Assessment of Physicochemical Characteristics and Microbiological Quality in Broiler Chicken Breast Muscle (Pectoralis major) Subjected to Different Temperatures and Lengths of Cold Transportation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meat Quality Analysis
2.1.1. Drip Loss and Cooking Loss Determination
2.1.2. Color Value Measurement
2.1.3. Shear Force Measurement
2.1.4. pH Value Determination
2.2. Microbiological Analysis
2.3. Design and Statistical Analysis
3. Results
3.1. Drip Loss and Cooking Loss
3.2. Color Values
3.3. pH Values
3.4. Shear Force Values
3.5. Coliform and Salmonella Population
4. Discussion
4.1. Effects of Different Transportation Temperatures and Transportation Durations on Water Holding Capacity
4.2. Effects of Different Transportation Temperatures and Transportation Durations on Color
4.3. Effects of Different Transportation Temperatures and Transportation Durations on pH
4.4. Effects of Different Transportation Temperatures and Transportation Durations on Tenderness
4.5. Effects of Different Transportation Temperatures and Transportation Durations on Microbial Population
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adeyemi, K.D.; Sazili, A.Q. Efficacy of carcass electrical stimulation in meat quality enhancement: A review. Asian-Australas J. Anim. Sci. 2014, 27, 447–456. [Google Scholar] [CrossRef] [Green Version]
- McCrea, B.A.; Tonooka, K.H.; VanWorth, C.; Boggs, C.L.; Atwill, E.R.; Schrader, J.S. Prevalence of Campylobacter and Salmonella species on farm, after transport, and at processing in specialty market poultry. Poult Sci. 2006, 85, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Devine, C.E.; Graham, R.G.; Lovatt, S.; Chrystall, B.B. Chapter 2: Red meats. In Freezing Effects on Food Quality, 1st ed.; Jeremiah, L.E., Ed.; CRC Press: Boca Raton, FL, USA, 1995; pp. 51–86. [Google Scholar]
- Anon, M.C.; Calvelo, A. Freezing rate effects on the drip loss of frozen beef. Meat Sci. 1980, 4, 1–14. [Google Scholar] [CrossRef]
- Ab Aziz, M.F.; Hayat, M.N.; Kaka, U.; Kamarulzaman, N.H.; Sazili, A.Q. Physico-Chemical Characteristics and Microbiological Quality of Broiler Chicken Pectoralis major Muscle Subjected to Different Storage Temperature and Duration. Foods 2020, 9, 741. [Google Scholar] [CrossRef] [PubMed]
- Poghossian, A.; Geissler, H.; Schöning, M.J. Rapid methods and sensors for milk quality monitoring and spoilage detection. Biosens. Bioelectron. 2019, 140, 111272. [Google Scholar] [CrossRef] [PubMed]
- Rouger, A.; Tresse, O.; Zagorec, M. Bacterial contaminants of poultry meat: Sources, species, and dynamics. Microorganisms 2017, 5, 50. [Google Scholar] [CrossRef]
- Trmčić, A.; Martin, N.H.; Boor, K.J.; Wiedmann, M. A standard bacterial isolate set for research on contemporary dairy spoilage. J. Dairy Sci. 2015, 98, 5806–5817. [Google Scholar] [CrossRef] [Green Version]
- Ledenbach, L.H.; Marshall, R.T. Microbiological spoilage of dairy products. In Compendium of the Microbiological Spoilage of Foods and Beverages; Springer: New York, NY, USA, 2009; pp. 42–67. [Google Scholar]
- Liu, F.; Yang, R.Q.; Li, Y.F. Correlations between growth parameters of spoilage micro-organisms and shelf-life of pork stored under air and modified atmosphere at −2, 4 and 10 °C. Food Microbiol. 2006, 23, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Guo, Y.Z.; Li, Y.F. Interactions of microorganisms during natural spoilage of pork at 5 °C. J. Food Eng. 2006, 72, 24–29. [Google Scholar] [CrossRef]
- FSIS U. Pathogen reduction: Hazard analysis and critical control point (HACCP) systems; final rule. Federal Register. 1996, 61, 38806–38989. [Google Scholar]
- Lagerstedt, Å.; Enfält, L.; Johansson, L.; Lundström, K. Effect of freezing on sensory quality, shear force and water loss in beef M. longissimus dorsi. Meat Sci. 2008, 80, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Farouk, M.M.; Wieliczko, K.J.; Merts, I. Ultra-fast freezing and low storage temperatures are not necessary to maintain the functional properties of manufacturing beef. Meat Sci. 2003, 66, 171–179. [Google Scholar] [CrossRef]
- Wheeler, T.L.; Miller, R.K.; Savell, J.W.; Cross, H.R. Palatability of chilled and frozen beef steaks. J. Food Sci. 1990, 55, 301–304. [Google Scholar] [CrossRef]
- Franco, C.M.; Quinto, E.J.; Fente, C.; Rodriguez-Otero, J.L.; Dominguez, L.; Cepeda, A. Determination of the principal sources of Listeria spp. contamination in poultry meat and a poultry processing plant. J. Food Prot. 1995, 58, 1320–1325. [Google Scholar] [CrossRef]
- Leygonie, C.; Britz, T.J.; Hoffman, L.C. Impact of freezing and thawing on the quality of meat: Review. Meat Sci. 2012, 91, 93–98. [Google Scholar] [CrossRef]
- Jouki, M.; Khazaei, N. Effects of storage time on some characteristics of packed camel meat in low temperature. Int. J. Anim. Vet Adv. 2011, 3, 460–464. [Google Scholar]
- Vieira, C.; Diaz, M.T.; Martínez, B.; García-Cachán, M.D. Effect of frozen storage conditions (temperature and length of storage) on microbiological and sensory quality of rustic crossbred beef at different states of ageing. Meat Sci. 2009, 83, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Ngapo, T.M.; Babare, I.H.; Reynolds, J.; Mawson, R.F. Freezing and thawing rate effects on drip loss from samples of pork. Meat Sci. 1999, 53, 149–158. [Google Scholar] [CrossRef]
- Yang, C.C.; Chen, T.C. Effects of refrigerated storage, pH adjustment, and marinade on color of raw and microwave cooked chicken meat. Poult Sci. 1993, 72, 355–362. [Google Scholar] [CrossRef]
- MS 1500:2009 Malaysian Department of Standards (DOS). Halal Food-Production, Preparation, Handling and Storage-General Guidelines (Second Revision); Department of Standards Malaysia: Selangor Darul Ehsan, Malaysia, 2009.
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Nakyinsige, K.; Fatimah, A.B.; Aghwan, Z.A.; Zulkifli, I.; Goh, Y.M.; Sazili, A.Q. Bleeding efficiency and meat oxidative stability and microbiological quality of New Zealand white rabbits subjected to halal slaughter without stunning and gas stun-killing. Asian-Australas J. Anim. Sci. 2014, 27, 406–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, R.S.; Harold, R.W. The Measurement of Appearance; Hunter Associates Laboratory. Inc.: Reston, VA, USA, 1987. [Google Scholar]
- Bendall, J.R. Cold-contracture and ATP-turnover in the red and white musculature of the pig, post mortem. J. Sci. Food Agric. 1975, 26, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Sabow, A.B.; Zulkifli, I.; Goh, Y.M.; Ab Kadir, M.Z.A.; Kaka, U.; Imlan, J.C.; Abubakar, A.A.; Adeyemi, K.D.; Sazili, A.Q. Bleeding efficiency, microbiological quality and oxidative stability of meat from goats subjected to slaughter without stunning in comparison with different methods of pre-slaughter electrical stunning. PLoS ONE 2016, 11, e0152661. [Google Scholar]
- Offer, G.; Trinick, J. On the mechanism of water holding in meat: The swelling and shrinking of myofibrils. Meat Sci. 1983, 8, 245–281. [Google Scholar] [CrossRef]
- Farouk, M.M.; Al-Mazeedi, H.M.; Sabow, A.B.; Bekhit, A.E.D.; Adeyemi, K.D.; Sazili, A.Q.; Ghani, A. Halal and kosher slaughter methods and meat quality: A review. Meat Sci. 2014, 98, 505–519. [Google Scholar] [CrossRef]
- Yu, L.H.; Lee, E.S.; Jeong, J.Y.; Paik, H.D.; Choi, J.H.; Kim, C.J. Effects of thawing temperature on the physicochemical properties of pre-rigor frozen chicken breast and leg muscles. Meat Sci. 2005, 71, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, N.R.; Mohd Zamri, A.N.; Sabow, A.B.; Kareem, K.Y.; Nurhazirah, S.; Ling, F.H.; Sazili, A.Q.; Loh, T.C. Physico-chemical properties of breast muscle in broiler chickens fed probiotics, antibiotics or antibiotic–probiotic mix. J. Appl. Anim. Res. 2017, 45, 64–70. [Google Scholar] [CrossRef]
- Muela, E.; Sañudo, C.; Campo, M.M.; Medel, I.; Beltrán, J.A. Effect of freezing method and frozen storage duration on instrumental quality of lamb throughout display. Meat Sci. 2010, 84, 662–669. [Google Scholar] [CrossRef]
- Swatland, H.J. How pH causes paleness or darkness in chicken breast meat. Meat Sci. 2008, 80, 396–400. [Google Scholar] [CrossRef]
- Bekhit, A.E.D.; Faustman, C. Metmyoglobin reducing activity. Meat Sci. 2005, 71, 407–439. [Google Scholar] [CrossRef]
- Kim, G.; Jeong, J.Y.; Hur, S.J.; Yang, H.S.; Jeon, J.T.; Joo, S.T. The relationship between meat color (CIE L* and a*), myoglobin content, and their influence on muscle fiber characteristics and pork quality. Korean J. Food Sci. An. 2010, 30, 626–633. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, M.B.; Marchello, J.A.; Ahmad, H.A. Effect of freezing and microbial growth on myoglobin derivatives of beef. J. Agric. Food Chem. 1999, 47, 4093–4099. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D.; Russell, S.M.; Fletcher, D.L. The relationship of broiler breast meat color and pH to shelf-life and odor development. Poult. Sci. 1997, 76, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.G.; Brewer, M.S. Discoloration of fresh pork as related to muscle and display conditions. J. Food Sci. 1998, 63, 1–5. [Google Scholar] [CrossRef]
- Leygonie, C.; Britz, T.J.; Hoffman, L.C. Oxidative stability of previously frozen ostrich Muscularis iliofibularis packaged under different modified atmospheric conditions. Int. J. Food Sci. 2011, 46, 1171–1178. [Google Scholar] [CrossRef]
- Kobayashi, K.I.; Matsui, Y.; Maebuchi, Y.; Toyota, T.; Nakauchi, S. Near infrared spectroscopy and hyperspectral imaging for prediction and visualisation of fat and fatty acid content in intact raw beef cuts. J. Near Infrared Spec. 2010, 18, 301–315. [Google Scholar] [CrossRef]
- Salwani, M.S.; Adeyemi, K.D.; Sarah, S.A.; Vejayan, J.; Zulkifli, I.; Sazili, A.Q. Skeletal muscle proteome and meat quality of broiler chickens subjected to gas stunning prior slaughter or slaughtered without stunning. Cyta-J. Food 2015, 14, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Devine, C.E.; Payne, S.R.; Peachey, B.M.; Lowe, T.E.; Ingram, J.R.; Cook, C.J. High and low rigor temperature effects on sheep meat tenderness and ageing. Meat Sci. 2002, 60, 141–146. [Google Scholar] [CrossRef]
- Farouk, M.M.; Wieliczko, K.J. Effect of diet and fat content on the functional properties of thawed beef. Meat Sci. 2003, 64, 451–458. [Google Scholar] [CrossRef]
- Shanks, B.C.; Wulf, D.M.; Maddock, R.J. Technical note: The effect of freezing on Warner–Bratzler shear force values of beef longissimus steaks across several post mortem aging periods. J. Anim. Sci. 2002, 80, 2122–2125. [Google Scholar] [PubMed] [Green Version]
- Sabow, A.B.; Sazili, A.Q.; Zulkifli, I.; Goh, Y.M.; Kadir, M.Z.A.A.; Adeyemi, K.D. Physico-chemical characteristics of L ongissimus lumborum muscle in goats subjected to halal slaughter and anesthesia (halothane) pre-slaughter. Anim. Sci. J. 2015, 86, 981–991. [Google Scholar] [CrossRef] [PubMed]
- Djenane, D.; Aïder, M.; Yangüela, J.; Idir, L.; Gómez, D.; Roncalés, P. Antioxidant and antibacterial effects of Lavandula and Mentha essential oils in minced beef inoculated with E. coli O157: H7 and S. aureus during storage at abuse refrigeration temperature. Meat Sci. 2012, 92, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Fung, Y.C. Part 3: Microbial hazards in foods: Food-borne infections and intoxications. In Handbook of Meat Processing, 1st ed.; Toldra, F., Ed.; Wiley-Blackwell, John Wiley & Sons, Inc, Publication: Ames, IA, USA, 2010; pp. 481–500. [Google Scholar]
Temperature (°C) | Transportation Duration | p-Value (Dur) | p-Value (Temp × Dur) | |
---|---|---|---|---|
1 h | 5 h | |||
Mean | Mean | |||
4 | 2.17 ± 0.22 a,x | 1.93 ± 0.12 a,x | 0.3755 | 0.3926 |
10 | 2.39 ± 0.18 a,x | 1.64 ± 0.11 a,y | 0.0254 | |
15 | 2.27 ± 0.32 a,x | 1.68 ± 0.09 a,x | 0.0906 | |
p-Value (Temp) | 0.8365 | 0.1797 |
Temperature (°C) | Transportation Duration | p-Value (Dur) | p-Value (Temp × Dur) | |
---|---|---|---|---|
1 h | 5 h | |||
Mean | Mean | |||
4 | 4.01 ± 0.15 a,x | 3.89 ± 0.12 a,x | 0.5532 | 0.9695 |
10 | 3.65 ± 0.23 a,x | 3.88 ± 0.13 a,x | 0.3641 | |
15 | 4.04 ± 0.19 a,x | 3.86 ± 0.12 a,x | 0.4534 | |
p-Value (Temp) | 0.3412 | 0.9888 |
Color | Temperature (°C) | Transportation Duration | p-Value (Dur) | p-Value (Temp × Dur) | |
---|---|---|---|---|---|
1 h | 5 h | ||||
Mean | Mean | ||||
Lightness (L*) | 4 | 49.62 ± 0.71 a,y | 56.74 ± 0.85 a,x | 0.0002 | 0.0619 |
10 | 48.09 ± 0.35 a,y | 57.15 ± 0.35 a,x | <0.0001 | ||
15 | 48.16 ± 0.47 a,y | 57.37 ± 0.52 a,x | <0.0001 | ||
p-Value (Temp) | 0.1142 | 0.7609 | |||
Redness (a*) | 4 | 3.76 ± 0.19 b,x | 2.69 ± 0.20 b,y | 0.0052 | 0.9467 |
10 | 3.72 ± 0.07 b,x | 2.55 ± 0.09 b,y | <0.0001 | ||
15 | 4.52 ± 0.09 a,x | 3.47 ± 0.12 a,y | 0.0002 | ||
p-Value (Temp) | 0.0017 | 0.0015 | |||
Yellowness (b*) | 4 | 16.99 ± 0.24 a,x | 12.93 ± 0.53 a,y | 0.0001 | 0.9253 |
10 | 17.19 ± 0.17 a,x | 13.55 ± 0.19 b,y | <0.0001 | ||
15 | 17.18 ± 0.18 a,x | 13.03 ± 0.36 a,y | <0.0001 | ||
p-Value (Temp) | 0.7327 | 0.4819 |
Temperature (°C) | Transportation Duration | p-Value (Dur) | p-Value (Temp × Dur) | ||
---|---|---|---|---|---|
0 h | 1 h | 5 h | |||
Mean | Mean | Mean | |||
4 | 5.68 ± 0.07 a,x | 5.27 ± 0.07 a,y | 5.11 ± 0.05 a,y | 0.0001 | |
10 | 5.65 ± 0.09 a,x | 5.17 ± 0.07 a,y | 5.07 ± 0.05 a,y | 0.0002 | 0.8273 |
15 | 5.77 ± 0.02 a,x | 5.26 ± 0.07 a,y | 5.14 ± 0.07 a,y | <0.0001 | |
p-Value (Temp) | 0.3997 | 0.5369 | 0.7763 |
Temperature (°C) | Transportation Duration | p-Value (Dur) | p-Value (Temp × Dur) | ||
---|---|---|---|---|---|
0 h | 1 h | 5 h | |||
Mean | Mean | Mean | |||
4 | 1.60 ± 0.02 a,x | 1.56 ± 0.02 a,x,y | 1.53 ± 0.02 a,y | 0.0696 | |
10 | 1.57 ± 0.04 a,x | 1.54 ± 0.04 a,x | 1.54 ± 0.06 a,x | 0.8749 | 0.7110 |
15 | 1.58 ± 0.02 a,x | 1.56 ± 0.02 a,x | 1.54 ± 0.03 a,x | 0.4182 | |
p-Value (Temp) | 0.6992 | 0.8134 | 0.9924 |
Temperature (°C) | Transportation Duration | p-Value (Dur) | p-Value (Temp × Dur) | |
---|---|---|---|---|
1 h | 5 h | |||
Mean | Mean | |||
4 | 5.71 ± 0.02 b,y | 5.95 ± 0.02 b,x | <0.0001 | |
10 | 5.91 ± 0.05 a,y | 6.08 ± 0.04 a,x | 0.0275 | 0.0526 |
15 | 6.02 ± 0.05 a,x | 6.13 ± 0.01 a,x | 0.0610 | |
p-Value (Temp) | 0.0007 | 0.0021 |
Temperature (°C) | Transportation Duration | p-Value (Dur) | p-Value (Temp × Dur) | |
---|---|---|---|---|
1 h | 5 h | |||
Mean | Mean | |||
4 | 6.53 ± 0.06 b,y | 6.74 ± 0.02 c,x | 0.0131 | |
10 | 6.80 ± 0.07 a,y | 6.91 ± 0.04 b,x | 0.2219 | 0.2989 |
15 | 6.95 ± 0.08 a,x | 7.05 ± 0.02 a,x | 0.2355 | |
p-Value (Temp) | 0.0040 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayat, M.N.; Kaka, U.; Sazili, A.Q. Assessment of Physicochemical Characteristics and Microbiological Quality in Broiler Chicken Breast Muscle (Pectoralis major) Subjected to Different Temperatures and Lengths of Cold Transportation. Foods 2021, 10, 874. https://doi.org/10.3390/foods10040874
Hayat MN, Kaka U, Sazili AQ. Assessment of Physicochemical Characteristics and Microbiological Quality in Broiler Chicken Breast Muscle (Pectoralis major) Subjected to Different Temperatures and Lengths of Cold Transportation. Foods. 2021; 10(4):874. https://doi.org/10.3390/foods10040874
Chicago/Turabian StyleHayat, Muhammad Nizam, Ubedullah Kaka, and Awis Qurni Sazili. 2021. "Assessment of Physicochemical Characteristics and Microbiological Quality in Broiler Chicken Breast Muscle (Pectoralis major) Subjected to Different Temperatures and Lengths of Cold Transportation" Foods 10, no. 4: 874. https://doi.org/10.3390/foods10040874
APA StyleHayat, M. N., Kaka, U., & Sazili, A. Q. (2021). Assessment of Physicochemical Characteristics and Microbiological Quality in Broiler Chicken Breast Muscle (Pectoralis major) Subjected to Different Temperatures and Lengths of Cold Transportation. Foods, 10(4), 874. https://doi.org/10.3390/foods10040874