Macroelements and Trace Elements Content in Brine-Canned Mackerel (Scomber colias) Subjected to High-Pressure Processing and Frozen Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Initial Raw Fish, HPP, Freezing, and Frozen Storage
2.3. Canning and Sampling Procedure
2.4. Moisture Determination
2.5. Mineral Analysis
2.6. Statistical Analysis
3. Results
3.1. Changes in Alkali (Na and K) and Alkaline Earth (Mg, Ca, and Ba) Metals Content
3.2. Changes in Transition Metals Content (Mn, Fe, Co, Cu, and Cd)
3.3. Changes in the Content of Other Metals (Sn and Pb)
3.4. Changes in Metalloids (As and Se) Content
3.5. Changes in Non-Metal Elements (P and S) Content
3.6. Changes of Moisture Content
4. Discussion
4.1. Changes in Moisture Content in Canned Fish
4.2. Changes in Mineral Content in Canned Fish
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Horner, W.F.A. Canning fish and fish products. In Fish Processing Technology, 2nd ed.; Hall, G.M., Ed.; Blackie Academic and Professional; Chapman and Hall: London, UK, 1997; pp. 119–159. [Google Scholar]
- Lukoshkina, M.V.; Odoeva, G.A. Kinetics of chemical reactions for prediction of quality of canned fish during storage. App. Biochem. Microb. 2003, 39, 321–327. [Google Scholar] [CrossRef]
- Aubourg, S.P. Practices and processing from catching or harvesting till packaging: Effect on canned product quality. In Quality Parameters in Canned Seafoods; Cabado, A.G., Vieites, J.M., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2008; pp. 1–24. [Google Scholar]
- Naseri, M.; Rezaei, M. Lipid changes during long-term storage of canned sprat. J. Aquat. Food Prod. Technol. 2012, 21, 48–58. [Google Scholar] [CrossRef]
- Sista, R.V.; Erickson, M.C.; Shewfelt, R.L. Quality deterioration in frozen foods associated with hydrolytic enzyme activities. In Quality in Frozen Food; Erickson, M., Hung, Y.C., Eds.; Chapman and Hall: New York, NY, USA, 1997; pp. 101–110. [Google Scholar]
- Sotelo, C.G.; Rehbein, H. TMAO-degrading enzymes. In Seafood Enzymes. Utilization and Influence on Postharvest Seafood Quality; Haard, N.F., Simpson, B.K., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2000; pp. 167–190. [Google Scholar]
- Sikorski, Z.E.; Kolakowski, E. Endogenous enzyme activity and seafood quality: Influence of chilling, freezing, and other environmental factors. In Seafood Enzymes. Utilization and Influence on Postharvest Seafood Quality; Haard, N.F., Simpson, B.K., Eds.; Marcel Dekker: New York, NY, USA, 2000; pp. 451–487. [Google Scholar]
- Murchie, L.W.; Cruz-Romero, M.; Kerry, J.P.; Linton, M.; Patterson, M.F.; Smiddy, M.; Kelly, A.L. High pressure processing of shellfish: A review of microbiological and other quality aspects. Innov. Food Sci. Emerg. Technol. 2005, 6, 257–270. [Google Scholar] [CrossRef]
- Campus, M. High pressure processing of meat, meat products and seafood. Food Eng. Rev. 2010, 2, 256–273. [Google Scholar] [CrossRef]
- Tabilo-Munizaga, G.; Aubourg, S.; Pérez-Won, M. Pressure effects on seafoods. In High Pressure Processing of Food: Principles, Technology and Applications; Balasubramanian, V.M., Barbosa-Cánovas, G.V., Lelieveld, H.L.M., Eds.; Springer Science and Business Media: New York, NY, USA, 2016; pp. 625–669. [Google Scholar]
- Alizadeh, E.; Chapleau, N.; de Lamballerie, M.; Le-Bail, A. Effect of different freezing processes on the microstructure of Atlantic salmon (Salmo salar) fillets. Innov. Food Sci. Emerg. Technol. 2007, 8, 493–499. [Google Scholar] [CrossRef]
- Truong, B.Q.; Buckow, R.; Stathopoulos, C.E.; Nguyen, M.H. Advances in high-pressure processing of fish muscles. Food Eng. Rev. 2015, 7, 109–129. [Google Scholar] [CrossRef]
- Fidalgo, L.G.; Saraiva, J.A.; Aubourg, S.P.; Vázquez, M.; Torres, J.A. Enzymatic activity during frozen storage of Atlantic horse mackerel (Trachurus trachurus) pre-treated by high pressure processing. Food Bioprocess Technol. 2015, 8, 493–502. [Google Scholar] [CrossRef]
- Méndez, L.; Fidalgo, L.G.; Pazos, M.; Lavilla, M.; Torres, J.A.; Saraiva, J.A.; Vázquez, M.; Aubourg, S.P. Lipid and protein changes related to quality loss in frozen sardine (Sardina pilchardus) previously processed under high-pressure conditions. Food Bioprocess Technol. 2017, 10, 296–306. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, M.; Fidalgo, L.G.; Saraiva, J.A.; Aubourg, S.P. Preservative effect of a previous high-pressure treatment on the chemical changes related to quality loss in frozen hake (Merluccius merluccius). Food Bioprocess Technol. 2018, 11, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, R.; Saraiva, J.; Pérez Lamela, C.; Torres, J.A. Reaction kinetics analysis of chemical changes in pressure-assisted thermal processing. Food Eng. Rev. 2009, 1, 16–30. [Google Scholar] [CrossRef]
- Mujica-Paz, H.; Valdez-Fragoso, A.; Samson, C.T.; Welti-Chanes, J.; Torres, J.A. High-pressure processing technologies for the pasteurization and sterilization of foods. Food Bioprocess Technol. 2011, 4, 969–985. [Google Scholar] [CrossRef]
- Prego, R.; Fidalgo, L.G.; Saraiva, J.A.; Vázquez, M.; Aubourg, S.P. Impact of prior high-pressure processing on lipid damage and volatile amines formation in mackerel muscle subjected to frozen storage and canning. LWT -Food Sci. Technol. 2021, 135, 109957. [Google Scholar] [CrossRef]
- Fraga, C.G. Relevance, essentiality and toxicity of trace elements in human health. Mol. Asp. Med. 2005, 26, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Roos, N.; Wahab, M.A.; Chamnan, C.; Thilsted, S.H. The role of fish in food-based strategies to combat vitamin A and mineral deficiencies in developing countries. J. Nutr. 2007, 137, 1106–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oehlenschläger, J. Minerals and trace elements. In Handbook of Seafood and Seafood Products Analysis; Nollet, M.L., Toldrá, F., Eds.; CRC Press: Boca Raton, FL, USA, 2010; Chapter 20; pp. 351–375. [Google Scholar]
- Anishchenko, O.V.; Sushchik, N.N.; Makhutova, O.N.; Kalachova, G.S.; Gribovskaya, I.V.; Morgun, V.N.; Gladyshev, M.I. Benefit-risk ratio of canned pacific saury (Cololabis saira) intake: Essential fatty acids vs. heavy metals. Food Chem. Toxicol. 2017, 101, 8–14. [Google Scholar] [CrossRef]
- Gruszeska-Kosowska, A.; Baran, A.; Jasiewicz, C. Content and health risk assessment of selected elements in commercially available fish and fish products. Human Ecol. Risk Assess Int. J. 2018, 24, 1623–1641. [Google Scholar] [CrossRef]
- Piclet, G. Le poisson aliment. Composition-intérêt nutritionnel. Cahiers de Nutrition et de Diététique 1987, 22, 317–335. [Google Scholar]
- Gordon, D.T. Minerals in seafoods: Their bioavailability and interactions. Food Technol. 1988, 42, 156–160. [Google Scholar]
- Martínez-Valverde, I.; Periago, M.J.; Santaella, M.; Ros, G. The content and nutritional significance of minerals on fish flesh in the presence and absence of bone. Food Chem. 2000, 71, 503–509. [Google Scholar] [CrossRef]
- Noël, L.; Chafey, C.; Testu, C.; Pinte, J.; Velge, P.; Guérin, T. Contamination levels of lead, cadmium and mercury in imported and domestic lobsters and large crab species consumed in France: Differences between white and brown meat. J. Food Compos. Anal. 2011, 24, 368–375. [Google Scholar] [CrossRef]
- Vieira, E.F.; Soares, C.; Machado, S.; Oliva-Teles, M.T.; Correia, M.; Ramalhosa, M.J.; Carvalho, A.; Domingues, V.F.; Antunes, F.; Morais, S.; et al. Development of new canned Chub mackerel products incorporating edible seaweeds- Influence on the minerals and trace elements composition. Molecules 2020, 25, 1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Roso, B.; Cuesta, I.; Pérez, M.; Borrego, E.; Pérez-Olleros, L.; Varela, G. Lipid composition and palatability of canned sardines. Influence of the canning process and storage in olive oil for five years. J. Sci. Food Agric. 1998, 77, 244–250. [Google Scholar] [CrossRef]
- AOAC. Official Methods for Analysis of the Association of Analytical Chemistry, 15th ed.; Association of Official Chemists, Inc.: Arlington, VA, USA, 1990; pp. 931–935. [Google Scholar]
- US-EPA. Acid Digestion of Sediments, Sludges, and Soils, SW-846 Test Method 3050B; Revision 2 (12 Pages); United States Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- Engström, E.; Stenberg, A.; Senioukh, S.; Edelbro, R.; Baxter, D.C.; Rodushkin, I. Multi-elemental characterization of soft biological tissues by inductively coupled plasma–sector field mass spectrometry. Anal. Chim. Acta 2004, 521, 123–135. [Google Scholar] [CrossRef]
- Lazos, E.S. Freshwater nase (Chondrostoma nasus): Thermally processed as a potential food resource. J. Aquat. Food Prod. Technol. 1997, 6, 45–63. [Google Scholar] [CrossRef]
- Aubourg, S.; Medina, I. Quality differences assessment in canned sardine (Sardina pilchardus) by fluorescence detection. J. Agric. Food Chem. 1997, 45, 3617–3621. [Google Scholar] [CrossRef] [Green Version]
- Castrillón, A.M.; Navarro, M.P.; García-Arias, M.T. Tuna protein nutritional quality changes after canning. J. Food Sci. 1996, 61, 1250–1253. [Google Scholar] [CrossRef]
- Pazos, M.; Méndez, L.; Gallardo, J.M.; Aubourg, S.P. Selective-targeted effect of high-pressure processing on proteins related to quality: A proteomics evidence in Atlantic mackerel (Scomber scombrus). Food Bioprocess Technol. 2014, 7, 2342–2353. [Google Scholar] [CrossRef] [Green Version]
- Carrera, M.; Fidalgo, L.G.; Saraiva, J.A.; Aubourg, S.P. Effects of high-pressure treatment on the muscle proteome of hake by bottom-up proteomics. J. Agric. Food Chem. 2018, 66, 4559–4570. [Google Scholar] [CrossRef] [Green Version]
- Suvanich, V.; Jahncke, M.L.; Marshall, D.L. Changes in selected chemical quality characteristics of Channel catfish frame mince during chill and frozen storage. J. Food Sci. 2000, 65, 24–29. [Google Scholar] [CrossRef]
- Buchowski, M.S.; Mahoney, A.W.; Carpenter, C.E.; Cornforth, D.P. Heating and the distribution of total and heme iron between meat and broth. J. Food Sci. 1988, 53, 43–45. [Google Scholar] [CrossRef]
- Pourashouri, P.; Shabanpour, B.; Aubourg, S.P.; Daghigh Rohi, J.; Shabani, A. An investigation of rancidity inhibition during frozen storage of Wels catfish (Silurus glanis) fillets by previous ascorbic and citric acid treatment. Int. J. Food Sci. Technol. 2009, 44, 1503–1509. [Google Scholar] [CrossRef]
- Aubourg, S.P. Review: Loss of quality during the manufacture of canned fish products. Food Sci. Technol. Int. 2001, 7, 199–215. [Google Scholar] [CrossRef] [Green Version]
- Gokoglu, N.; Yerlikaya, P.; Cengiz, E. Effects of cooking methods on the proximate composition and mineral contents of rainbow trout (Oncorhynchus mykiss). Food Chem. 2004, 84, 19–22. [Google Scholar] [CrossRef]
- Mierke-Klemeyer, S.; Larsen, R.; Oehlenschläger, J.; Maehre, H.; Elvevoll, E.O.; Bandarra, N.M.; Parreira, R.; Andrade, A.M.; Nunes, M.L.; Schram, E.; et al. Retention of health-related beneficial components during household preparation of selenium-enriched African catfish (Clarias gariepinus) fillets. Eur. Food Res. Technol. 2008, 227, 827–833. [Google Scholar] [CrossRef]
- García-Arias, M.T.; Sánchez-Muniz, F.J.; Castrillón, A.M.; Navarro, M.P. White tuna canning, total fat, and fatty acid changes during processing and storage. J. Food Compos. Anal. 1994, 7, 119–130. [Google Scholar] [CrossRef]
- Ganjavi, M.; Ezzatpanah, H.; Givianrad, M.H.; Shams, A. Effect of canned tuna fish processing steps on lead and cadmium contents of Iranian tuna fish. Food Chem. 2010, 118, 525–528. [Google Scholar] [CrossRef]
- Pérez-Martín, R.I.; Franco, J.M.; Aubourg, S.; Gallardo, J.M. Changes in free amino acids content in albacore (Thunnus alalunga) muscle during thermal processing. Z. Lebensm. Unters. Forsch. 1988, 187, 432–435. [Google Scholar] [CrossRef]
- Aubourg, S.P.; Losada, V.; Prego, R. Distribution of lipids and trace minerals in different muscle sites of farmed and wild turbot (Psetta maxima). Int. J. Food Sci. Technol. 2007, 42, 1456–1464. [Google Scholar] [CrossRef] [Green Version]
- Gall, K.L.; Otwell, W.S.; Koburgier, J.A.; Appledorf, H. Effects of four cooking methods on the proximate, mineral and fatty acid composition of fish fillets. J. Food Sci. 1983, 48, 1068–1074. [Google Scholar] [CrossRef]
- Turhan, S.; Sule Ustun, N.; Bogachan Altunkaynak, T. Effect of cooking methods on total and heme iron contents of anchovy (Engrauslis encrasicholus). Food Chem. 2004, 88, 169–172. [Google Scholar] [CrossRef]
- Seet, S.T.; Brown, W.D. Nutritional quality of raw, precooked and canned albacore tuna (Thunnus alalunga). J. Food Sci. 1983, 48, 288–289. [Google Scholar] [CrossRef]
Element | Certified | Measured | Unit |
---|---|---|---|
MACROELEMENTS | |||
Ca | 0.62 ± 0.05 | 0.62 ± 0.09 | g·kg−1 |
K | 18.9 ± 1.1 | 17.0 ± 0.5 | “ |
Mg | 1.05 ± 0.05 | 1.15 ± 0.05 | “ |
Na | 5.06 ± 0.07 | 5.72 ± 0.17 | “ |
P | 9.9 ± 0.1 | 10.6 ± 0.5 | “ |
S | 8.9 ± 0.5 | 8.5 ± 0.2 | “ |
TRACE ELEMENTS | |||
As | 18.0 ± 1.1 | 17.3 ± 1.8 | mg·kg−1 |
Ba | 2.34 ± 0.03 | 2.4 ± 0.3 | “ |
Cd | 0.043 ± 0.008 | 0.038 ± 0.002 | “ |
Co | 0.182 ± 0.031 | 0.16 ± 0.02 | “ |
Cu | 2.34 ± 0.16 | 1.92 ± 0.23 | “ |
Fe | 142 ± 10 | 105 ± 15 | “ |
Pb | 0.065 ± 0.007 | 0.047 ± 0.007 | “ |
Mn | 3.66 ± 0.34 | 3.02 ± 0.29 | “ |
Se | 1.40 ± 0.09 | 1.41 ± 0.12 | “ |
Sn | 0.023 ± 0.001 | 0.026 ± 0.009 | “ |
Element | Frozen Storage Time (Months) | High-Pressure Processing (HPP) (MPa) | |||
---|---|---|---|---|---|
CT | 200 | 400 | 600 | ||
Na (g·kg−1 dry muscle) | Initial raw fish | 2.31 A (0.04) | 2.31 A (0.04) | 2.31 A (0.04) | 2.31 A (0.04) |
0 | 5.07 abB (0.10) | 5.14 bB (0.06) | 4.95 aB (0.10) | 4.98 abB (0.28) | |
6 | 5.48 aC (0.22) | 5.46 aB (0.26) | 5.63 aC (0.24) | 5.40 aB (0.19) | |
K (g·kg−1 dry muscle) | Initial raw fish | 3.46 C (0.19) | 3.46 C (0.19) | 3.46 C (0.19) | 3.46 C (0.19) |
0 | 1.53 bB (0.05) | 1.55 bB (0.12) | 1.37 aB (0.02) | 1.29 aB (0.10) | |
6 | 1.10 aA (0.13) | 1.05 aA (0.11) | 1.05 aA (0.03) | 1.00 aA (0.05) | |
Mg (g·kg−1 dry muscle) | Initial raw fish | 0.51 C (0.02) | 0.51 C (0.02) | 0.51 C (0.02) | 0.51 C (0.02) |
0 | 0.18 bB (0.01) | 0.19 bB (0.01) | 0.16 aB (0.00) | 0.15 aB (0.01) | |
6 | 0.14 aA (0.01) | 0.13 aA (0.00) | 0.13 aA (0.00) | 0.13 aA (0.01) | |
Ba (mg·kg−1 dry muscle) | Initial raw fish | 0.054 B (0.003) | 0.054 B (0.003) | 0.054 B (0.003) | 0.054 B (0.003) |
0 | 0.085 cC (0.03) | 0.058 bB (0.06) | 0.047 bB (0.007) | 0.017 aA (0.004) | |
6 | 0.042 cA (0.007) | 0.039 cA (0.003) | 0.026 bA (0.005) | 0.015 aA (0.002) |
Element | Frozen Storage Time (Months) | High-Pressure Processing (HPP) (MPa) | |||
---|---|---|---|---|---|
CT | 200 | 400 | 600 | ||
Fe | Initial raw fish | 3.35 A (0.01) | 3.35 A (0.01) | 3.35 A (0.01) | 3.35 A (0.01) |
0 | 7.51 cC (0.05) | 6.64 bB (0.45) | 7.18 bcB (0.35) | 5.89 aB (0.11) | |
6 | 6.48 aB (0.07) | 7.28 bC (0.04) | 6.51 abB (0.59) | 6.86 abC (0.41) | |
Co | Initial raw fish | 0.0018 A (0.0003) | 0.0018 A (0.0003) | 0.0018 A (0.0003) | 0.0018 A (0.0003) |
0 | 0.0049 abB (0.0004) | 0.0055 bcC (0.0007) | 0.0042 aB (0.0004) | 0.0065 cC (0.0006) | |
6 | 0.0051 aB (0.0012) | 0.0041 aB (0.0003) | 0.0042 aB (0.0002) | 0.0044 aB (0.0007) | |
Cu | Initial raw fish | 0.36 A (0.03) | 0.36 A (0.03) | 0.36 A (0.03) | 0.36 A (0.03) |
0 | 0.54 abB (0.05) | 0.51 aB (0.04) | 0.71 cB (0.07) | 0.66 bcC (0.08) | |
6 | 0.59 aB (0.06) | 0.58 aB (0.05) | 0.70 bB (0.02) | 0.49 aB (0.05) |
Element | Frozen Storage Time (Months) | High-Pressure Processing (HPP) (MPa) | |||
---|---|---|---|---|---|
CT | 200 | 400 | 600 | ||
Sn | Initial raw fish | 0.0011 A (0.0006) | 0.0011 A (0.0006) | 0.0011 A (0.0006) | 0.0011 A (0.0006) |
0 | 0.0032 aB (0.0004) | 0.0042 aB (0.0005) | 0.0042 aB (0.0009) | 0.0034 aB (0.0008) | |
6 | 0.0045 aC (0.0002) | 0.0048 aB (0.0003) | 0.0053 aB (0.0005) | 0.0047 aB (0.0005) | |
Pb | Initial raw fish | 0.0127 B (0.0037) | 0.0127 B (0.0037) | 0.0127 B (0.0037) | 0.0127 B (0.0037) |
0 | 0.0032 abA (0.0012) | 0.0032 bA (0.0009) | 0.0025 bA (0.0001) | 0.0015 aA (0.0006) | |
6 | 0.0040 aA (0.0013) | 0.0037 aA (0.0000) | 0.0039 aA (0.0015) | 0.0030 aA (0.0008) | |
As | Initial raw fish | 1.02 A (0.05) | 1.02 A (0.05) | 1.02 A (0.05) | 1.02 A (0.05) |
0 | 1.20 aB (0.01) | 1.47 bB (0.09) | 1.30 abA (0.30) | 1.16 aA (0.08) | |
6 | 1.12 aAB (0.16) | 1.15 aAB (0.09) | 1.13 aA (0.10) | 1.17 aA (0.10) | |
Se | Initial raw fish | 0.42 A (0.02) | 0.42 A (0.02) | 0.42 A (0.02) | 0.42 A (0.02) |
0 | 0.81 aC (0.07) | 0.77 aB (0.06) | 0.92 bC (0.01) | 1.03 cC (0.04) | |
6 | 0.62 aB (0.03) | 0.74 bB (0.03) | 0.76 bB (0.03) | 0.78 bB (0.02) |
Element | Frozen Storage Time (Months) | High-Pressure Processing (HPP) (MPa) | |||
---|---|---|---|---|---|
CT | 200 | 400 | 600 | ||
P | Initial raw fish | 2.61 C (0.05) | 2.61 C (0.05) | 2.61 C (0.05) | 2.61 C (0.05) |
0 | 1.95 cB (0.05) | 1.86 bcB (0.15) | 1.67 abB (0.13) | 1.55 aB (0.03) | |
6 | 1.32 aA (0.07) | 1.35 aA (0.10) | 1.26 aA (0.08) | 1.23 aA (0.09) | |
S | Initial raw fish | 2.72 A (0.06) | 2.72 A (0.06) | 2.72 A (0.06) | 2.72 A (0.06) |
0 | 2.87 aB (0.06) | 2.74 aA (0.11) | 2.90 aB (0.07) | 3.13 bB (0.09) | |
6 | 2.74 aA (0.02) | 2.68 aA (0.09) | 2.73 aAB (0.10) | 3.11 bB (0.06) |
Prior Frozen Storage Time (Months) | High-Pressure Processing (HPP) (MPa) | |||
---|---|---|---|---|
CT | 200 | 400 | 600 | |
Initial raw fish | 717.2 AB (19.3) | 717.2 A (19.3) | 717.2 A (19.3) | 717.2 B (19.3) |
0 | 725.7 bB (4.1) | 730.6 bA (19.2) | 709.4 abA (18.5) | 679.4 aAB (28.8) |
6 | 707.8 bA (3.1) | 699.3 abA (12.9) | 709.1 bA (11.9) | 678.4 aA (12.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prego, R.; Vázquez, M.; Cobelo-García, A.; Aubourg, S.P. Macroelements and Trace Elements Content in Brine-Canned Mackerel (Scomber colias) Subjected to High-Pressure Processing and Frozen Storage. Foods 2020, 9, 1868. https://doi.org/10.3390/foods9121868
Prego R, Vázquez M, Cobelo-García A, Aubourg SP. Macroelements and Trace Elements Content in Brine-Canned Mackerel (Scomber colias) Subjected to High-Pressure Processing and Frozen Storage. Foods. 2020; 9(12):1868. https://doi.org/10.3390/foods9121868
Chicago/Turabian StylePrego, Ricardo, Manuel Vázquez, Antonio Cobelo-García, and Santiago P. Aubourg. 2020. "Macroelements and Trace Elements Content in Brine-Canned Mackerel (Scomber colias) Subjected to High-Pressure Processing and Frozen Storage" Foods 9, no. 12: 1868. https://doi.org/10.3390/foods9121868
APA StylePrego, R., Vázquez, M., Cobelo-García, A., & Aubourg, S. P. (2020). Macroelements and Trace Elements Content in Brine-Canned Mackerel (Scomber colias) Subjected to High-Pressure Processing and Frozen Storage. Foods, 9(12), 1868. https://doi.org/10.3390/foods9121868