Effect of Protein Denaturation Temperature on Rheological Properties of Baltic Herring (Clupea harengus membras) Muscle Tissue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Raw Material
2.2. Thermal Analysis
2.3. Kinetics Analyses Based on DSC
- r—reaction rate (1/min);
- α—degree of transformation;
- t—time (min).
- A—Arrhenius equation coefficient (1/min);
- E—activation energy (J/mol);
- R—universal gas constant (J/mol×K);
- β—sample heating rate (K/min).
- g(α)—integral kinetic model of the process;
- T0—transformation onset temperature (K);
- T—transformation end temperature (K).
- F(T)—random function for several measurement series.
2.4. Rheological Measurements
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alipour, H.J.; Shabanpoor, B.; Ali Shabani, A.; Sadeghi, A. Effects of cooking methods on physicochemical and nutritional properties of Persian sturgeon Acipenserpersicus fillet. Int. Aquat. Res. 2010, 2, 15–23. [Google Scholar]
- Trafiałek, J.; Kołożyn-Krajewska, D. Implementation of Safety Assurance System in Food Production in Poland. Pol. J. Food Nut. Sci. 2011, 61, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Trafiałek, J.; Zwoliński, M.; Kolanowski, W. Assessing hygiene practices during fish selling in retail stores. Br. Food J. 2016, 118, 2053–2067. [Google Scholar] [CrossRef]
- Venugopal, V.; Shahidi, F. Structure and composition of fish muscle. Food Rev. Int. 1996, 12, 175–197. [Google Scholar] [CrossRef]
- Tornberg, E. Effects of heat on meat proteins—Implications on structure and quality of meat products. Meat Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Gökoğlu, N.; Yerlikaya, P. Seafood Chilling, Refrigeration and Freezing: Science and Technology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Pielichowski, K. Application of Thermal Analysis in Analysis of Organic Materials; Conference materials; Mat. III Szkoły Analizy Termicznej: Zakopane, Poland, 2002. (In Polish) [Google Scholar]
- Balcerowiak, W. DSC—Characterisation of Phase Transitions; Conference materials; Mat. III Szkoły Analizy Termicznej: Zakopane, Poland, 2002. (In Polish) [Google Scholar]
- Kardas, M.; Grochowska-Niedworok, E. Differential scanning calorimetry as thermoanalytical method applied in pharmacy and food analysis. Bromat. Chem. Toksykol. 2009, 42, 224–230. (In Polish) [Google Scholar]
- Hastings, R.J.; Rodger, G.W.; Park, R.; Matthews, A.D.; Anderson, E.M. Differential scanning calorimetry of fish muscle—The effect of processing and species variation. J. Food Sci. 1985, 50, 503–504. [Google Scholar] [CrossRef]
- Davies, J.R.; Bradsley, R.G.; Leward, D.A.; Poulter, R.G. Myosin thermal stability in fish muscle. J. Sci. Food Agric. 1988, 45, 61–68. [Google Scholar] [CrossRef]
- Ofstad, R.; Kidman, S.; Myklebust, R.; Hermansson, A.M. Liquid holding capacity and structural-changes during heating of fish muscle-cod (Gadus morhua) and salmon (Salmo salar). Food Struct. 1993, 12, 163–174. [Google Scholar]
- Hęś, M.; Korczak, J. Influence of various factors on the rate of lipid oxidation. Nauka Przyr. Technol. 2007, 1, 1–15. (In Polish) [Google Scholar]
- Kołakowska, A. Fish lipids. The Role of Lipids in Meat. In Chemical, Biological and Functional Aspects of Food Lipids; Sikorski, Z.E., Kołakowska, A., Eds.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2011. [Google Scholar]
- Grinberg, V.J.; Burova, T.V.; Haertle, T.; Tolstoguzov, V.B. Interpretation of DSC data on protein denaturation complicated by kinetic and irreversible effects. J. Biotechnol. 2000, 79, 269–280. [Google Scholar] [CrossRef]
- Skipnes, D.; Van der Plancken, I.; Van Loey, A.; Hendrickx, M.E. Kinetics of heat denaturation of proteins from farmed Atlantic cod (Gadus morhua). J. Food Eng. 2008, 85, 51–58. [Google Scholar] [CrossRef]
- Ostrowska-Ligęza, E.; Bekas, W.; Kowalska, D.; Łobacz, M.; Wroniak, M.; Kowalski, B. Kinetics of commercial olive oil oxidation: Dynamic differential scanning calorimetry and Rancimat studies. Eur. J. Lipid Sci. Technol. 2010, 112, 268–274. [Google Scholar] [CrossRef]
- Santos, J.C.O.; Santos, I.M.; Conceiçăo, M.M.; Porto, S.L.; Trindade, M.F.S.; Souza, A.G.; Prasad, S.; Fernandes, V.J.; Araújo, A.S. Thermoanalytical, kinetic and rheological parameters of commercial edible vegetable oils. J. Therm. Anal. Calorim. 2004, 75, 419–442. [Google Scholar] [CrossRef]
- Sathivel, S.; Huang, J.; Prinyawiwatkul, W. Thermal properties and applications of the Arrhenius equation for evaluating viscosity and oxidation rates of unrefined pollock oil. J. Food Eng. 2008, 84, 187–193. [Google Scholar] [CrossRef]
- PN-A-86761: Ryby Świeże. Chłodzenie Lodem Wodnym; Polski Komitet Normalizacyjny: Warszawa, Poland, 1974.
- Nielsen, D.; Hyldig, G. Influence of handling procedures and biological factors on the QIM evaluation of whole herring (Clupeaharengus L.). Food Res. Int. 2004, 37, 975–983. [Google Scholar] [CrossRef]
- Maier, H.N. Beiträge zur Altersbestimmung der Fische. I. Allgemeines. Die Altersbestimmung von Otolithenbei Scholle und Kabeljau. Arb. Deutshen Wiss. Komm. Int. Meeresforsch. 1908, 5, 8–15. [Google Scholar]
- Fulton, T.W. The rate of growth of fishes. In Twenty-Second Annual Report; Part III; Fisheries Board of Scotland: Edinburgh, UK, 1904; pp. 41–241. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International; AOAC International: Arlington, VA, USA, 1990. [Google Scholar]
- Atkins, P. Chemia fizyczna; PWN: Warszawa, Poland, 2001. [Google Scholar]
- Bishop, C. Neural Networks for Pattern Recognition; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Bortnowska, G.; Kołakowski, E. Sezonowe zmiany rozpuszczalności białek mięśniowych leszcza. In Proceedings of the XXIV Sesja Naukowa KTiChŻ PAN, Wrocław, Poland, 29–30 June 1993; p. 87. [Google Scholar]
- Huges, R.B. Chemical studies on the herring (Clupea harengus) VII. Collagen and cohesiveness in heat-processed herring, and observations on a seasonal variation in collagen content. J. Sci. Food Agric. 1963, 14, 432–441. [Google Scholar] [CrossRef]
- Kołakowski, E.; Wianecki, M.; Milewska, I. Temperatura cieplnej koagulacji białek mięśniowych ryb i zwierząt rzeźnych wybranych gatunków. Żywność. Nauka. Technol. Jakość 2008, 6, 95–104. [Google Scholar]
- Beas, V.E.; Wagner, J.R.; Anon, M.C.; Crupkin, M. Thermal denaturation in fish muscle protein during gelling: Effect of spawning condition. J. Food Sci. 1991, 56, 281–284. [Google Scholar] [CrossRef]
- Larrea-Wachtendorff, D.; Tabilo-Munizaga, G.; Moreno-Osorio, L.; Villalobos-Carvajal, R.; Pérez-Won, M. Protein Changes Caused by High Hydrostatic Pressure (HHP): A Study Using Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared (FTIR) Spectroscopy. Food Eng. Rev. 2015, 7, 222–230. [Google Scholar] [CrossRef]
- Schubring, R.; Meyer, C. Iced storage, new aspects: Comparison between flake ice and stream ice—Part III: Herring (Clupea harengus). DeutLebensm-Rundsch 2007, 103, 203–212. [Google Scholar]
- Gill, T.A.; Chan, J.K.; Phonchareon, K.F.; Paulson, A.T. Effect of salt concentration and temperature on heat-induced aggregation and gelation of fish myosin. Food Res. Int. 1992, 25, 333–341. [Google Scholar] [CrossRef]
- Stodolnik, L.; Gabryszak, J. Wpływ związków lipidowych, produktów ich hydrolizy i utleniania, na białka tkanki mięśniowej dorsza bałtyckiego (Gadus morhua). Przemysł Spożywczy 1984, 38, 21–22. [Google Scholar]
- Visessanguan, W.; An, H. Effects of proteolysis and mechanism of gel weakening in heat-induced gelation of fish myosin. J. Agric. Food Chem. 2000, 48, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.Y.; Kong, M.S. Combined use of traditional and DSC methods in monitoring rigor mortis development of iced chub mackerel. J. Chin. Agric. Chem. Soc. 1997, 35, 333–341. [Google Scholar]
- Westphalen, A.D.; Briggs, J.L.; Lonergan, S.M. Influence of pH on rheological properties of porcine myofibrillar protein during heat induced gelation. Meat Sci. 2005, 70, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.F.; Smith, D.M.; Steffe, J.F. Effect of pH on the dynamic rheological properties of chicken breast salt soluble proteins during heat induced gelation. Poult. Sci. 1990, 69, 2220–2227. [Google Scholar] [CrossRef]
- Janitz, W. Interaction of lipids and meat proteins. 2. Digestibility of proteins in vitro, thermohydrolysis of collagen, changes in the content of essential amino acids and coefficients of the relative nutritive value of proteins. Z. Ernahr. 1987, 26, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, M.; Dileep, A.O.; Shamasundar, B.A. Effect of Water Washing on the Functional and Rheological Properties of Proteins from Threadfin Bream (Nemipterus japonicus) Meat. Int. J. Food Sci. Technol. 2006, 41, 1002–1010. [Google Scholar] [CrossRef]
- Sun, X.D.; Arntfield, S.D. Gelation Properties of Salt Extracted Pea Protein Induced by Heat Treatment. Food Res. Int. 2010, 43, 509–515. [Google Scholar] [CrossRef]
- Gill, T.A.; Conway, J.T. Thermal aggregation of cod muscle proteins using l-ethyl-3-(3-dimethylaminopropyl) carbodiimide as a zero-length cross-linker. Agric. Biol. Chem. 1989, 53, 2553–2562. [Google Scholar]
- Chan, I.K.; Gill, T.A.; Paulson, A.T. Thermal aggregation of myosin subfragments from cod and herring. J. Food Sci. 1993, 58, 1057–1061, 1069. [Google Scholar] [CrossRef]
- Ferry, J.D. Protein gels. Adv. Protein Chem. 1948, 4, 1–78. [Google Scholar] [PubMed]
Mechanism | Symbol | g(a) |
---|---|---|
1st order kinetics | F1 | [−ln (1 − a)] |
2nd order kinetics | F2 | (1 − a)−1 − 1 |
Sample | Peak Number | Td (°C) | Kinetic Model | E (J/mol) | A (1/min) |
---|---|---|---|---|---|
A | 1 | 44.50 | F1 | 244.46 | 1.30 × 1016 |
2 | 56.94 | F1 | 125.36 | 1.69 × 108 | |
3 | 72.29 | F2 | 116.67 | 3.04 × 107 | |
4 | 76.84 | F1 | 183.65 | 3.71 × 1011 | |
B | 1 | 43.28 | F1 | 92.53 | 5.25 × 105 |
2 | 57.85 | F1 | 86.43 | 1.48 × 105 | |
3 | 69.09 | F2 | 191.51 | 1.43 × 1012 | |
4 | 78.79 | F1 | 97.11 | 1.19 × 106 | |
C | 1 | 42.35 | F1 | 90.33 | 2.93 × 105 |
2 | 57.13 | F1 | 223.93 | 4.13 × 1014 | |
3 | 66.91 | F2 | 115.22 | 3.04 × 107 | |
4 | 77.87 | F1 | 106.42 | 5.23 × 106 | |
D | 1 | 43.66 | F1 | 183.60 | 3.70 × 1011 |
2 | 55.26 | F1 | 92.72 | 5.48 × 105 | |
3 | 67.76 | F2 | 86.40 | 1.47 × 105 | |
4 | 78.13 | F1 | 245.16 | 1.20 × 1016 | |
Average from A–D samples | 1 | 43.45 ± 0.89 | F1 | 152.7 ± 375.02 | 1.23 × 1011 ± 2.14 × 1011 |
2 | 56.79 ± 1.10 | F1 | 133.36 ± 62.56 | 1.03 × 1014 ± 2.06 × 1014 | |
3 | 69.01 ± 2.36 | F2 | 137.45 ± 45.74 | 3.58 × 1011 ± 7.15 × 1011 | |
4 | 77.91 ± 0.81 | F1 | 158.09 ± 69.82 | 3.00 × 1015 ± 6.00 × 1015 |
Sample | Peak Number | Neural Model | Spearman’s R Correlation Coefficient |
---|---|---|---|
A | 1 | MLP 1:24:1 | 0.998 |
2 | MLP 1:32:1 | 0.989 | |
3 | MLP 1:36:1 | 0.973 | |
4 | MLP 1:24:1 | 0.998 | |
B | 1 | MLP 1:45:1 | 0.976 |
2 | MLP 1:31:1 | 0.969 | |
3 | MLP 1:32:1 | 0.983 | |
4 | MLP 1:24:1 | 0.958 | |
C | 1 | MLP 1:21:1 | 0.979 |
2 | MLP 1:29:1 | 0.972 | |
3 | MLP 1:53:1 | 0.993 | |
4 | MLP 1:25:1 | 0.981 | |
D | 1 | MLP 1:21:1 | 0.989 |
2 | MLP 1:25:1 | 0.999 | |
3 | MLP 1:24:1 | 0.988 | |
4 | MLP 1:34:1 | 0.978 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strzelczak, A.; Balejko, J.; Szymczak, M.; Witczak, A. Effect of Protein Denaturation Temperature on Rheological Properties of Baltic Herring (Clupea harengus membras) Muscle Tissue. Foods 2021, 10, 829. https://doi.org/10.3390/foods10040829
Strzelczak A, Balejko J, Szymczak M, Witczak A. Effect of Protein Denaturation Temperature on Rheological Properties of Baltic Herring (Clupea harengus membras) Muscle Tissue. Foods. 2021; 10(4):829. https://doi.org/10.3390/foods10040829
Chicago/Turabian StyleStrzelczak, Agnieszka, Jerzy Balejko, Mariusz Szymczak, and Agata Witczak. 2021. "Effect of Protein Denaturation Temperature on Rheological Properties of Baltic Herring (Clupea harengus membras) Muscle Tissue" Foods 10, no. 4: 829. https://doi.org/10.3390/foods10040829
APA StyleStrzelczak, A., Balejko, J., Szymczak, M., & Witczak, A. (2021). Effect of Protein Denaturation Temperature on Rheological Properties of Baltic Herring (Clupea harengus membras) Muscle Tissue. Foods, 10(4), 829. https://doi.org/10.3390/foods10040829