Volatile Composition of Industrially Fermented Table Olives from Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Headspace Solid-Phase Microextraction (SPME)
2.3. Gas Chromatography–Mass Spectrometry
2.4. Statistical Analysis
3. Results and Discussion
3.1. Volatile Composition of Table Olives
3.2. Effect of Cultivar on Volatile Profile
3.3. Effect of Geographical Origin on Volatile Profile
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Olive Oil Council. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2020/12/IOC-Table-Olive-Dashboard-December-2020.html#production-2 (accessed on 17 March 2021).
- Kazou, M.; Tzamourani, A.; Panagou, E.Z.; Tsakalidou, E. Unraveling the Microbiota of Natural Black Cv. Kalamata Fermented Olives through 16S and ITS Metataxonomic Analysis. Microorganisms 2020, 8, 672. [Google Scholar] [CrossRef]
- Argyri, K.; Doulgeraki, A.I.; Manthou, E.; Grounta, A.; Argyri, A.A.; Nychas, G.-J.E.; Tassou, C.C. Microbial Diversity of Fermented Greek Table Olives of Halkidiki and Konservolia Varieties from Different Regions as Revealed by Metagenomic Analysis. Microorganisms 2020, 8, 1241. [Google Scholar] [CrossRef]
- Panagou, E.Z.; Hondrodimou, O.; Mallouchos, A.; Nychas, G.-J.E. A Study on the Implications of NaCl Reduction in the Fermentation Profile of Conservolea Natural Black Olives. Food Microbiol. 2011, 28, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Stan Kailis, D.H. (Ed.) Producing Table Olives; Landlinks Press: Collingwood, Australia, 2007; ISBN 978-0-643-09950-0. [Google Scholar]
- Panagou, E.Z.; Tassou, C.C. Changes in Volatile Compounds and Related Biochemical Profile during Controlled Fermentation of Cv. Conservolea Green Olives. Food Microbiol. 2006, 23, 738–746. [Google Scholar] [CrossRef]
- Sabatini, N. Chapter 24—A Comparison of the Volatile Compounds, in Spanish-style, Greek-style and Castelvetrano-style Green Olives of the Nocellara del Belice Cultivar: Alcohols, Aldehydes, Ketones, Esters and Acids. In Olives and Olive Oil in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Eds.; Academic Press: San Diego, CA, USA, 2010; pp. 219–231. ISBN 978-0-12-374420-3. [Google Scholar]
- Montaño, A.; Sánchez, A.H.; Casado, F.J.; de Castro, A.; Rejano, L. Chemical Profile of Industrially Fermented Green Olives of Different Varieties. Food Chem. 2003, 82, 297–302. [Google Scholar] [CrossRef]
- Iraqi, R.; Vermeulen, C.; Benzekri, A.; Bouseta, A.; Collin, S. Screening for Key Odorants in Moroccan Green Olives by Gas Chromatography−Olfactometry/Aroma Extract Dilution Analysis. J. Agric. Food Chem. 2005, 53, 1179–1184. [Google Scholar] [CrossRef] [PubMed]
- Panagou, E.Z.; Schillinger, U.; Franz, C.M.A.P.; Nychas, G.-J.E. Microbiological and Biochemical Profile of Cv. Conservolea Naturally Black Olives during Controlled Fermentation with Selected Strains of Lactic Acid Bacteria. Food Microbiol. 2008, 25, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Blana, V.A.; Grounta, A.; Tassou, C.C.; Nychas, G.-J.E.; Panagou, E.Z. Inoculated Fermentation of Green Olives with Potential Probiotic Lactobacillus Pentosus and Lactobacillus Plantarum Starter Cultures Isolated from Industrially Fermented Olives. Food Microbiol. 2014, 38, 208–218. [Google Scholar] [CrossRef]
- Sabatini, N.; Mucciarella, M.R.; Marsilio, V. Volatile Compounds in Uninoculated and Inoculated Table Olives with Lactobacillus Plantarum (Olea Europaea L., Cv. Moresca and Kalamata). LWT—Food Sci. Technol. 2008, 41, 2017–2022. [Google Scholar] [CrossRef]
- Sabatini, N.; Marsilio, V. Volatile Compounds in Table Olives (Olea Europaea L., Nocellara Del Belice Cultivar). Food Chem. 2008, 107, 1522–1528. [Google Scholar] [CrossRef]
- Malheiro, R.; de Pinho, P.G.; Casal, S.; Bento, A.; Pereira, J.A. Determination of the Volatile Profile of Stoned Table Olives from Different Varieties by Using HS-SPME and GC/IT-MS. J. Sci. Food Agric. 2011, 91, 1693–1701. [Google Scholar] [CrossRef] [PubMed]
- Aponte, M.; Ventorino, V.; Blaiotta, G.; Volpe, G.; Farina, V.; Avellone, G.; Lanza, C.M.; Moschetti, G. Study of Green Sicilian Table Olive Fermentations through Microbiological, Chemical and Sensory Analyses. Food Microbiol. 2010, 27, 162–170. [Google Scholar] [CrossRef] [PubMed]
- López-López, A.; Cortés-Delgado, A.; de Castro, A.; Sánchez, A.H.; Montaño, A. Changes in Volatile Composition during the Processing and Storage of Black Ripe Olives. Food Res. Int. 2019, 125, 108568. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.H.; López-López, A.; Cortés-Delgado, A.; de Castro, A.; Montaño, A. Aroma Profile and Volatile Composition of Black Ripe Olives (Manzanilla and Hojiblanca Cultivars). Food Res. Int. 2020, 127, 108733. [Google Scholar] [CrossRef]
- Sansone-Land, A.; Takeoka, G.R.; Shoemaker, C.F. Volatile Constituents of Commercial Imported and Domestic Black-Ripe Table Olives (Olea Europaea). Food Chem. 2014, 149, 285–295. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, M.; Campanella, D.; Cosmai, L.; Summo, C.; Rizzello, C.G.; Caponio, F. Microbiota and Metabolome of Un-Started and Started Greek-Type Fermentation of Bella Di Cerignola Table Olives. Food Microbiol. 2015, 52, 18–30. [Google Scholar] [CrossRef]
- Martorana, A.; Alfonzo, A.; Settanni, L.; Corona, O.; La Croce, F.; Caruso, T.; Moschetti, G.; Francesca, N. An Innovative Method to Produce Green Table Olives Based on “Pied de Cuve” Technology. Food Microbiol. 2015, 50, 126–140. [Google Scholar] [CrossRef] [Green Version]
- Randazzo, C.L.; Todaro, A.; Pino, A.; Pitino, I.; Corona, O.; Mazzaglia, A.; Caggia, C. Giarraffa and Grossa Di Spagna Naturally Fermented Table Olives: Effect of Starter and Probiotic Cultures on Chemical, Microbiological and Sensory Traits. Food Res. Int. 2014, 62, 1154–1164. [Google Scholar] [CrossRef]
- Randazzo, C.L.; Todaro, A.; Pino, A.; Pitino, I.; Corona, O.; Caggia, C. Microbiota and Metabolome during Controlled and Spontaneous Fermentation of Nocellara Etnea Table Olives. Food Microbiol. 2017, 65, 136–148. [Google Scholar] [CrossRef]
- Bleve, G.; Tufariello, M.; Durante, M.; Perbellini, E.; Ramires, F.A.; Grieco, F.; Cappello, M.S.; De Domenico, S.; Mita, G.; Tasioula-Margari, M.; et al. Physico-Chemical and Microbiological Characterization of Spontaneous Fermentation of Cellina Di Nardò and Leccino Table Olives. Front. Microbiol. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Garrido-Fernández, A.; Montaño, A.; Sánchez-Gómez, A.H.; Cortés-Delgado, A.; López-López, A. Volatile Profiles of Green Spanish-Style Table Olives: Application of Compositional Data Analysis for the Segregation of Their Cultivars and Production Areas. Talanta 2017, 169, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Castro, A.; Sánchez, A.H.; Cortés-Delgado, A.; López-López, A.; Montaño, A. Effect of Spanish-Style Processing Steps and Inoculation with Lactobacillus Pentosus Starter Culture on the Volatile Composition of Cv. Manzanilla Green Olives. Food Chem. 2019, 271, 543–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benítez-Cabello, A.; Rodríguez-Gómez, F.; Morales, M.L.; Garrido-Fernández, A.; Jiménez-Díaz, R.; Arroyo-López, F.N. Lactic Acid Bacteria and Yeast Inocula Modulate the Volatile Profile of Spanish-Style Green Table Olive Fermentations. Foods 2019, 8, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, A.H.; López-López, A.; Cortés-Delgado, A.; Beato, V.M.; Medina, E.; de Castro, A.; Montaño, A. Effect of Post-Fermentation and Packing Stages on the Volatile Composition of Spanish-Style Green Table Olives. Food Chem. 2018, 239, 343–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-López, A.; Sánchez, A.H.; Cortés-Delgado, A.; de Castro, A.; Montaño, A. Relating Sensory Analysis with SPME-GC-MS Data for Spanish-Style Green Table Olive Aroma Profiling. LWT 2018, 89, 725–734. [Google Scholar] [CrossRef] [Green Version]
- de Castro, A.; Sánchez, A.H.; López-López, A.; Cortés-Delgado, A.; Medina, E.; Montaño, A. Microbiota and Metabolite Profiling of Spoiled Spanish-Style Green Table Olives. Metabolites 2018, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Cortés-Delgado, A.; Sánchez, A.H.; de Castro, A.; López-López, A.; Beato, V.M.; Montaño, A. Volatile Profile of Spanish-Style Green Table Olives Prepared from Different Cultivars Grown at Different Locations. Food Res. Int. 2016, 83, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Bleve, G.; Tufariello, M.; Durante, M.; Grieco, F.; Ramires, F.A.; Mita, G.; Tasioula-Margari, M.; Logrieco, A.F. Physico-Chemical Characterization of Natural Fermentation Process of Conservolea and Kalamàta Table Olives and Developement of a Protocol for the Pre-Selection of Fermentation Starters. Food Microbiol. 2015, 46, 368–382. [Google Scholar] [CrossRef]
- Chytiri, A.; Tasioula-Margari, M.; Bleve, G.; Kontogianni, V.G.; Kallimanis, A.; Kontominas, M.G. Effect of Different Inoculation Strategies of Selected Yeast and LAB Cultures on Conservolea and Kalamàta Table Olives Considering Phenol Content, Texture, and Sensory Attributes. J. Sci. Food Agric. 2020, 100, 926–935. [Google Scholar] [CrossRef]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinforma. 2019, 68, e86. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A Web Server for Metabolomic Data Analysis and Interpretation. Nucleic Acids Res. 2009, 37, W652–W660. [Google Scholar] [CrossRef] [Green Version]
- Garrido-Fernández, A.; Benítez-Cabello, A.; Rodríguez-Gómez, F.; Jiménez-Díaz, R.; Arroyo-López, F.N.; Morales, M.L. Relating Starter Cultures to Volatile Profile and Potential Markers in Green Spanish-Style Table Olives by Compositional Data Analysis. Food Microbiol. 2021, 94, 103659. [Google Scholar] [CrossRef]
- Dabbou, S.; Issaoui, M.; Brahmi, F.; Nakbi, A.; Chehab, H.; Mechri, B.; Hammami, M. Changes in Volatile Compounds During Processing of Tunisian-Style Table Olives. J. Am. Oil Chem. Soc. 2012, 89, 347–354. [Google Scholar] [CrossRef]
- Maarse, H. (Ed.) Volatile Compounds in Foods and Beverages, 1st ed.; Marcel Dekker, Inc.: New York, NY, USA, 1991. [Google Scholar]
- Critiani, G.; Monnet, V. Food Micro-Organisms and Aromatic Ester Synthesis. Sci. Aliments 2001, 21, 211–230. [Google Scholar] [CrossRef]
- Rodríguez, H.; Curiel, J.A.; Landete, J.M.; de las Rivas, B.; de Felipe, F.L.; Gómez-Cordovés, C.; Mancheño, J.M.; Muñoz, R. Food Phenolics and Lactic Acid Bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damascelli, A.; Palmisano, F. Sesquiterpene Fingerprinting by Headspace SPME–GC–MS: Preliminary Study for a Simple and Powerful Analytical Tool for Traceability of Olive Oils. Food Anal. Methods 2013, 6, 900–905. [Google Scholar] [CrossRef]
- Schaich, K.M. CHAPTER 1—Challenges in Elucidating Lipid Oxidation Mechanisms: When, Where, and How Do Products Arise? In Lipid Oxidation; Logan, A., Nienaber, U., Pan, X., Eds.; AOCS Press: Urbana, IL, USA, 2013; pp. 1–52. ISBN 978-0-9830791-6-3. [Google Scholar]
Sample Code 1 | Sample Number | Cultivar | Growing Area | Fermentation Type | Olive Color |
---|---|---|---|---|---|
KLM_AIT | 14 | Kalamata | Aitoloakarnania | Greek-style | Black |
KLM_PEL | 15 | Southern Peloponnese | |||
CNS_FTH | 6 | Conservolea | Fthiotida | ||
CNS_MAG | 6 | Magnesia | |||
CNS_EVIA | 3 | Northern Evia | |||
HLK_HAL | 9 | Halkidiki | Halkidiki | Spanish-style | Green |
HLK_KAV | 6 | Kavala |
Content (% of Total Area of Identified Compounds) 1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Halkidiki Cultivar | Conservolea Cultivar | Kalamata Cultivar | |||||||||
Code | Compound | HAL | KAV | FTH | EVIA | MAG | AIT | PEL | |||
Acids | |||||||||||
1 | Acetic acid | 18.06 a | 12.02 b | A | 8.67 a | 11.33 b | 7.57 a | B | 15.56 | 16.98 | A |
2 | Formic acid | 0.17 a | 0.05 b | A | 0.04 | 0.12 | 0.03 | A | nd | nd | B |
3 | Propanoic acid | 3.29 a | 17.84 b | A | 3.34 a | 4.10 b | 4.10 b | B | 3.38 | 2.39 | B |
4 | 2-Methylpropanoic acid | 0.22 | 0.11 | 0.10 a | 0.12 a | 0.22 b | 0.15 a | 0.70 b | |||
5 | Butanoic acid | 0.34 | 0.35 | A | 0.33 a | 0.22 a | 19.33 b | B | 0.33 | 1.55 | A |
6 | 3-Methylbutanoic acid | 0.70 | 0.49 | A | 0.14 a | 0.20 a | 0.52 b | AB | 0.08 | 0.28 | B |
7 | 2-Methylbutanoic acid | 0.21 | 0.18 | 0.16 a | 0.17 a | 0.22 b | 0.13 | 0.26 | |||
8 | Pentanoic acid | 0.03 | 0.04 | A | 0.03 a | 0.02 a | 0.14 b | B | tr | tr | C |
9 | Hexanoic acid | 0.36 a | 0.13 b | A | 0.22 a | 0.10 b | 0.22 a | B | 0.03 | 0.04 | C |
10 | Octanoic acid | 0.15 a | 0.03 b | A | 0.03 a | 0.02 b | 0.04 a | B | nd | nd | C |
11 | Nonanoic acid | 0.06 | 0.04 | A | 0.02 | 0.03 | 0.05 | A | nd | nd | B |
Alcohols | |||||||||||
12 | Ethanol | 5.59 a | 1.02 b | A | 3.47 a | 4.63 b | 1.80 c | A | 20.53 | 20.29 | B |
13 | 2-Butanol | 1.22 a | 5.61 b | 7.54 a | 8.89 b | 0.92 c | 11.89 | 4.29 | |||
14 | 1-Propanol | 1.29 | 1.53 | 1.89 a | 2.89 b | 0.38 c | 1.31 | 0.48 | |||
15 | 2-Methyl-1-propanol | 0.04 | tr | A | 0.01 | tr | 0.02 | A | 0.03 a | 0.10 b | B |
16 | 3-Pentanol | 0.32 a | 0.07 b | A | 0.09 a | 0.12 ab | 0.14 b | B | 0.02 | 0.02 | C |
17 | 2-Pentanol | 0.22 a | 0.09 b | A | 0.04 a | 0.05 a | 0.16 b | B | 0.02 | 0.02 | C |
18 | 1-Butanol | 0.06 | 0.09 | A | 0.06 a | 0.04 a | 1.04 b | B | 0.06 | 0.09 | A |
19 | 1-Penten-3-ol | 0.02 | tr | A | 0.02 a | 0.02 a | 0.08 b | B | tr | tr | A |
20 | 2-Methyl-1-butanol | 1.49 a | 0.16 b | A | 0.55 a | 0.26 a | 0.77 b | A | 0.94 a | 2.54 b | B |
21 | 3-Methyl-1-butanol | 4.81 a | 0.36 b | AB | 1.13 a | 0.65 a | 2.33 b | A | 2.20 a | 7.57 b | B |
22 | 3-Methyl-3-buten-1-ol | 0.10 a | 0.01 b | A | 0.03 a | 0.05 b | 0.04 b | B | tr | tr | C |
23 | 1-Pentanol | 0.05 a | 0.02 b | A | 0.03 a | 0.06 a | 0.12 b | AB | 0.07 | 0.08 | B |
24 | 3-Methyl-2-buten-1-ol | 0.10 a | 0.01 b | A | 0.03 a | 0.06 b | 0.05 b | A | tr | tr | B |
25 | 2-Heptanol | 0.12 a | 0.06 b | A | 0.03 a | 0.03 a | 0.11 b | B | 0.01 | 0.01 | C |
26 | 1-Hexanol | 1.06 a | 0.06 b | A | 1.22 a | 2.00 b | 1.04 a | B | 0.38 | 0.26 | C |
27 | (Z)-3-Hexen-1-ol | 1.60 a | 0.12 b | A | 1.12 | 1.16 | 1.15 | A | 0.39 | 0.18 | B |
28 | 3-Octanol | 0.03 a | 0.02 b | A | 0.05 | 0.05 | 0.05 | B | nd | nd | C |
29 | (E)-2-Hexen-1-ol | 0.07 a | 0.20 b | A | 0.02 a | 0.08 b | 0.03 a | B | 0.07 | 0.02 | B |
30 | (Z)-2-Hexen-1-ol | 0.02 a | 0.06 b | A | 0.04 a | 0.07 b | tr a | A | nd | nd | B |
31 | 1-Octen-3-ol | 0.07 a | 0.04 b | A | 0.05 a | 0.06 a | 0.21 b | B | tr | 0.01 | C |
32 | 1-Heptanol | 0.22 a | 0.02 b | A | 0.15 | 0.14 | 0.16 | A | tr | tr | B |
33 | 2-Ethyl-1-hexanol | 0.12 | 0.09 | A | 0.06 a | 0.05 a | 0.14 b | A | 0.01 | 0.01 | B |
34 | (E)-2-Hepten-1-ol | 0.04 | tr | A | 0.03 a | 0.18 b | 0.02 a | A | nd | nd | B |
35 | 2,3-Butanediol | 2.67 a | 0.32 b | A | 0.35 | 0.33 | 0.24 | B | 0.20 | 0.56 | B |
36 | 1-Octanol | 0.28 a | 0.06 b | A | 0.09 a | 0.10 a | 0.17 b | B | 0.01 | 0.01 | C |
37 | (E)-2-Octen-1-ol | 0.02 | 0.04 | A | 0.02 a | 0.04 b | 0.01 a | A | nd | nd | B |
38 | 1-Nonanol | 0.09 a | 0.04 b | A | 0.16 a | 0.17 a | 0.11 b | B | nd | nd | C |
39 | 1,3-Propanediol | 0.08 a | 0.13 b | A | 0.20 a | 0.10 ab | 0.02 b | A | nd | nd | B |
40 | Benzyl alcohol | 0.45 a | 0.36 b | A | 1.29 a | 0.73 b | 0.69 b | B | 0.28 | 0.31 | A |
41 | Phenylethyl Alcohol | 3.99 a | 1.98 b | A | 2.17 a | 2.42 ab | 3.00 b | A | 0.31 | 0.65 | B |
Carbonyls | |||||||||||
42 | 2-Butanone | 0.12 a | 0.69 b | 0.24 a | 0.27 a | 0.47 b | 0.27 | 0.19 | |||
43 | 2-Methylbutanal | 0.06 a | 0.04 b | AB | 0.03 a | 0.03 a | 0.11 b | A | 0.03 | 0.03 | B |
44 | 3-Methylbutanal | 0.09 a | 0.04 b | A | 0.04 a | 0.04 a | 0.14 b | A | 0.29 | 0.42 | B |
45 | Hexanal | 0.02 | 0.03 | A | 0.04 a | 0.04 a | 0.07 b | AB | 0.07 | 0.05 | B |
46 | Acetoin | 0.07 | tr | A | tr a | tr a | 0.03 b | B | tr | tr | B |
47 | 6-Methyl-5-hepten-2-one | 0.05 a | 0.04 b | A | tr a | 0.01 a | 0.05 b | B | nd | nd | C |
48 | Nonanal | 0.01 | tr | A | 0.01 a | 0.04 b | 0.02 c | B | tr | tr | C |
49 | Benzaldehyde | 0.05 | 0.08 | A | 0.39 a | 0.07 b | 0.06 b | B | 0.01 | 0.01 | A |
50 | Phenylacetaldehyde | 0.02 | 0.01 | A | 0.02 a | 0.01 a | 0.04 b | B | tr | tr | C |
51 | (E)-2-Decenal | 0.08 a | 0.01 b | A | 0.03 a | 0.06 b | 0.07 b | A | nd | nd | B |
Esters | |||||||||||
52 | Methyl acetate | 1.27 | 1.29 | A | 1.19 a | 0.67 a | 2.05 b | A | 2.35 a | 4.10 b | B |
53 | Ethyl Acetate | 7.21 a | 0.66 b | A | 5.64 a | 4.38 ab | 3.74 b | A | 7.38 | 9.56 | B |
54 | Methyl propanoate | 0.28 a | 5.27 b | A | 0.57 a | 0.40 a | 1.37 b | B | 0.40 | 0.48 | B |
55 | Ethyl propanoate | 5.81 | 5.58 | A | 11.28 | 9.91 | 12.54 | B | 6.94 | 7.19 | A |
56 | Ethyl 2-methylpropanoate | 0.04 | tr | 0.04 a | 0.06 b | 0.02 c | 0.03 a | 0.14 b | |||
57 | Propyl acetate | 9.84 a | 5.35 b | A | 16.14 a | 16.05 a | 2.02 b | A | 3.47 | 1.48 | B |
58 | Methyl butanoate | 0.02 | 0.01 | A | 0.02 a | 0.01 a | 1.21 b | B | 0.05 | 0.11 | AB |
59 | 1-Methylpropyl acetate | 0.03 a | 0.34 b | A | 0.71 a | 0.50 b | 0.38 c | B | tr | tr | C |
60 | Isobutyl acetate | 0.82 a | 0.06 b | 0.33 a | 0.17 b | 0.30 a | 0.15 a | 0.62 b | |||
61 | Methyl 3-methylbutanoate | 0.06 a | 0.03 b | A | 0.01 a | 0.02 a | 0.03 b | B | tr | 0.01 | C |
62 | Ethyl butanoate | 0.12 a | 0.03 b | 0.18 a | 0.14 a | 2.37 b | 0.39 | 0.33 | |||
63 | Propyl propanoate | 2.02 a | 11.13 b | A | 9.23 a | 8.46 a | 2.31 b | A | 1.37 | 0.43 | B |
64 | 1-Methylpropyl propanoate | tr a | 0.91 b | A | 0.16 a | 0.09 b | 0.01 c | B | tr | tr | B |
65 | Ethyl 2-methylbutanoate | 0.03 | 0.05 | A | 0.11 a | 0.17 b | 0.02 c | A | 0.11 | 0.18 | B |
66 | Propyl 2-methylpropanoate | tr | tr | 0.01 | 0.02 | tr | nd | nd | |||
67 | Ethyl 3-methylbutanoate | 0.10 a | 0.02 b | 0.06 a | 0.11 b | 0.03 c | 0.06 | 0.15 | |||
68 | Butyl acetate | 0.07 | 0.08 | A | 0.10 a | 0.05 a | 0.44 b | B | tr | tr | |
69 | 2-Methylpropyl propanoate | 0.15 | 0.31 | A | 0.23 a | 0.11 b | 0.30 c | A | 0.08 | 0.15 | B |
70 | 3-Methylbutyl acetate | 4.60 a | 0.55 b | 2.25 a | 0.75 b | 1.52 c | 1.08 a | 4.47 b | |||
71 | Propyl butanoate | 0.01 | 0.02 | A | 0.06 a | 0.04 a | 0.14 b | B | nd | nd | |
72 | Ethyl pentanoate | 0.01 | tr | A | 0.03 | 0.02 | 0.02 | B | nd | nd | |
73 | Butyl propanoate | 0.01 a | 0.29 b | A | 0.08 a | 0.03 a | 0.71 b | B | tr | tr | C |
74 | Pentyl acetate | 0.04 a | 0.01 b | A | 0.06 a | 0.07 a | 0.04 b | B | tr | tr | C |
75 | Methyl hexanoate | 0.18 a | 0.05 b | A | 0.11 a | 0.07 b | 0.04 c | B | tr | tr | C |
76 | 3-Methylbutyl propanoate | 0.45 | 1.89 | A | 0.79 a | 0.22 b | 0.73 a | AB | 0.21 | 0.43 | B |
77 | 3-Methyl-3-butenyl acetate | 0.05 | 0.02 | A | 0.04 | 0.03 | 0.05 | A | nd | nd | B |
78 | Butyl butanoate | nd | nd | A | nd a | nd a | 0.85 b | B | tr | tr | A |
79 | Ethyl 3-methyl-2-butenoate | nd | nd | A | 0.04 a | 0.07 b | 0.01 c | B | tr | tr | A |
80 | Ethyl hexanoate | 0.48 a | 0.02 b | 0.36 a | 0.24 b | 0.04 c | 0.20 | 0.19 | |||
81 | 3-Methylbutyl butanoate | nd | nd | A | tr a | tr a | 0.13 b | B | tr | tr | A |
82 | Hexyl acetate | 0.28 a | 0.03 b | A | 0.60 a | 0.54 a | 0.17 b | B | 0.08 | 0.08 | A |
83 | Ethyl (E)-3-hexenoate | 0.04 a | 0.01 b | A | 0.05 a | 0.03 b | 0.01 c | A | nd | nd | B |
84 | (Z)-3-Hexenyl acetate | 0.54 a | 0.05 b | A | 0.76 a | 0.41 b | 0.23 c | A | tr | tr | B |
85 | Methyl lactate | 0.36 a | 0.02 b | A | 0.15 a | 0.26 b | 0.03 c | B | 0.05 | 0.03 | B |
86 | Propyl hexanoate | tr | tr | A | 0.04 | 0.03 | tr | A | 0.91 a | 0.11 b | B |
87 | Ethyl heptanoate | 0.01 | nd | A | 0.05 | 0.03 | tr | B | nd | nd | C |
88 | Hexyl propanoate | 0.01 | 0.03 | A | 0.12 a | 0.08 b | 0.05 b | B | tr | tr | C |
89 | Ethyl lactate | 3.92 a | 0.12 b | A | 1.83 a | 3.31 b | 0.19 c | B | 7.26 a | 0.55 b | C |
90 | (Z)-3-Hexenyl propanoate | 0.03 a | 0.08 b | A | 0.14 a | 0.06 b | 0.08 b | B | nd | nd | C |
91 | Methyl octanoate | 0.23 a | 0.02 b | A | 0.04 a | 0.02 b | 0.02 b | B | 0.01 | 0.09 | B |
92 | Isopropyl lactate | 0.27 | 0.13 | A | 0.71 a | 1.07 b | 0.05 c | B | 0.01 | 0.01 | C |
93 | Ethyl octanoate | 0.46 a | tr b | A | 0.12 a | 0.06 b | 0.01 c | B | tr | tr | B |
94 | Ethyl 2-hydroxy-4-methylpentanoate | 0.06 | tr | A | 0.03 a | 0.03 a | tr b | B | nd | nd | C |
95 | Methyl benzoate | tr | tr | A | 0.03 a | 0.01 b | tr b | B | nd | nd | C |
96 | Benzyl acetate | 0.08 | 0.06 | A | 0.36 a | 0.10 b | 0.06 b | B | tr | tr | C |
97 | Methyl salicylate | 0.03 | 0.03 | A | 0.18 a | 0.14 b | 0.03 c | B | nd | nd | A |
98 | Benzyl propanoate | tr a | 0.11 b | A | 0.05 a | 0.01 b | 0.01 b | A | nd | nd | B |
99 | Ethyl salicylate | tr | 0.03 | A | 0.41 a | 0.16 b | 0.09 b | B | nd | nd | A |
100 | 2-Phenylethyl acetate | 0.52 a | 0.29 b | A | 0.48 a | 0.26 b | 0.21 b | B | 0.03 | 0.03 | C |
101 | 2-Phenylethyl propanoate | 0.08 a | 0.55 b | A | 0.09 a | 0.06 b | 0.06 b | B | 0.01 | 0.01 | B |
Hydrocarbons | |||||||||||
102 | Octane | 1.00 a | 0.64 b | A | 1.32 a | 1.98 ab | 2.14 b | B | 0.12 | 0.13 | C |
103 | Decane | 0.01 | 0.02 | A | 0.04 | 0.02 | 0.04 | B | tr | tr | C |
104 | 1-Dodecene | 0.04 | 0.04 | A | 1.22 | 1.07 | 1.44 | B | tr | tr | A |
105 | (E)-4,8-Dimethylnona-1,3,7-triene | 0.04 a | 0.01 b | A | 0.03 | 0.02 | 0.03 | A | tr | tr | B |
Miscellaneous compounds | |||||||||||
106 | Dimethyl sulfide | 0.41 | 0.44 | A | 1.64 a | 1.66 a | 2.99 b | B | 1.66 | 1.56 | B |
107 | 2,5-Dimethylfuran | 0.02 | tr | A | tr a | 0.01 a | 0.06 b | B | tr | tr | C |
108 | 2-Pentylfuran | 0.02 | 0.02 | A | 0.07 | 0.10 | 0.08 | A | 0.17 | 0.15 | B |
109 | Butyrolactone | 0.02 | 0.02 | A | 0.02 a | 0.04 b | 0.03 c | B | nd | nd | C |
110 | γ-Hexalactone | tr | tr | A | 0.05 a | 0.04 b | 0.02 c | B | nd | nd | C |
111 | δ-Octalactone | nd | nd | A | 0.04 a | 0.05 a | 0.01 b | B | nd | nd | A |
112 | γ-Nonalactone | 0.01 | 0.01 | A | 0.03 | 0.04 | 0.03 | B | nd | nd | C |
Phenols | |||||||||||
113 | Guaiacol | tr a | 6.42 b | A | 0.02 a | 0.02 a | 3.03 b | AB | tr | tr | B |
114 | 4-Methylguaiacol | 7.12 a | 9.68 b | A | 1.62 a | 1.28 a | 2.12 b | B | 0.42 | 0.45 | C |
115 | Phenol | 0.02 a | 1.08 b | 0.02 a | 0.04 a | 1.01 b | 0.51 | 0.97 | |||
116 | 4-Ethylguaiacol | tr | 0.02 | A | 0.02 a | tr b | 0.06 c | B | nd | nd | C |
117 | 4-Methylphenol | 0.05 a | 0.10 b | A | 0.05 | 0.03 | 0.05 | B | nd | nd | C |
118 | 4-Ethylphenol | 0.03 a | 0.90 b | A | 0.25 a | 0.07 a | 1.42 b | A | nd | nd | B |
Terpenoids | |||||||||||
119 | Limonene | 0.05 | 0.10 | 0.06 a | 0.08 a | 0.13 b | 0.12 | 0.06 | |||
120 | trans-β-Ocimene | 0.01 | 0.01 | A | 0.50 | 0.44 | 0.51 | A | 5.10 | 5.15 | B |
121 | Rose oxide | 0.01 a | 0.04 b | A | tr | tr | 0.01 | B | nd | nd | C |
122 | Copaene | 0.03 | 0.02 | A | 0.06 a | 0.13 a | 0.48 b | B | nd | nd | A |
123 | Linalool | 0.02 | 0.02 | A | 0.02 | 0.01 | 0.02 | A | nd | nd | B |
124 | α-Terpineol | 0.02 | 0.01 | A | 0.02 | 0.02 | 0.02 | A | nd | nd | B |
125 | α-Muurolene | nd | nd | A | 0.01 a | 0.03 a | 0.09 b | B | nd | nd | A |
126 | α-Farnesene | nd | nd | A | 0.88 | 0.87 | 0.93 | B | nd | nd | A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikrou, T.; Kasimati, K.; Doufexi, I.; Kapsokefalou, M.; Gardeli, C.; Mallouchos, A. Volatile Composition of Industrially Fermented Table Olives from Greece. Foods 2021, 10, 1000. https://doi.org/10.3390/foods10051000
Mikrou T, Kasimati K, Doufexi I, Kapsokefalou M, Gardeli C, Mallouchos A. Volatile Composition of Industrially Fermented Table Olives from Greece. Foods. 2021; 10(5):1000. https://doi.org/10.3390/foods10051000
Chicago/Turabian StyleMikrou, Theano, Katerina Kasimati, Ioanna Doufexi, Maria Kapsokefalou, Chrysavgi Gardeli, and Athanasios Mallouchos. 2021. "Volatile Composition of Industrially Fermented Table Olives from Greece" Foods 10, no. 5: 1000. https://doi.org/10.3390/foods10051000
APA StyleMikrou, T., Kasimati, K., Doufexi, I., Kapsokefalou, M., Gardeli, C., & Mallouchos, A. (2021). Volatile Composition of Industrially Fermented Table Olives from Greece. Foods, 10(5), 1000. https://doi.org/10.3390/foods10051000