Food Safety Authority. Scientific Opinion on a Quantitative Pathway Analysis of the Likelihood of Tilletia Indica M. Introduction into EU with Importation of US Wheat. EFSA J. 2010, 8, 1621. [Google Scholar]
- El-Kady, A.A.; Abdel-Wahhab, M.A. Occurrence of Trace Metals in Foodstuffs and Their Health Impact. Trends Food Sci. Technol. 2018, 75, 36–45. [Google Scholar] [CrossRef]
- Hussain, S.; Rengel, Z.; Qaswar, M.; Amir, M.; Zafar-ul-Hye, M. Arsenic and Heavy Metal (Cadmium, Lead, Mercury and Nickel) Contamination in Plant-Based Foods. In Plant and Human Health, Volume 2; Ozturk, M., Hakeem, K.R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 447–490. ISBN 978-3-030-03343-9. [Google Scholar]
- Hou, D.; O’Connor, D.; Igalavithana, A.D.; Alessi, D.S.; Luo, J.; Tsang, D.C.W.; Sparks, D.L.; Yamauchi, Y.; Rinklebe, J.; Ok, Y.S. Metal Contamination and Bioremediation of Agricultural Soils for Food Safety and Sustainability. Nat. Rev. Earth Environ. 2020, 1, 366–381. [Google Scholar] [CrossRef]
- Mousavi Khaneghah, A.; Fakhri, Y.; Nematollahi, A.; Pirhadi, M. Potentially Toxic Elements (PTEs) in Cereal-Based Foods: A Systematic Review and Meta-Analysis. Trends Food Sci. Technol. 2020, 96, 30–44. [Google Scholar] [CrossRef]
- McLaughlin, M.J.; Smolders, E.; Zhao, F.-J.; Grant, C.; Montalvo, D. Managing cadmium in agricultural systems. Adv. Agron. 2021, 166, 1–129. [Google Scholar] [CrossRef]
- Cubadda, F.; Raggi, A.; Marconi, E. Effects of Processing on Five Selected Metals in the Durum Wheat Food Chain. Microchem. J. 2005, 79, 97–102. [Google Scholar] [CrossRef]
- Vergine, M.; Aprile, A.; Sabella, E.; Genga, A.; Siciliano, M.; Rampino, P.; Lenucci, M.S.; Luvisi, A.; Bellis, L.D. Cadmium Concentration in Grains of Durum Wheat (Triticum turgidum L. Subsp. Durum). J. Agric. Food Chem. 2017, 65, 6240–6246. [Google Scholar] [CrossRef]
- Liu, Y.-M.; Liu, D.-Y.; Zhang, W.; Chen, X.-X.; Zhao, Q.-Y.; Chen, X.-P.; Zou, C.-Q. Health Risk Assessment of Heavy Metals (Zn, Cu, Cd, Pb, As and Cr) in Wheat Grain Receiving Repeated Zn Fertilizers. Environ. Pollut. 2020, 257, 113581. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of Exposure of Heavy Metals and Their Impact on Health Consequences. J. Cell. Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef]
- IARC—International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 100 C, Arsenic, Metals, Fibres, and Dusts; World Health Organization, Ed.; International Agency for Research on Cancer (IARC): Lyon, France, 2012; ISBN 978-92-832-1320-8. [Google Scholar]
- ECHA—European Chemical Agency. Cadmium—Substance Infocard. Available online: https://echa.europa.eu/it/substance-information/-/substanceinfo/100.028.320 (accessed on 10 February 2021).
- EFSA—European Food Safety Authority. Cadmium in Food—Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2009, 7, 980. [Google Scholar] [CrossRef]
- JECFA—Joint FAO/WHO Expert Committee on Food Additives. Safety Evaluation of Certain Food Additives and Contaminants, FAO JECFA Monographs 8; WHO Food Additives Series 63; World Health Organization: Geneva, Switzerland, 2011; ISBN 978-92-4-166064-8. [Google Scholar]
- IARC—International Agency for Research on Cancer. Inorganic and Organic Lead Compunds; IARC monographs on the Evaluation of Carcinogenic Risks to Humans; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, Ed.; IARC: Lyon, France, 2006; ISBN 978-92-832-1287-4. [Google Scholar]
- ECHA—European Chemical Agency. Lead—Substance Infocard. Available online: https://echa.europa.eu/it/substance-information/-/substanceinfo/100.028.273 (accessed on 10 February 2021).
- EFSA—European Food Safety Authority, Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on Lead in Food. EFSA J. 2010, 8, 1570. [Google Scholar] [CrossRef]
- WHO—World Health Organization, Department of Public Health, Environmental and Social Determinants of Health. Exposure to Lead: A Major Public Health Concern. Preventing Disease through Healthy Environments. 2019. Available online: https://apps.who.int/iris/bitstream/handle/10665/329953/WHO-CED-PHE-EPE-19.4.7-eng.pdf?ua=1 (accessed on 8 December 2020).
- EFSA—European Food Safety Authority, Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the Risk for Public Health Related to the Presence of Mercury and Methylmercury in Food. EFSA J. 2012, 10. [Google Scholar] [CrossRef]
- JECFA—Joint FAO/WHO Expert Committee on Food Additives. Safety Evaluation of Certain Contaminants in Food, Prepared by the Seventy-Third Meeting of the Joint FAO/WHO Expert Committee on Food Additives; WHO Food Additives Series 64; World Health Organization: Geneva, Switzerland, 2011; ISBN 978-92-4-166063-1. [Google Scholar]
- O’Connor, D.; Hou, D.; Ok, Y.S.; Mulder, J.; Duan, L.; Wu, Q.; Wang, S.; Tack FMG; Rinklebe, J. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environ. Int. 2019, 126, 747–761. [Google Scholar] [CrossRef]
- Li, R.; Wu, H.; Ding, J.; Fu, W.; Gan, L.; Yi, L. Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants. Sci. Rep. 2017, 7, 46545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CCCF—Codex Committee on Contaminants in Food, Codex Alimentarius FAO/WHO. General Standard for Contaminants and Toxins in Food and Feed. 2019. Available online: http://www.fao.org/input/download/standards/17/CXS_193e_2015.pdf (accessed on 10 February 2021).
- EC—European Union Commission. Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, L364/5. Available online: https://eur-lex.europa.eu/legal-content/IT/ALL/?uri=CELEX%3A32006R1881 (accessed on 10 February 2021).
- EC—European Union Commission. Regulation (EC) No 73/2018 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for mercury compounds in or on certain products. Off. J. Eur. Union 2018, L13/8. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32018R0073 (accessed on 10 February 2021).
- EN 15763. Foodstuffs—Determination of Trace Elements—Determination of Arsenic, Cadmium, Mercury and Lead in Foodstuffs by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) after Pressure Digestion; European Committee For Standardization: Brussels, Belgium, 2009. [Google Scholar]
- EC—European Union Commission. Regulation (EC) No 333/2007 laying down the methods of sampling and analysis for the official control of the levels of lead, cadmium, mercury, inorganic tin, 3-MCPD and benzo(a)pyrene in foodstuffs. Off. J. Eur. Union 2007, L88/29. Available online: https://eur-lex.europa.eu/legal-content/IT/ALL/?uri=CELEX%3A32007R0333 (accessed on 10 February 2021).
- International Organization for Standardization. ISO 24333:2009. Cereals and Cereal Products—Sampling; International Organization for Standardization: Geneve, Switzerland, 2009. [Google Scholar]
- FAO—Food and Agriculture Organization of the United Nations. COVID-19: Channels of Transmission to Food and Agriculture; FAO: Rome, Italy, 2020; ISBN 978-92-5-132354-0. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. Food Outlook—Biannual Report on Global Food Markets: November 2020; Food Outlook: Rome, Italy, 2020; ISBN 978-92-5-133590-1. [Google Scholar] [CrossRef]
- EN 13805. Foodstuffs—Determination of Trace Elements—Pressure Digestion; European Committee For Standardization: Brussels, Belgium, 2014. [Google Scholar]
- Miedico, O.; Pompa, C.; Moscatelli, S.; Chiappinelli, A.; Carosielli, L.; Chiaravalle, A.E. Lead, Cadmium and Mercury in Canned and Unprocessed Tuna: Six-Years Monitoring Survey, Comparison with Previous Studies and Recommended Tolerable Limits. J. Food Compos. Anal. 2020, 94, 103638. [Google Scholar] [CrossRef]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
- EFSA—European Food Safety Authority. Management of Left-Censored Data in Dietary Exposure Assessment of Chemical Substances. EFSA J. 2010, 8, 1557. [Google Scholar] [CrossRef] [Green Version]
- Guérin, T.; Chekri, R.; Chafey, C.; Testu, C.; Hulin, M.; Noël, L. Mercury in Foods from the First French Total Diet Study on Infants and Toddlers. Food Chem. 2018, 239, 920–925. [Google Scholar] [CrossRef] [PubMed]
- EC—European Union Commission. Council Directive No 79/117/EEC prohibiting the placing on the market and use of plant protection products containing certain active substances. Off. J. Eur. Union 1978, L117. Available online: https://eur-lex.europa.eu/legal-content/IT/ALL/?uri=CELEX%3A31979L0117 (accessed on 10 February 2021).
- Conti, M.E.; Cubadda, F.; Carcea, M. Trace Metals in Soft and Durum Wheat from Italy. Food Addit. Contam. 2000, 17, 45–53. [Google Scholar] [CrossRef]
- Cubadda, F.; Raggi, A. Determination of Cadmium, Lead, Iron, Nickel and Chromium in Selected Food Matrices by Plasma Spectrometric Techniques. Microchem. J. 2005, 79, 91–96. [Google Scholar] [CrossRef]
- Tahvonen, R.; Kumpulainen, J. Lead and Cadmium in Some Cereal Products on the Finnish Market 1990–91. Food Addit. Contam. 1993, 10, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Vromman, V.; Waegeneers, N.; Cornelis, C.; Boosere, I.D.; Holderbeke, M.V.; Vinkx, C.; Smolders, E.; Huyghebaert, A.; Pussemier, L. Dietary Cadmium Intake by the Belgian Adult Population. Food Addit. Contam. Part A 2010, 27, 1665–1673. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Abbas, T.; Zia-ur-Rehman, M.; Hannan, F.; Keller, C.; Al-Wabel, M.I.; Ok, Y.S. Cadmium Minimization in Wheat: A Critical Review. Ecotoxicol. Environ. Saf. 2016, 130, 43–53. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising Temperatures Reduce Global Wheat Production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Bond, J.K.; Sowell, A. USDA Economic Research Service. Wheat Outlook: February 2021. 2021, Volume 11. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/cz30ps64c/m039kz899/6969zt35k/WHS-21b.pdf (accessed on 13 February 2021).
- Rizwan, M.; Ali, S.; Rehman, M.Z.; Javed, M.R.; Bashir, A. Lead Toxicity in Cereals and Its Management Strategies: A Critical Review. Water Air Soil Pollut. 2018, 229, 211. [Google Scholar] [CrossRef]
- Wang, S.; Wu, W.; Liu, F.; Liao, R.; Hu, Y. Accumulation of Heavy Metals in Soil-Crop Systems: A Review for Wheat and Corn. Environ. Sci. Pollut. Res. 2017, 24, 15209–15225. [Google Scholar] [CrossRef]
- WHO—World Health Organization; FAO—Food and Agriculture Organization of the United Nations. Food Safety Collaborative Platform. Data Analysis: Food Consumption. Available online: https://apps.who.int/foscollab/Dashboard/FoodConso (accessed on 13 February 2021).
- WHO—World Health Organization; FAO—Food and Agriculture Organization of the United Nations. FAO/WHO Global Individual Food Consumption Data Tool (GIFT), Data and Indicators. Available online: http://www.fao.org/gift-individual-food-consumption/data-and-indicator/en/ (accessed on 13 February 2021).
- FAO—Food and Agriculture Organization of the United Nations; Statistics Division. FAOSTAT Food and Agricultural Databases. Available online: http://www.fao.org/faostat/en/#data/FBS (accessed on 13 February 2021).
- Leclercq, C.; Arcella, D.; Piccinelli, R.; Sette, S.; Le Donne, C.; Turrini, A. INRAN-SCAI 2005–06 Study Group. The Italian National Food Consumption Survey INRAN-SCAI 2005–06: Main Results in Terms of Food Consumption. Public Health Nutr. 2009, 12, 2504–2532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micco, C.; Onori, R.; Miraglia, M.; Gambelli, L.; Brera, C. Evaluation of Lead, Cadmium, Chromium, Copper and Zinc by Atomic Absorption Spectroscopy in Durum Wheat Milling Products in Relation to the Percentage of Extraction. Food Addit. Contam. 1987, 4, 429–435. [Google Scholar] [CrossRef]
- Ficco, D.B.M.; Borrelli, G.M.; Miedico, O.; Giovanniello, V.; Tarallo, M.; Pompa, C.; De Vita, P.; Chiaravalle, A.E. Effects of Grain Debranning on Bioactive Compounds, Antioxidant Capacity and Essential and Toxic Trace Elements in Purple Durum Wheats. LWT 2020, 118, 108734. [Google Scholar] [CrossRef]
- Aprile, A.; Sabella, E.; Francia, E.; Milc, J.; Ronga, D.; Pecchioni, N.; Ferrari, E.; Luvisi, A.; Vergine, M.; De Bellis, L. Combined Effect of Cadmium and Lead on Durum Wheat. Int. J. Mol. Sci. 2019, 20, 5891. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.-F. Ecophysiology of Cadmium Allocation to Grains in Durum Wheat. Ph.D. Thesis, Université de Bordeaux, Bordeaux, France, 2018. [Google Scholar]
- EFSA—European Food Safety Authority. Cadmium Dietary Exposure in the European Population. EFSA J. 2012, 10. [Google Scholar] [CrossRef]
- Rose, M.; Baxter, M.; Brereton, N.; Baskaran, C. Dietary Exposure to Metals and Other Elements in the 2006 UK Total Diet Study and Some Trends over the Last 30 Years. Food Addit. Contam. Part A 2010, 27, 1380–1404. [Google Scholar] [CrossRef] [Green Version]
- EUROSTAT—European Statistical Office. Food: From Farm to Fork Statistics; EUROSTAT Pocketbook: Publications Office of the European Union: Luxembourg, 2008; ISBN 978-92-79-08736-3. [Google Scholar] [CrossRef]
- EFSA—European Food Safety Authority. Lead Dietary Exposure in the European Population. EFSA J. 2012, 10. [Google Scholar] [CrossRef]
Element | LOQ (mg kg−1) | Determination Coefficient (R2) | Standard Reference Material NIST 1567b–Wheat Flour (mg kg−1) | |||
---|---|---|---|---|---|---|
Certified Val. ± U | Measured Val. ± U | Recovery (%) c | Method Uncertainty (%) d | |||
Pb | 0.012 | 0.9982 | 0.0104 ± 0.0024 | ≤LOQ (0.012) | 105.0 b | 21% |
Cd | 0.0040 | 0.9999 | 0.0254 ± 0.0009 | 0.0249 ± 0.0045 | 96.3 | 18% |
Hg | 0.012 | 0.9986 | 0.0005 a | ≤LOQ (0.012) | 103.6 b | 22% |
Cadmium | Number of Samples | Mean | Standard Deviation | Median | Range (Min–Max) | |
---|---|---|---|---|---|---|
Overall | Overall | 346 | 0.0322 | 0.026 | 0.025 | 0.002–0.147 |
Year | 2015 | 51 | 0.0442 | 0.042 | 0.027 | 0.009–0.147 |
2016 | 61 | 0.0307 | 0.022 | 0.024 | 0.002–0.108 | |
2017 | 79 | 0.0352 | 0.026 | 0.026 | 0.002–0.125 | |
2018 | 92 | 0.0290 | 0.020 | 0.024 | 0.002–0.117 | |
2019 | 50 | 0.0253 | 0.011 | 0.024 | 0.010–0.067 | |
2020 | 13 | 0.0252 | 0.018 | 0.020 | 0.002–0.061 | |
Season | Autumn | 91 | 0.0385 | 0.036 | 0.025 | 0.002–0.141 |
Summer | 75 | 0.0305 | 0.018 | 0.027 | 0.002–0.108 | |
Winter | 66 | 0.0292 | 0.015 | 0.024 | 0.014–0.072 | |
Spring | 114 | 0.0302 | 0.025 | 0.024 | 0.002–0.147 | |
Country | Australia | 4 | 0.00825 | 0.00096 | 0.0085 | 0.007–0.009 |
Canada | 51 | 0.0520 | 0.035 | 0.054 | 0.002–0.147 | |
Kazakhstan | 151 | 0.0263 | 0.011 | 0.025 | 0.002–0.067 | |
Russia | 105 | 0.0218 | 0.008 | 0.020 | 0.002–0.063 | |
Turkey | 10 | 0.0153 | 0.003 | 0.017 | 0.009–0.018 | |
USA | 25 | 0.0824 | 0.040 | 0.094 | 0.030–0.141 |
Lead | Number of Samples | Mean | Standard Deviation | Median | Range (Min–Max) | |
---|---|---|---|---|---|---|
Overall | Overall | 346 | 0.0162 | 0.027 | 0.006 | 0.006–0.249 |
Year | 2015 | 51 | 0.0397 | 0.054 | 0.021 | 0.006–0.249 |
2016 | 61 | 0.0201 | 0.029 | 0.006 | 0.006–0.130 | |
2017 | 79 | 0.0098 | 0.013 | 0.006 | 0.006–0.099 | |
2018 | 92 | 0.0100 | 0.009 | 0.006 | 0.006–0.043 | |
2019 | 50 | 0.0093 | 0.008 | 0.006 | 0.006–0.036 | |
2020 | 13 | 0.0112 | 0.019 | 0.006 | 0.006–0.073 | |
Season | Autumn | 91 | 0.0217 | 0.032 | 0.006 | 0.006–0.184 |
Summer | 75 | 0.0145 | 0.021 | 0.006 | 0.006–0.118 | |
Winter | 66 | 0.0202 | 0.042 | 0.006 | 0.006–0.249 | |
Spring | 114 | 0.0106 | 0.010 | 0.006 | 0.006–0.063 | |
Country | Australia | 4 | 0.0125 | 0.013 | 0.006 | 0.006–0.032 |
Canada | 51 | 0.0181 | 0.029 | 0.006 | 0.006–0.130 | |
Kazakhstan | 151 | 0.0118 | 0.013 | 0.006 | 0.006–0.099 | |
Russia | 105 | 0.0116 | 0.013 | 0.006 | 0.006–0.073 | |
Turkey | 10 | 0.1045 | 0.090 | 0.088 | 0.006–0.249 | |
USA | 25 | 0.0229 | 0.028 | 0.006 | 0.006–0.123 |
Mean Consumption g/week (per kg Body Weight) | Cd | Pb | P-95 d | Cd | Pb | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Population Groups | Dried Durum Pasta | Fresh Durum Pasta | Total | EWI a | %TWI b | EWI a | %PTWI c | Dried Durum Pasta | Fresh Durum Pasta | Total | EWI a | %TWI b | EWI a | %PTWI c |
All | 5.38 | 10.0 | 15.4 | 0.495 | 19.8 | 0.249 | 1.00 | 12.3 | 14.1 | 26.4 | 0.850 | 34.0 | 0.428 | 1.7 |
Female | 5.59 | 10.6 | 16.2 | 0.520 | 20.8 | 0.262 | 1.05 | 12.3 | 14.2 | 26.5 | 0.853 | 34.1 | 0.429 | 1.7 |
Male | 5.13 | 7.78 | 12.9 | 0.416 | 16.6 | 0.209 | 0.84 | 12.5 | 7.78 | 20.2 | 0.652 | 26.1 | 0.328 | 1.3 |
>75 years | 4.24 | - | 4.24 | 0.136 | 5.5 | 0.069 | 0.27 | 9.63 | - | 9.63 | 0.310 | 12.4 | 0.156 | 0.6 |
50–74 years | 4.21 | 9.72 | 13.9 | 0.449 | 17.9 | 0.226 | 0.90 | 8.78 | 11.5 | 20.3 | 0.652 | 26.1 | 0.328 | 1.3 |
15–49 years | 5.21 | 10.2 | 15.4 | 0.496 | 19.8 | 0.250 | 1.00 | 11.4 | 14.4 | 25.8 | 0.829 | 33.2 | 0.417 | 1.7 |
6–14 years | 8.16 | - | 8.16 | 0.263 | 10.5 | 0.132 | 0.53 | 17.7 | - | 17.7 | 0.570 | 22.8 | 0.287 | 1.1 |
3–5 years | 12.3 | - | 12.3 | 0.398 | 15.9 | 0.200 | 0.80 | 28.2 | - | 28.2 | 0.908 | 36.3 | 0.457 | 1.8 |
0–35 months | 15.9 | - | 15.9 | 0.513 | 20.5 | 0.258 | 1.03 | 31.5 | - | 31.5 | 1.01 | 40.6 | 0.511 | 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pompa, C.; D’Amore, T.; Miedico, O.; Preite, C.; Chiaravalle, A.E. Evaluation and Dietary Exposure Assessment of Selected Toxic Trace Elements in Durum Wheat (Triticum durum) Imported into the Italian Market: Six Years of Official Controls. Foods 2021, 10, 775. https://doi.org/10.3390/foods10040775
Pompa C, D’Amore T, Miedico O, Preite C, Chiaravalle AE. Evaluation and Dietary Exposure Assessment of Selected Toxic Trace Elements in Durum Wheat (Triticum durum) Imported into the Italian Market: Six Years of Official Controls. Foods. 2021; 10(4):775. https://doi.org/10.3390/foods10040775
Chicago/Turabian StylePompa, Ciro, Teresa D’Amore, Oto Miedico, Chiara Preite, and Antonio Eugenio Chiaravalle. 2021. "Evaluation and Dietary Exposure Assessment of Selected Toxic Trace Elements in Durum Wheat (Triticum durum) Imported into the Italian Market: Six Years of Official Controls" Foods 10, no. 4: 775. https://doi.org/10.3390/foods10040775
APA StylePompa, C., D’Amore, T., Miedico, O., Preite, C., & Chiaravalle, A. E. (2021). Evaluation and Dietary Exposure Assessment of Selected Toxic Trace Elements in Durum Wheat (Triticum durum) Imported into the Italian Market: Six Years of Official Controls. Foods, 10(4), 775. https://doi.org/10.3390/foods10040775