Assessed versus Perceived Risks: Innovative Communications in Agri-Food Supply Chains
Abstract
:1. Introduction
2. Sources and Types of Risks for Selected Produce of Food Industry
3. Evaluation of Food Risks
4. Decisions under Uncertainty: Ambiguous and Innovative Communication Strategies
5. Consumers’ Perception of Sources and Types of Risks
- botulism from Clostridium botulinum in canned food;
- haemolytic uremic syndrome from Escherichia coli in undercooked meat;
- listeriosis from Listeria monocytogenes in ready-to-eat vegetables;
- salmonellosis from Salmonella spp. in under-cooked eggs.
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finger, J.A.; Baroni, W.S.; Maffei, D.F.; Bastos, D.H.; Pinto, U.M. Overview of foodborne disease outbreaks in Brazil from 2000 to 2018. Foods 2019, 8, 434. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015. 2015. Available online: https://apps.who.int/ (accessed on 13 January 2021).
- Santeramo, F.G. On the composite indicators for food security: Decisions matter! Food Res. Int. 2015, 31, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Augustin, J.C.; Kooh, P.; Bayeux, T.; Guillier, L.; Meyer, T.; Silva, J.D.; Villena, I.; Sanaa, M.; Cerf, O. Contribution of Foods and Poor Food-Handling Practices to the Burden of Foodborne Infectious Diseases in France. Foods 2020, 9, 1644. [Google Scholar] [CrossRef] [PubMed]
- Redmond, E.C.; Griffith, C.J. Consumer perceptions of food safety risk, control and responsibility. Appetite 2004, 43, 309–313. [Google Scholar] [CrossRef]
- McCabe-Sellers, B.J.; Beattie, S.E. Food safety: Emerging trends in foodborne illness surveillance and prevention. J. Am. Diet. Assoc. 2004, 104, 1708–1717. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, A.; Speranza, B.; Iorio, M.C.; Loi, M.; Sinigaglia, M.; Corbo, M.R. US-inactivation of foodborne bacteria: Screening in distilled water and combination with citrus extract in skim milk. LWT Food Sci. Technol. 2016, 70, 135–141. [Google Scholar] [CrossRef]
- Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walls, H.; Baker, P.; Chirwa, E.; Hawkins, B. Food security, food safety & healthy nutrition: Are they compatible? Glob. Food Secur. 2019, 21, 69–71. [Google Scholar]
- Santeramo, F.G.; Carlucci, D.; De Devitiis, B.; Seccia, A.; Stasi, A.; Viscecchia, R.; Nardone, G. Emerging trends in European food, diets and food industry. Food Res. Int. 2018, 104, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Caroprese, M.; Ciliberti, M.G.; Marino, R.; Napolitano, F.; Braghieri, A.; Sevi, A.; Albenzio, M. Effect of information on geographical origin, duration of transport and welfare condition on consumer’s acceptance of lamb meat. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Wongprawmas, R.; Mora, C.; Pellegrini, N.; Guiné, R.P.; Carini, E.; Sogari, G.; Vittadini, E. Food Choice Determinants and Perceptions of a Healthy Diet among Italian Consumers. Foods 2021, 10, 318. [Google Scholar] [CrossRef]
- Cope, S.; Frewer, L.J.; Houghton, J.; Rowe, G.; Fischer, A.R.H.; de Jonge, J. Consumer perceptions of best practice in food risk communication and management: Implications for risk analysis policy. Food Policy 2010, 35, 349–357. [Google Scholar] [CrossRef]
- Frewer, L.J.; Fischer, A.R.H.; Brennan, M.; Bánáti, D.; Lion, R.; Meertens, R.M.; Rowe, G.; Siegrist, M.; Verbeke, V.; Vereijken, C.M.J.L. Risk/benefit communication about food—A systematic review of the literature. Crit. Rev. Food Sci. 2016, 56, 1728–1745. [Google Scholar] [CrossRef] [Green Version]
- Santeramo, F.G.; Lamonaca, E. Objective risk and subjective risk: The role of information in food supply chains. Food Res. Int. 2021, 139, 109962. [Google Scholar] [CrossRef] [PubMed]
- Godwin, S.; Maughan, C.; Chambers, E. Food safety: Recommendations for determining doneness in consumer egg dish recipes and measurement of endpoint temperatures when recipes are followed. Foods 2016, 5, 45. [Google Scholar] [CrossRef] [Green Version]
- Panea, B.; Ripoll, G. Quality and Safety of Meat Products. Foods 2020, 9, 803. [Google Scholar] [CrossRef]
- EFSA; ECDC. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, e05500. [Google Scholar]
- Adak, G.K.; Meakins, S.M.; Yip, H.; Lopman, B.A.; O’Brien, S.J. Disease risks from foods, England and Wales, 1996–2000. Emerg. Infect. Dis. 2005, 11, 365. [Google Scholar] [CrossRef] [PubMed]
- EFSA; ECDC. The European Union one health 2018 zoonoses report. EFSA J. 2019, 17, e05926. [Google Scholar]
- ECDC. Facts about Botulism. European Centre for Disease Prevention and Control. 2017. Available online: https://www.ecdc.europa.eu/ (accessed on 1 October 2020).
- EFSA. Opinion of the Scientific Panel on biological hazards (BIOHAZ) related to Clostridium spp in foodstuffs. EFSA J. 2005, 3, 199. [Google Scholar] [CrossRef]
- Coleman, M.; Marks, H. Topics in dose-response modeling. J. Food Prot. 1998, 61, 1550–1559. [Google Scholar] [CrossRef]
- Notermans, S.; Mead, G.C. Incorporation of elements of quantitative risk analysis in the HACCP system. Int. J. Food Microbiol. 1996, 30, 157–173. [Google Scholar] [CrossRef]
- Todd, E.C.; Harwig, J. Microbial risk analysis of food in Canada. J. Food Prot. 1996, 59, 10–18. [Google Scholar] [CrossRef]
- Van Schothorst, M. Practical approaches to risk assessment. J. Food Prot. 1997, 60, 1439–1443. [Google Scholar] [CrossRef]
- Van Gerwen, S.J.C.; Te Giffel, M.C.; Van‘t Riet, K.; Beumer, R.R.; Zwietering, M.H. Stepwise quantitative risk assessment as a tool for characterization of microbiological food safety. J. Appl. Microbiol. 2000, 88, 938–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corlett, D.A.; Pierson, M.D. Hazard analysis and assignment of risk categories. In HACCP; Springer: Boston, MA, USA, 1992; pp. 29–38. [Google Scholar]
- Huss, H.H.; Reilly, A.; Embarek, P.K.B. Prevention and control of hazards in seafood. Food Control 1992, 11, 149–156. [Google Scholar] [CrossRef]
- Ross, T.; Sumner, J.A. Simple, spreadsheet-based, food safety risk assessment tool. Int. J. Food Microbiol. 2002, 77, 39–53. [Google Scholar] [CrossRef]
- FAO; WHO. Joint FAO/WHO Expert Meetings on Microbiological Risk Assessment (JEMRA) on Methodologies of Microbiological Risk Assessment; FAO/WHO: Rome, Italy, 2019; In press. [Google Scholar]
- Cao, Y.; Just, D.R.; Turvey, C.; Wansink, B. Existing food habits and recent choices lead to disregard of food safety announcements. Can. J. Agr. Econ. 2015, 63, 491–511. [Google Scholar] [CrossRef]
- Fox, C.R.; Tversky, A. Ambiguity aversion and comparative ignorance. Q. J. Econ. 1995, 110, 585–603. [Google Scholar] [CrossRef]
- Grunert, K.G. Food quality and safety: Consumer perception and demand. Eur. Rev. Agric. Econ. 2005, 32, 369–391. [Google Scholar] [CrossRef]
- Henson, S.; Traill, B. The demand for food safety: Market imperfections and the role of government. Food Policy 1993, 18, 152–162. [Google Scholar] [CrossRef]
- Slovic, P. Perception of risk. Science 1987, 236, 280–285. [Google Scholar] [CrossRef]
- Britwum, K.; Yiannaka, A. Consumer willingness to pay for food safety interventions: The role of message framing and issue involvement. Food Policy 2019, 86, 101726. [Google Scholar] [CrossRef]
- Santeramo, F.G.; Carlucci, D.; De Devitiis, B.; Viscecchia, R.; Nardone, G. The (Nano-) Discrimination of Consumers for Nano-Inside Technologies. J. Int. Food Agr. Mark. 2020, 1–15. [Google Scholar] [CrossRef]
- EpiCentro. Botulismo Alimentare. L’epidemiologia per la Sanità Pubblica—Istituto Superiore di Sanità. 2020. Available online: https://www.epicentro.iss.it/botulismo/ (accessed on 16 November 2020).
- EpiCentro. Sindrome Emolitico-Uremica. L’epidemiologia per la Sanità Pubblica—Istituto Superiore di Sanità. 2020. Available online: https://www.epicentro.iss.it/seu/ (accessed on 4 December 2020).
- EpiCentro. Listeria. L’epidemiologia per la Sanità Pubblica—Istituto Superiore di Sanità. 2020. Available online: https://www.epicentro.iss.it/listeria/ (accessed on 15 October 2020).
- EpiCentro. Salmonella. L’epidemiologia per la Sanità Pubblica—Istituto Superiore di Sanità. 2020. Available online: https://www.epicentro.iss.it/salmonella/ (accessed on 27 September 2020).
- Lezoche, M.; Hernandez, J.E.; Díaz, M.D.M.E.A.; Panetto, H.; Kacprzyk, J. Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Comput. Ind. 2020, 117, 103187. [Google Scholar] [CrossRef]
- Handayati, Y.; Simatupang, T.M.; Perdana, T. Agri-food supply chain coordination: The state-of-the-art and recent developments. Logist. Res. 2015, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
Disease | Confirmed Cases | Hospitalised Cases | Case Fatality (%) | Cases per 100,000 Individuals (%) |
---|---|---|---|---|
Salmonellosis | 91,662 | 16,796 | 0.25 | 19.70 |
STEC infection | 6073 | 933 | 0.50 | 1.66 |
Food-Borne Risk Factor | Clostridium botulinum | Escherichia coli/ Salmonella spp. | Listeria monocytogenes | Salmonella spp. | |
---|---|---|---|---|---|
Carrier | Canned Food | Undercooked Meat | Ready-to-Eat Vegetables | Undercooked Eggs | Cooked Eggs |
Q1: Hazard severity | severe | moderate | moderate | mild | mild |
Q2: Consumer’s susceptibility | general | general | general | general | general |
Q3: Consumption frequency | monthly | weekly | weekly | weekly | weekly |
Q4: Individuals consuming | most | most | most | some | most |
Q5: Population size | |||||
Q6: Proportion of contaminated food | infrequent | sometimes | sometimes | sometimes | sometimes |
Q7: Process effect on contamination | usually eliminates | slightly | no effect | slightly | usually |
Q8: Potential recontamination | no | minor | minor | minor | minor |
Q9: Level of hazard throughout the supply chain | not relevant | not controlled | not controlled | not controlled | not controlled |
Q10: Effectiveness of the post-processing control system | none | significant | moderate | significant | significant |
Q11: Preparation effect on contamination | no effect | no effect | no effect | no effect | no effect |
Risk | 79 | 59 | 72 | 50 | 46 |
Labels | Negligible | Minor | Moderate | Significant | Severe |
---|---|---|---|---|---|
Very likely | ** | *** | **** | ***** | ***** |
Likely | * | ** | *** | **** | ***** |
Possible | * | ** | *** | **** | **** |
Unlikely | * | ** | ** | *** | **** |
Food-Borne Risk Factor | General Information | Partial Information | Complete Information |
---|---|---|---|
Clostridium botulinum | May be present in canned food | May cause botulism | Symptoms and prevention measures |
Escherichia coli | May be present in undercooked meat | May cause haemolytic uremic syndrome | |
Listeria monocytogenes | May be present in ready-to-eat vegetables | May cause listeriosis | |
Salmonella spp. | May be present in undercooked eggs | May cause salmonellosis |
Food-Borne Risk Factor | Product | Assessed Risk | Perceived Risk | ||
---|---|---|---|---|---|
General Information | Partial Information | Complete Information | |||
Clostridium botulinum | Canned food | 79% | 20–40% | 20–40% | 40–60% |
Escherichia coli | Under-cooked meat | 59% | 40–60% | 40–60% | 40–60% |
Listeria monocytogenes | Ready-to-eat vegetables | 72% | 40% | 40% | 40–60% |
Salmonella spp. | Under-cooked eggs | 56% | 40–60% | 40–60% | 40–60% |
Food-Borne Risk Factor | Product | Partial Information | Complete Information |
---|---|---|---|
Clostridium botulinum | Canned food | 7% | 8% |
Escherichia coli | Under-cooked meat | 8% | 8% |
Listeria monocytogenes | Ready-to-eat vegetables | 8% | 8% |
Salmonella spp. | Under-cooked eggs | 8% | 8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santeramo, F.G.; Bevilacqua, A.; Caroprese, M.; Speranza, B.; Ciliberti, M.G.; Tappi, M.; Lamonaca, E. Assessed versus Perceived Risks: Innovative Communications in Agri-Food Supply Chains. Foods 2021, 10, 1001. https://doi.org/10.3390/foods10051001
Santeramo FG, Bevilacqua A, Caroprese M, Speranza B, Ciliberti MG, Tappi M, Lamonaca E. Assessed versus Perceived Risks: Innovative Communications in Agri-Food Supply Chains. Foods. 2021; 10(5):1001. https://doi.org/10.3390/foods10051001
Chicago/Turabian StyleSanteramo, Fabio G., Antonio Bevilacqua, Mariangela Caroprese, Barbara Speranza, Maria Giovanna Ciliberti, Marco Tappi, and Emilia Lamonaca. 2021. "Assessed versus Perceived Risks: Innovative Communications in Agri-Food Supply Chains" Foods 10, no. 5: 1001. https://doi.org/10.3390/foods10051001
APA StyleSanteramo, F. G., Bevilacqua, A., Caroprese, M., Speranza, B., Ciliberti, M. G., Tappi, M., & Lamonaca, E. (2021). Assessed versus Perceived Risks: Innovative Communications in Agri-Food Supply Chains. Foods, 10(5), 1001. https://doi.org/10.3390/foods10051001