The Possibility of Reduction of Synthetic Preservative E 250 in Canned Pork
Abstract
:1. Introduction
2. Materials and Methods
2.1. Canned Pork Preparation
2.2. Quality Attributes
2.2.1. Color Attributes and Nitrosylhemochrome Content
2.2.2. Antioxidant Capacity
2.2.3. Secondary Lipid Oxidation Products
2.2.4. pH Value
2.2.5. N-nitrosamines
2.2.6. Cholesterol Content
2.2.7. Water Activity
2.2.8. Nitrate and Nitrite Residues
2.2.9. Microbiological Evaluation
2.2.10. Sensory Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Color Attributes and Nitrosylhemochrome Content Analysis
3.2. Antioxidant Capacity Analysis
3.3. Secondary Lipid Oxidation Products and pH Values Analysis
3.4. Nitrosamine, Cholesterol, Nitrite and Nitrate Residues and Water Activity (aw) Analysis
3.5. Microbiological Analysis
3.6. Sensory Analysis
3.7. Verification of the Differences between Canned Pork with Various Amounts of Nitrite Using Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Keeton, J.T. History of Nitrite and Nitrate in Food. In Nitrite and Nitrate in Human Health and Disease; Bryan, N.S., Loscalzo, J., Eds.; The Human Press: Cham, Switzerland, 2011; pp. 85–87. [Google Scholar]
- Parthasarathy, K.; Bryan, N.S. Sodium nitrite: The “cure” for nitric oxide insufficiency. Meat Sci. 2012, 92, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Alahakoon, A.U.; Jayasena, D.D.; Ramachandra, S.; Jo, C. Alternatives to nitrite in processed meat: Up to date. Trends Food Sci. Tech. 2015, 45, 37–49. [Google Scholar] [CrossRef]
- Rivera, N.; Bunning, M.; Martin, J. Uncured-Labeled meat products produced using plant derived nitrates and nitrites: Chemistry, safety, and regulatory considerations. J. Agric. Food Chem. 2019, 67, 8074–8084. [Google Scholar] [CrossRef] [PubMed]
- Sindelar, J.J.; Milkowski, A.L. Human safety controversies surrounding nitrate and nitrite in the diet. Nitric Oxide 2012, 26, 259–266. [Google Scholar] [CrossRef] [PubMed]
- FECIS. Food Chain Evaluation Consortium. Study on the Monitoring of the Implementation of Directive 2006/52/EC as Regards the Use of Nitrites by Industry in Different Categories of Meat Products: Final Report. 2016. Available online: http://www.fecic.es/img/galeria/file/BUTLLETi%20INTERNACIONAL/ARXIUS%20BUTLLETI%20INTERNACIONAL/setmana%205/05.pdf (accessed on 12 February 2019).
- Food and Agriculture Organization of the United States/World Health Organization. Report of the 49th Session of the Codex Committee on Food Additives. 2017. Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.faoorg%252Fsites%252Fcodex%252FMeetings%252FCX-711-49%252FReport%252FREP17_FAe.pdf (accessed on 13 February 2019).
- Gassara, F.; Kouassi, A.P.; Brar, S.K.; Belkacem, K. Green Alternatives to Nitrates and Nitrites in Meat-based Products—A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2133–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Directive 2006/52/EC of the European Parliament and of the Council of 5 (July 2006). Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:204:0010:0022:EN:PDF (accessed on 13 February 2019).
- Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. Available online: https://eur-lex.europa.eu/eli/reg/2008/1333/2016-05-25 (accessed on 13 February 2019).
- Büyükünal, S.K.; Şakar, F.Ş.; Turhan, İ.; Erginbaş, Ç.; Sandikçi Altunatmaz, S.; Yilmaz Aksu, F.; Yilmaz Eker, F.; Kahraman, T. Presence of Salmonella spp., Listeria monocytogenes, Escherichia coli O157 and Nitrate-Nitrite Residue Levels in Turkish Traditional Fermented Meat Products (Sucuk and Pastırma). Kafkas Universitesi Veteriner Fakultesi Dergisi 2016, 22, 233–236. [Google Scholar] [CrossRef]
- Hospital, X.F.; Hierro, E.; Stringer, S.; Fernández, M. A study on the toxigenesis by Clostridium botulinum in nitrate and nitrite-reduced dry fermented sausages. Int. J. Food Microbiol. 2016, 218, 66–70. [Google Scholar] [CrossRef]
- Wójciak, K.M.; Kęska, P.; Okoń, A.; Solska, E.; Libera, J.; Dolatowski, Z.J. The influence of acid whey on the antioxidant peptides generated to reduce oxidation and improve colour stability in uncured roast beef. J. Sci. Food Agric. 2018, 98, 3728–3734. [Google Scholar] [CrossRef]
- Wójciak, K.M.; Karwowska, M.; Dolatowski, Z.J. Use of acid whey and mustard seed to replace nitrites during cooked sausage production. Meat Sci. 2014, 96, 750–756. [Google Scholar] [CrossRef]
- Ferysiuk, K.; Wójciak, K.M. Reduction of Nitrite in Meat Products Through the Application of Various Plant-Based Ingredients. Antioxidants 2020, 9, 711. [Google Scholar] [CrossRef]
- Sueprasarn, J.; Reabroy, S.; Pirak, T. Antioxidant properties of Karanda (Carissa carandas Linn.) extracts and its application in Thai traditional fermented pork sausage (Nham). Int. Food Res. J. 2017, 24, 1667–1675. [Google Scholar]
- Lin, Y.; Huang, M.; Zhou, G.; Zou, Y.; Xu, X. Prooxidant effects of the combination of green tea extract and sodium nitrite for accelerating lipolysis and lipid oxidation in pepperoni during storage. J. Food Sci. 2011, 76, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Marazzeq, A.K.; Haddadin, M.; Abdullah, M.A.L.; Angor, M. Effect of nitrite substitution with olive oil leaves extract on color and sensory properties of beef mortadella. J. Agric. Sci. 2015, 7, 120–128. [Google Scholar]
- Khaleghi, A.; Khosravi-Darani, K.; Rezaei, K. Combined Use of Black Barberry (Berberis crataegina L.) extract and nitrite in cooked beef sausage during the refrigerated storage. J. Agric. Sci. Technol. 2016, 18, 601–614. [Google Scholar]
- Ferysiuk, K.; Wójciak, K.M.; Materska, M.; Chilczuk, B.; Pabich, M. Modification of lipid oxidation and antioxidant capacity in canned refrigerated pork with a nitrite content reduced by half and addition of sweet pepper extract. LWT Food Sci. Technol. 2020, 118, 108738. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No. 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32005R2073&from=EN (accessed on 13 February 2019).
- Polski Komitet Normalizacyjny. Meat and Meat Products—Canned Meat; PN-A-82022; Polski Komitet Normalizacyjny: Warsaw, Poland, 1998. [Google Scholar]
- Frankel, E.N. Review. Recent advances in lipid oxidation. J. Sci. Food Agric. 1991, 54, 495–511. [Google Scholar] [CrossRef]
- Kanner, J. Oxidative processes in meat and meat products: Quality implications. Meat Sci. 1994, 36, 169–189. [Google Scholar] [CrossRef]
- Guardiola, F.; Codony, R.; Addis, P.B.; Rafecas, M.; Boatella, J. Biological effects of oxysterols: Current status. Food Chem. Toxicol. 1996, 34, 193–211. [Google Scholar] [CrossRef]
- Herrmann, S.S.; Duedahl-Olesen, L.; Granby, K. Nitrosoaminy occurrence of volatile and non-volatile N-nitrosamines in processed meat products and the role of heat treatment. Food Cont. 2015, 48, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Hornsey, H.C. The color of cooked cured pork, I.—Estimation of the nitric oxide heme pigments. J. Sci. Food Agric. 1956, 7, 534–540. [Google Scholar] [CrossRef]
- Hunt, R.W.G. A model of colour vision for predicting colour appearance in various viewing conditions. Color Res. Appl. 1987, 12, 297–314. [Google Scholar] [CrossRef]
- Jung, S.; Choe, J.C.; Kim, B.; Yun, H.; Kruk, Z.A.; Jo, C. Effect of dietary mixture of gallic acid and linoleic acid on antioxidative potential and quality of breast meat from broilers. Meat Sci. 2010, 86, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on the product of browning reaction prepared from glucose amine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.J.; Liua, S.; Lia, H.H.; Hea, J.; Fenga, J.T.; Hanga, X.; Yana, H. Effects of Portulaca oleracea L. extract on lipid oxidation and color of pork meat during refrigerated storage. Meat Sci. 2019, 147, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Drabik-Markiewicz, G.; Dejaegher, B.; De Mey, E.; Impens, S.; Kowalska, T.; Paelinck, H.; Vander Heyden, Y. Evaluation of the influence of proline, hydroxyproline or pyrrolidine in the presence of sodium nitrite on N-nitrosamine formation when heating cured meat. Analytica Chimica Acta 2010, 657, 123–130. [Google Scholar] [CrossRef] [PubMed]
- De Mey, E.; De Klerck, K.; De Maere, H.; Dewulf, L.; Derdelinckx, G.; Peeters, M.C.; Fraeye Vander Heyden, Y.; Paelinck, H. The occurrence of N-nitrosamines, residual nitrite and biogenic amines in commercial dry fermented sausages and evaluation of their occasional relation. Meat Sci. 2014, 96, 821–828. [Google Scholar] [CrossRef]
- Bandeira, I.; Ferreira, C.M.; Nogueira, J.M.; Bragagnolo, G.C.; Veado, N.; Sanches, J.C.C. Application of cholesterol determination method to indirectly detect meat and bone meals in ruminant feeds. Química Nova 2013, 36, 1222–1226. [Google Scholar] [CrossRef] [Green Version]
- UNI. Foodstuffs—Determination of Nitrate and/or Nitrite Content—Part 4: Ion-Exchange Chromatographic (IC) Method for the Determination of Nitrate and Nitrite Content of Meat Products; UNI EN 12014-4; UNI: Milano, Italy, 2005. [Google Scholar]
- Polski Komitet Normalizacyjny. Horizontal Method for the Determination of Clostridium Perfringens; PN-EN ISO 7937; Polish Committee for Standardization: Warsaw, Poland, 2005. [Google Scholar]
- Polski Komitet Normalizacyjny. Food Chain Microbiology—Horizontal Method for Determining the Presence of Hepatitis A Virus and Norovirus Using Real-Time RT-PCR—Part 2: Detection Method; PN-EN ISO 11290-2; Polish Committee for Standardization: Warsaw, Poland, 2017. [Google Scholar]
- Polish Committee for Standardization. Food Chain Microbiology—Horizontal Method for the Detection, Determination and Serotyping of Salmonella—Part 1: Detection; PN-EN ISO 6579-1; Polish Committee for Standardization: Warsaw, Poland, 2017. [Google Scholar]
- Polish Committee for Standardization. Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 degrees C by the Pour Plate Technique; PN-EN ISO 4833-1; Polish Committee for Standardization: Warsaw, Poland, 2013. [Google Scholar]
- Polish Committee for Standardization. Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile; ISO/DIS 13299.2; Polish Committee for Standardization: Warsaw, Poland, 1998. [Google Scholar]
- Tapp, W.N., III; Yancey, J.W.S.; Apple, J.K. How is the instrumental color of meat measured? Meat Sci. 2011, 89, 1–5. [Google Scholar] [CrossRef]
- Hammad, H.H.M.; Ma, M.; Jin, G.; He, L. Nitroso-Hemoglobin Preparation and Meat Product Colorant Development. J. Food Process. Technol. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Saputro, E.; Bintoro, V.P.; Pramono, Y.B. Color, pigment and residual nitrite of dendeng sapi naturally cured at various level of celery leaves and incubation temperatures. JITAA 2016, 41, 99–105. [Google Scholar]
- Sindelar, J.J.; Cordray, J.C.; Sebranek, J.G.; Love, J.A.; Ahn, D.U. Effects of varying levels of vegetable juice powder and incubation time on color, residual nitrate and nitrite, pigment, pH, and trained sensory attributes of ready-to-eat uncured ham. J. Food Sci. 2007, 72, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, M.H.; Hosseinpour, S.; Mesbahi, G.; Shekarforoush, S. New composite nitrite-free and low-nitrite meat-curing systems using natural colorants. Food Sci. Nutr. 2013, 1, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Suman, S.P.; Nair, M.N.; Joseph, P.; Hunt, M.C. Factors influencing internal color of cooked meats. Meat Sci. 2016, 120, 133–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serpen, A.; Gökmen, V.; Fogliano, V. Total antioxidant capacities of raw and cooked meats. Meat Sci. 2012, 90, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Arnao, M.B. Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends Food Sci. Technol. 2000, 11, 419–421. [Google Scholar] [CrossRef]
- Stoica, M. Overview of Sodium Nitrite As A Multifunctional Meatcuring Ingredient. Ann. Univ. Dunarea de Jos Galati Fascicle VI Food Technol. 2019, 43, 155–167. [Google Scholar] [CrossRef]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V. Mechanisms of Oxidative Processes in Meat and Toxicity Induced by Postprandial Degradation Products: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 96–123. [Google Scholar] [CrossRef]
- Seo, J.K.; Parvin, R.; Yim, D.G.; Zahid, M.A.; Yang, H.S. Effects on quality properties of cooked pork sausages with Caesalpinia sappan L. extract during cold storage. J. Food Sci. Technol. 2019, 56, 4946–4955. [Google Scholar] [CrossRef]
- Karwowska, M.; Kononiuk, A.; Wójciak, K. Impact of Sodium Nitrite Reduction on Lipid Oxidation and Antioxidant Properties of Cooked Meat Products. Antioxidants 2020, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.K.; Choi, J.S.; Yang, H.S.; Park, T.S.; Yim, D.G. Natural curing agents as nitrite alternatives and their effects on the physicochemical, microbiological properties and sensory evaluation of sausages during storage. Meat Sci. 2018, 146, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Czyzowska, A.; Efenberger, M.; Krala, L. Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat products. Int. J. Food Microbiol. 2016, 59, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, P.A.; Tichivangana, J.Z. The antioxidant activities of nitrite and nitrosylmyoglobin in cooked meats. Meat Sci. 1985, 14, 175–190. [Google Scholar] [CrossRef]
- Choi, Y.S.; Jeong, J.Y.; Choi, J.H.; Han, D.J.; Kim, H.Y.; Lee, M.A.; Paik, H.D.; Kim, C.J. Effect of packaging methods on the quality properties of stick type restrucEffect of Pre-Converted Nitrite on Cooked Pork Patties Restructured jerky. Korean J. Food Sci. An. Resour. 2007, 27, 290–298. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.M.; Hwang, K.E.; Lee, C.W.; Kim, T.K.; Park, Y.S.; Han, S.G. Effect of Swiss Chard (Beta vulgaris var. cicla) as Nitrite Replacement on Color Stability and Shelf-Life of Cooked Pork Patties during Refrigerated Storage. Korean J. Food Sci. An. Resour. 2017, 37, 418–428. [Google Scholar] [CrossRef] [Green Version]
- Benito, M.J.; Rodrı́guez, M.; Martı́n, A.; Aranda, E.; Córdoba, J.J. Effect of the fungal protease EPg222 on the sensory characteristics of dry fermented sausage “salchichón” ripened with commercial starter cultures. Meat Sci. 2004, 67, 497–505. [Google Scholar] [CrossRef]
- Min, J.S.; Khan, M.I.; Lee, S.O.; Yim, D.G.; Seol, K.H.; Lee, M.; Jo, C. Impact of Cooking, Storage, and Reheating Conditions on the Formation of Cholesterol Oxidation Products in Pork Loin. Korean J. Food Sci. An. Resour. 2016, 36, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Jackson, A.L.; Sullivan, G.A.; Kulchaiyawat, C.; Sebranek, J.G.; Dickson, J.M. Survival and Growth of Clostridium perfringens in Commercial No-Nitrate-or-Nitrite-Added (Natural and Organic) Frankfurters, Hams, and Bacon. J. Food Prot. 2011, 3, 410–416. [Google Scholar] [CrossRef]
- Hsu, J.; Arcot, J.; Lee, N.A. Nitrate and nitrite quantification from cured meat and vegetables and their estimated dietary intake in Australians. Food Chem. 2009, 115, 334–339. [Google Scholar] [CrossRef]
- Drabik-Markiewicz, G.; Dejaegher, B.; De Mey, E.; Kowalska, T.; Paelinck, H.; Vander Heyden, Y. Influence of putrescine, cadaverine, spermidine or spermine on the formation of N-nitrosamine in heated cured pork meat. Food Chem. 2011, 126, 1539–1545. [Google Scholar] [CrossRef]
- Chang, S.H.; Chen, C.H.; Tsai, G.J. Effects of Chitosan on Clostridium perfringens and Application in the Preservation of Pork Sausage. Mar. Drugs 2020, 18, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govari, M.; Pexara, A. Nitrates and Nitrites in meat products. J. Hellen. Vet. Med. Soc. 2018, 66, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Majou, D.; Christieans, S. Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Sci. 2018, 145, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, G.A.; Jackson-Davis, A.L.; Niebuhr, S.E.; Xi, Y.; Schrader, K.D.; Sebranek, J.G.; Dickson, J.S. Inhibition of Listeria monocytogenes Using Natural Antimicrobials in No-Nitrate-or-Nitrite-Added Ham. J. Food Prot. 2012, 75, 1071–1076. [Google Scholar] [CrossRef]
- Flores, M. Understanding the implications of current health trends on the aroma of wet and dry cured meat products. Meat Sci. 2018, 144, 53–61. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [Green Version]
Category of Hazard | Type of Hazard | Limits | Risks for Health | Preventive Measures | References |
---|---|---|---|---|---|
MICROBIOLOGICAL | L. monocytogenes | Absence in 25 g Before the food has left the immediate control of the food business operator, who has produced it or <100 cfu/g Products placed on the market during their shelf-life | At a dose above 1000 cfu/g may cause listeriosis | pH < 5.0 and aw < 0.94 or pH < 4.4 and aw < 0.92 | [21] |
C. botulinum | Absence in 1 g | Botulinum neurotoxin intoxication (MID = 5–10 ng botulinum toxin) | pH 4.8–8.0 aw < 0.94 Sterilization process: 121 °C, 5 min | [22] | |
Salmonella sp. | Absence in 25 g | At a dose above 105 cfu/g may cause salmonellosis | pH 4–8 aw < 0.92 Pasteurization process | [21] | |
CHEMICAL | Nitrate (E251-252) | Max. 100 mg/kg | May cause methemoglobinemia | Dose control | [10] |
Nitrite (E249-250) | Max. 100 mg/kg | ||||
Secondary lipid oxidation products, oxidized fatty acids, oxylipins, cholesterol oxides | TBARS <2.0 mg/kg and organoleptic analyses of intensity of the rancid taste/rancid aroma indicator <3 c.u. | Compounds initiating carcinogenesis in humans Lower nutritive value and poor sensory quality Mutagenicity, cytotoxicity | Addition of antioxidant Proper closing of products | [23,24,25] | |
N-nitrosamines (NDMA—N-nitrosodimethylamine, NDEA—N-nitrosodiethylamine, NPIP—N-nitrosopiperidine, NPYR—N-nitrosopyrrolidine) | <10 μg/kg Total volatile nitrosamine content for meat products No maximum permitted limits have been set for nitrosamines in food products in EU countries 10 μg/kg is the US limit for meat products | Compounds initiating carcinogenesis in humans | Reduction of nitrite addition Addition of reduction substances (ascorbate, erythorbate, tocopherol) | [26] |
Parameter | Sample | Storage Time (days) | |||
---|---|---|---|---|---|
1 | 60 | 90 | 180 | ||
Nitrosylhemochrome [mg/kg] | NF | 1.28 ± 0.23 Cb | 1.16 ± 0.21 Cb | 2.25 ± 0.28 Cab | 3.31 ± 0.74 Ca |
NH | 26.52 ± 0.65 Bb | 22.19 ± 1.23 Bb | 24.02 ± 1.27 Bb | 18.37 ± 1.11 Ba | |
N | 32.27 ± 0.51 Aa | 28.16 ± 1.16 Ab | 30.12 ± 1.67 Aab | 31.50 ± 1.15 Aab | |
N | 61.37 ± 0.44 Bb | 61.86 ± 0.43 Ab | 62.95 ± 0.34 Bab | 64.67 ± 0.60 Aa | |
L* | NH | 62.28 ± 0.55 Bb | 61.51 ± 0.85 Ab | 62.92 ± 0.68 Bab | 64.83 ± 0.49 Aa |
NF | 63.72 ± 0.60 Abc | 63.28 ± 0.52 Ac | 65.73 ± 0.52 Ab | 66.69 ± 0.86 Aa | |
N | 11.29 ± 0.18 Aab | 11.02 ± 0.30 Aab | 11.55 ± 0.22 Aa | 10.49 ± 0.17 Ab | |
a* | NH | 10.81 ± 0.27 Aa | 9.90 ± 0.45 Aa | 11.06 ±0.28 Aa | 9.89 ± 0.18 Ba |
NF | 5.86 ± 0.26 Ba | 5.11 ± 0.15 Bb | 6.16 ± 0.17 Ba | 6.40 ± 0.10 Ca | |
N | 8.60 ± 0.17 Ba | 8.95 ± 0.30Ba | 9.19 ± 0.11 Ba | 8.54 ± 0.18 Ba | |
b* | NH | 8.27 ± 0.13 Bb | 9.48 ± 0.28 Ba | 8.96 ± 0.19 Bab | 8.64 ± 0.17 Bb |
NF | 11.92 ± 0.26 Aa | 12.47 ± 0.18 Aa | 12.28 ± 0.17 Aa | 12.21 ± 0.17 Aa |
Parameter | Sample | Storage Time (days) | |||
---|---|---|---|---|---|
1 | 60 | 90 | 180 | ||
ABTS [mg/mL] | NF | 4.79 ± 0.02 Ba | 2.55 ± 0.10 Bb | 3.06 ± 0.08 Bc | 2.93 ± 0.08 Ab |
NH | 5.09 ± 0.18 Ba | 3.62 ± 0.22 Abc | 3.78 ± 0.09 Ab | 2.83 ± 0.34 ABc | |
N | 5.62 ± 0.16 Aa | 3.61 ± 0.06 Ab | 4.05 ± 0.20 Ab | 2.12 ± 0.12 Bc | |
DPPH [mg/mL] | NF | 0.01 ± 0.00 Bc | 0.02 ± 0.00 Aa | 0.02 ± 0.00 Ab | 0.02 ± 0.00 Aa |
NH | 0.02 ±0.00 Aa | 0.02 ± 0.00 Aa | 0.01 ± 0.00 Bb | 0.01 ± 0.00 Bb | |
N | 0.02 ± 0.00 Aa | 0.02 ± 0.00 Ba | 0.02 ± 0.00 Aa | 0.02 ± 0.00 Ba | |
FRAP [A700] | NF | 2.10 ± 0.13 Aa | 1.82 ± 0.04Ab | 1.19 ± 0.02 Bc | 1.83 ± 0.03 Ab |
NH | 1.50 ± 0.08 Ba | 1.67 ± 0.04 Aa | 1.53 ± 0.04 Aa | 1.63 ± 0.03 Ba | |
N | 1.99 ± 0.04 Aa | 1.36 ± 0.04 Bc | 1.10 ± 0.04 Bd | 1.59 ± 0.08 Bb |
Parameter | Sample | Storage Time (Days) | |||
---|---|---|---|---|---|
1 | 60 | 90 | 180 | ||
TBARS [mg MDA/kg] | NF | 0.01 ± 0.07 Ac | 0.40 ± 0.02 Aa | 0.31 ± 0.02 Ab | 0.35 ± 0.03 Ab |
NH | 0.01 ±0.48 Ab | 0.04 ± 0.00 Ba | 0.02 ± 0.00 Bb | 0.02 ± 0.00 Bb | |
N | 0.01 ± 0.11 Ab | 0.03 ± 0.00 Ba | 0.02 ± 0.01 Ba | 0.02 ± 0.00 Ba | |
pH | NF | 6.68 ± 0.00 Ba | 6.51 ± 0.01 Ab | 6.30 ± 0.01 Ac | 6.31 ± 0.02 Ac |
NH | 6.73 ± 0.00 Aa | 6.62 ± 0.01 Ab | 6.44 ± 0.01 Ac | 6.26 ± 0.04 Ad | |
N | 6.68 ± 0.00 Ba | 6.61 ± 0.01 Aab | 6.20 ± 0.22 Ab | 6.20 ± 0.05 Ab |
Parameter | Storage Time (Days) | |||||
---|---|---|---|---|---|---|
1 | 180 | |||||
Sample | ||||||
NF | NH | N | NF | NH | N | |
N-Nitrosodibutylamin (NDBA) [µg/kg] | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
N-Nitrosodiethylamin (NDEA) [µg/kg] | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
N-Nitrosodimethylamin (NDMA) [µg/kg] | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
N-Nitrosodipropylamin (NDPA) [µg/kg] | <0.5 | <0.5 | 0.6 | <0.5 | <0.5 | <0.5 |
N-Nitrosomorpholin (NMOR) [µg/kg] | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
N-Nitrosopiperidin (NPIP) [µg/kg] | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
N-Nitrosopyrrolidin [µg/kg] | <0.5 | <0.5 | <0.5 | <<0.5 | <0.5 | <0.5 |
Cholesterol [mg/kg] | 622 ± 124 | 620 ± 124 Cb | 673 ± 135 Aa | 560 ± 110 Cb | 670 ± 130 Ba | 673 ± 135 Aa |
Nitrate as NaNO3[mg/kg] | <10 Ca | 13 ± 3 Ba | 15 ± 3 Aa | <10 Ba | <10 Bb | 15Ab |
Nitrite as NaNO2[mg/kg] | <10 Ba | <10 Ba | 10 ± 2 Ab | <10 Ba | <10 Ba | 10 Aa |
aw | 0.984 ± 0.00 Aa | 0.982 ± 0.00 Aa | 0.982 ± 0.00 Aa | 0.975 ± 0.00 Ab | 0.967 ± 0.00 Bb | 0.960 ± 0.00 Cb |
Parameter | Time (days) | Sample (Mean ± SE) | ||
---|---|---|---|---|
NF | NH | N | ||
C. botulinum [cfu/g] | 1 | <10 | <10 | <10 |
180 | <10 | <10 | <10 | |
L. monocytogenes [cfu/g] | 1 | <10 | <10 | <10 |
180 | <10 | <10 | <10 | |
Salomonella [in 25 g] | 1 | n.d. | n.d. | n.d. |
180 | n.d. | n.d. | n.d. | |
TVC [cfu/g] | 1 | <10 | <10 | <10 |
180 | <10 | <10 | <10 |
Parameter | Time (Days) | Sample (Mean ± SE) | Linear Mixed Models (p) | |||
---|---|---|---|---|---|---|
NF | NH | N | NF vs N | NH vs N | ||
Meat color (c.u.) | 1 | 2.56 ± 1.65 | 8.83 ± 0.83 | 8.6 ± 1.07 | p < 0.001 * | p = 0.556 |
180 | 3.32 ± 1.79 | 7.2 ± 1.43 | 8.4 ± 1.08 | P < 0.001 * | p = 0.03 * | |
Fat color (c.u.) | 1 | 6.93 ± 2.68 | 8.74 ± 1.49 | 8.57 ± 1.62 | p = 0.062 | p = 0.773 |
180 | 7.58 ± 1.88 | 7.97 ± 2.07 | 8.03 ± 1.94 | p = 0.549 | p = 0.912 | |
Green color intensity (c.u.) | 1 | 1.36 ± 1.61 | 0.26 ± 0.33 | 0.23 ± 0.28 | p = 0.024 * | p = 0.801 |
180 | 1.00 ± 0.90 | 0.46 ± 0.81 | 0.17 ± 0.19 | p = 0.005 * | p = 0.183 | |
Compactness (c.u.) | 1 | 7.37 ± 2.35 | 7.66 ± 1.88 | 8.27 ± 1.55 | p = 0.422 | p = 0.609 |
180 | 6.67 ± 2.03 | 8.32 ± 1.54 | 8.32 ± 1.54 | p = 0.036 * | p = 1 | |
Juiciness (c.u.) | 1 | 7.34 ± 2.04 | 7.86 ± 1.54 | 7.69 ± 1.52 | p = 0.705 | p = 0.848 |
180 | 4.28 ± 3.10 | 4.14 ± 3.60 | 4.14 ± 3.60 | p = 0.778 | p = 1 | |
Hardness (c.u.) | 1 | 4.98 ± 1.95 | 4.99 ± 1.90 | 5.51 ± 2.01 | P = 0.584 | p = 0.601 |
180 | 5.91 ± 2.21 | 7.87 ± 1.34 | 7.87 ± 1.34 | p = 0.01 * | p = 1 | |
Overall quality (c.u.) | 1 | 5.51 ± 2.19 | 8.28 ± 1.94 | 8.62 ± 1.64 | p = 0.005* | p = 0.795 |
180 | 3.91 ± 2.23 | 5.69 ± 3.54 | 5.69 ± 3.54 | p = 0.146 | p = 1 | |
Rancid odor (c.u.) | 1 | 1.09 ± 0.74 | 0.29 ± 0.28 | 0.22 ± 0.19 | p < 0.001 * | p = 0.437 |
180 | 2.98 ± 2.68 | 2.04 ± 1.84 | 1.56 ± 2.18 | p = 0.187 | p = 0.612 | |
Metallic odor(c.u.) | 1 | 0.88 ± 1.03 | 0.32 ± 0.38 | 0.41 ± 0.45 | p = 0.133 | p = 0.572 |
180 | 1.17 ± 1.28 | 1.49 ± 1.42 | 0.96 ± 1.11 | p = 0.653 | p = 0.331 | |
Rancid flavor (c.u.) | 1 | 1.87 ± 2.23 | 0.48 ± 0.40 | 0.44 ± 0.38 | p = 0.032 * | p = 0.758 |
180 | 2.98 ± 2.68 | 2.04 ± 1.84 | 1.56 ± 2.18 | p = 0.187 | p = 0.612 | |
Metallic flavor (c.u.) | 1 | 0.66 ± 0.87 | 0.37 ± 0.41 | 0.43 ± 0.50 | p = 0.264 | p = 0.97 |
180 | 1.17 ± 1.28 | 1.49 ± 1.42 | 0.96 ± 1.11 | p = 0.653 | p = 0.331 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferysiuk, K.; Wójciak, K.M. The Possibility of Reduction of Synthetic Preservative E 250 in Canned Pork. Foods 2020, 9, 1869. https://doi.org/10.3390/foods9121869
Ferysiuk K, Wójciak KM. The Possibility of Reduction of Synthetic Preservative E 250 in Canned Pork. Foods. 2020; 9(12):1869. https://doi.org/10.3390/foods9121869
Chicago/Turabian StyleFerysiuk, Karolina, and Karolina M. Wójciak. 2020. "The Possibility of Reduction of Synthetic Preservative E 250 in Canned Pork" Foods 9, no. 12: 1869. https://doi.org/10.3390/foods9121869
APA StyleFerysiuk, K., & Wójciak, K. M. (2020). The Possibility of Reduction of Synthetic Preservative E 250 in Canned Pork. Foods, 9(12), 1869. https://doi.org/10.3390/foods9121869