Design and Nutrient Analysis of a Carotenoid-Rich Food Product to Address Vitamin A and Protein Deficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial Product Design
2.2. Raw Ingredient Processing
2.3. Packaging and Sterilization
2.4. Macronutrients, Iron, and Zinc Analysis
2.5. β-Carotene Analysis
2.6. Statistical Analysis
3. Results
3.1. Total Energy
3.2. Macronutrients, Iron, and Zinc Analysis
3.3. β-Carotene Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The food security and nutrition–conflict nexus: Building resilience for food security, nutrition and peace. In Regional Overview of Food Security and Nutrition in Africa 2017; FAO: Rome, Italy, 2017. [Google Scholar]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; De Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Low, J.W.; Mwanga, R.O.; Andrade, M.; Carey, E.; Ball, A.-M. Tackling vitamin A deficiency with biofortified sweetpotato in sub-Saharan Africa. Glob. Food Secur. 2017, 14, 23–30. [Google Scholar] [CrossRef] [PubMed]
- van Berkum, S.; Achterbosch, T.; Linderhof, V.; Godeschalk, F.; Vroege, W. Dynamics of Food Systems in Sub-Saharan Africa: Implications for Consumption Patterns and Farmers’ Position in Food Supply Chains; Wageningen Economic Research: Den Haag, The Netherlands, 2017. [Google Scholar]
- Bechoff, A.; Dhuique-Mayer, C. Factors influencing micronutrient bioavailability in biofortified crops. Ann. N. Y. Acad. Sci. 2016, 1390, 74–87. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.H. Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2012, 1821, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Hotz, C.; Loechl, C.; de Brauw, A.; Eozenou, P.; Gilligan, D.; Moursi, M.; Munhaua, B.; van Jaarsveld, P.; Carriquiry, A.; Meenakshi, J.V. A large-scale intervention to introduce orange sweet potato in rural Mozambique increases vitamin A intakes among children and women. Br. J. Nutr. 2012, 108, 163–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurie, S.; Van Jaarsveld, P.; Faber, M.; Philpott, M.; Labuschagne, M. Trans-β-carotene, selected mineral content and potential nutritional contribution of 12 sweetpotato varieties. J. Food Compos. Anal. 2012, 27, 151–159. [Google Scholar] [CrossRef]
- Muzhingi, T.; Yeum, K.-J.; Bermudez, O.; Tang, G.; Siwela, A.H. Peanut butter increases the bioavailability and bioconversion of kale β-carotene to vitamin A. Asia Pac. J. Clin. Nutr. 2017, 26, 1039–1047. [Google Scholar] [CrossRef]
- Perusek, L.; Maeda, T. Vitamin A Derivatives as Treatment Options for Retinal Degenerative Diseases. Nutrients 2013, 5, 2646–2666. [Google Scholar] [CrossRef] [Green Version]
- Clevenger, H.C.; Kozimor, A.L.; Paton, C.M.; Cooper, J.A. Acute effect of dietary fatty acid composition on postprandial metabolism in women. Exp. Physiol. 2014, 99, 1182–1190. [Google Scholar] [CrossRef]
- Paton, C.M.; Son, Y.; Vaughan, R.A.; Cooper, J.A. Free Fatty Acid-Induced Peptide YY Expression Is Dependent on TG Synthesis Rate and Xbp1 Splicing. Int. J. Mol. Sci. 2020, 21, 3368. [Google Scholar] [CrossRef]
- Goltz, S.R.; Campbell, W.W.; Chitchumroonchokchai, C.; Failla, M.L.; Ferruzzi, M.G. Meal triacylglycerol profile modulates postprandial absorption of carotenoids in humans. Mol. Nutr. Food Res. 2012, 56, 866–877. [Google Scholar] [CrossRef]
- Failla, M.L.; Chitchumronchokchai, C.; Ferruzzi, M.G.; Goltz, S.R.; Campbell, W.W. Unsaturated fatty acids promote bioaccessibility and basolateral secretion of carotenoids and α-tocopherol by Caco-2 cells. Food Funct. 2014, 5, 1101–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, A.H.; Anany, A.M.E. Nutritional and sensory evaluation of a complementary food formulated from rice, faba beans, sweet potato flour, and peanut oil. Food Nutr. Bull. 2014, 35, 403–413. [Google Scholar] [CrossRef]
- Mu, T.-H.; Tan, S.-S.; Xue, Y.-L. The amino acid composition, solubility and emulsifying properties of sweet potato protein. Food Chem. 2009, 112, 1002–1005. [Google Scholar] [CrossRef]
- Young, C.T. Amino acid composition of three commercial peanut varieties. J. Food Sci. 1980, 45, 1086–1087. [Google Scholar] [CrossRef]
- Abu-Shakra, S.; Mirza, S.; Tannous, R. Chemical composition and amino acid content of chickpea seeds at different stages of development. J. Sci. Food Agric. 1970, 21, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, H.S.; Marcotte, M. Food Processing: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Diao, M.M.; André, S.; Membré, J.-M. Meta-analysis of D-values of proteolytic Clostridium botulinum and its surrogate strain Clostridium sporogenes PA 3679. Int. J. Food Microbiol. 2014, 174, 23–30. [Google Scholar] [CrossRef]
- Amorim-Carrilho, K.T.; Cepeda, A.; Fente, C.; Regal, P. Review of methods for analysis of carotenoids. TrAC Trends Anal. Chem. 2014, 56, 49–73. [Google Scholar] [CrossRef]
- Matyash, V.; Liebisch, G.; Kurzchalia, T.V.; Shevchenko, A.; Schwudke, D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008, 49, 1137–1146. [Google Scholar] [CrossRef] [Green Version]
- Hayes, M.; Pottorff, M.; Kay, C.; Van Deynze, A.; Osorio-Marin, J.; Lila, M.A.; Iorrizo, M.; Ferruzzi, M.G. In Vitro Bioaccessibility of Carotenoids and Chlorophylls in a Diverse Collection of Spinach Accessions and Commercial Cultivars. J. Agric. Food Chem. 2020, 68, 3495–3505. [Google Scholar] [CrossRef]
- Vasilopoulou, E.; Georga, K.; Grilli, E.; Linardou, A.; Vithoulka, M.; Trichopoulou, A. Compatibility of computed and chemically determined macronutrients and energy content of traditional Greek recipes. J. Food Compos. Anal. 2003, 16, 707–719. [Google Scholar] [CrossRef]
- Zhang, X.; Cavender, G.A.; Lewandowski, K.R.; Cox, G.O.; Paton, C.M. Sensory Analysis of a Processed Food Intended for Vitamin A Supplementation. Foods 2020, 9, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaComb, R.; Taylor, M.; Noble, J. Comparative evaluation of four microcomputer nutrient analysis solftware packages using 24-h dietary recalls of homeless children. J. Am. Diet. Assoc. 1992, 92, 1391–1392. [Google Scholar]
- McCullough, M.L.; Karanja, N.M.; Lin, P.-H.; Obarzanek, E.; Phillips, K.M.; Laws, R.L.; Vollmer, W.M.; O’CONNOR, E.A.; Champagne, C.M.; Windhauser, M.M. Comparison of 4 nutrient databases with chemical composition data from the dietary approaches to stop hypertension trial. J. Am. Diet. Assoc. 1999, 99, S45–S53. [Google Scholar] [CrossRef]
- Seljak, B.K.; Stibilj, V.; Pograjc, L.; Mis, N.F.; Benedik, E. Food composition databases for effective quality nutritional care. Food Chem. 2013, 140, 553–561. [Google Scholar] [CrossRef]
- Marshall, M.W.; Judd, J.T. Calculates vs. analyzed composition of four modified fat diets. Formulated to study effects in human subjects of kind and amount of dietary fat. J. Am. Diet. Assoc. 1982, 80, 537–549. [Google Scholar] [PubMed]
- Porrini, M.; Ciappellano, S.; Simonetti, P.; Testolin, G. Chemical composition of Italian cooked dishes. Int. J. Vitam. Nutr. Res. 1986, 56, 263. [Google Scholar]
- Islam, S.N.; Nusrat, T.; Begum, P.; Ahsan, M. Carotenoids and β-carotene in orange fleshed sweet potato: A possible solution to vitamin A deficiency. Food Chem. 2016, 199, 628–631. [Google Scholar] [CrossRef]
- Moumouni Koala, A.H.; Somé, K.; Palé, E.; Sérémé, A.; Belem, J.; Nacro, M. Evaluation of eight orange fleshed sweetpotato (OFSP) varieties for their total antioxidant, total carotenoid and polyphenolic contents. Evaluation 2013, 3, 67–73. [Google Scholar]
- Neela, S.; Fanta, S.W. Review on nutritional composition of orange-fleshed sweet potato and its role in management of vitamin A deficiency. Food Sci. Nutr. 2019, 7, 1920–1945. [Google Scholar] [CrossRef] [Green Version]
- Ribaya-Mercado, J.D.; Maramag, C.C.; Tengco, L.W.; Dolnikowski, G.G.; Blumberg, J.B.; Solon, F.S. Carotene-rich plant foods ingested with minimal dietary fat enhance the total-body vitamin A pool size in Filipino schoolchildren as assessed by stable-isotope-dilution methodology. Am. J. Clin. Nutr. 2007, 85, 1041–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutz, N.E.; Wolfe, R.R. Is there a maximal anabolic response to protein intake with a meal? Clin. Nutr. 2013, 32, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Table, M. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academy Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Nuss, E.T.; Tanumihardjo, S.A. Quality protein maize for Africa: Closing the protein inadequacy gap in vulnerable populations. Adv. Nutr. 2011, 2, 217–224. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Protein and Amino Acid Requirements in Human Nutrition; World Health Organization: Geneva, Switzerland, 2007; Volume 935. [Google Scholar]
- Hagenimana, V.; Carey, E.; Gichuki, S.; Oyunga, M.; Imungi, J. Carotenoid contents in fresh, dried and processed sweetpotato products. Ecol. Food Nutr. 1998, 37, 455–473. [Google Scholar] [CrossRef]
- Teow, C.C.; Truong, V.-D.; McFeeters, R.F.; Thompson, R.L.; Pecota, K.V.; Yencho, G.C. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 2007, 103, 829–838. [Google Scholar] [CrossRef]
- Bengtsson, A.; Namutebi, A.; Alminger, M.L.; Svanberg, U. Effects of various traditional processing methods on the all-trans-β-carotene content of orange-fleshed sweet potato. J. Food Compos. Anal. 2008, 21, 134–143. [Google Scholar] [CrossRef]
- Lako, J.; Trenerry, V.C.; Wahlqvist, M.; Wattanapenpaiboon, N.; Sotheeswaran, S.; Premier, R. Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chem. 2007, 101, 1727–1741. [Google Scholar] [CrossRef]
- Failla, M.L.; Thakkar, S.K.; Kim, J.Y. In vitro bioaccessibility of β-carotene in orange fleshed sweet potato (Ipomoea batatas, Lam.). J. Agric. Food Chem. 2009, 57, 10922–10927. [Google Scholar] [CrossRef]
Ratio of Sweet Potato: Peanut Butter: Whole Chickpeas | 75:12.5:12.5 | 60:30:10 | 60:10:30 | 60:5:35 | 50:30:20 | 50:20:30 | 40:40:20 | 40:20:40 | 40:50:10 | 30:20:50 | 30:50:20 |
---|---|---|---|---|---|---|---|---|---|---|---|
Total Calories (kcal) | 403 | 621 | 391 | 334 | 633 | 518 | 760 | 530 | 874 | 542 | 886 |
Total protein (g) | 13 | 21 | 14 | 12 | 23 | 19 | 28 | 20 | 32 | 21 | 33 |
Total fat (g) | 17 | 39 | 15 | 9 | 40 | 28 | 53 | 29 | 65 | 29 | 66 |
Total Vitamin A (μg RAE) | 1802 | 1442 | 1442 | 1442 | 1202 | 1202 | 962 | 962 | 962 | 722 | 722 |
β-carotene Equivalents (μg) | 21620 | 17296 | 17296 | 17296 | 14413 | 14413 | 11531 | 11531 | 11531 | 8648 | 8648 |
Iron (mg) | 2.17 | 2.61 | 2.27 | 2.19 | 2.70 | 2.53 | 2.96 | 2.63 | 3.13 | 2.72 | 3.23 |
Zinc (mg) | 1.58 | 2.52 | 1.58 | 1.34 | 2.60 | 2.13 | 3.14 | 2.20 | 3.61 | 2.28 | 3.69 |
Histidine (mg) | 300 | 500 | 340 | 290 | 540 | 460 | 660 | 500 | 740 | 530 | 780 |
Isoleucine (mg) | 410 | 620 | 480 | 440 | 670 | 610 | 800 | 660 | 870 | 720 | 930 |
Leucine (mg) | 830 | 1390 | 920 | 800 | 1490 | 1250 | 1820 | 1350 | 2060 | 1450 | 2160 |
Lysine (mg) | 510 | 720 | 640 | 620 | 820 | 780 | 960 | 880 | 1000 | 980 | 1100 |
Methionine (mg) | 180 | 270 | 190 | 170 | 280 | 240 | 330 | 350 | 370 | 270 | 390 |
Cysteine (mg) | 150 | 230 | 170 | 150 | 240 | 210 | 290 | 230 | 320 | 250 | 340 |
Methionine + Cysteine (mg) | 330 | 500 | 360 | 320 | 520 | 450 | 620 | 480 | 690 | 520 | 730 |
Phenylalanine (mg) | 690 | 1100 | 740 | 640 | 1180 | 990 | 1430 | 1060 | 1620 | 1130 | 1690 |
Phenylalanine + Tyrosine (mg) | 1070 | 1800 | 1130 | 960 | 1910 | 1570 | 2340 | 1670 | 2680 | 1770 | 2790 |
Threonine (mg) | 440 | 600 | 480 | 450 | 640 | 580 | 730 | 620 | 790 | 660 | 830 |
Tryptophan (mg) | 160 | 240 | 170 | 150 | 250 | 210 | 290 | 220 | 330 | 220 | 340 |
Valine (mg) | 530 | 790 | 570 | 520 | 840 | 730 | 990 | 780 | 1100 | 820 | 1150 |
Predicted | Actual | % Difference | |
---|---|---|---|
Total calories (kcal) | 334 | 306 ± 4 | −8.4% |
Protein (g) | 12.0 | 11.8 ± 0.1 | −1.1% |
Fat (g) | 9.0 | 7.4 ± 0.2 | −18.2% |
Iron (mg) | 2.2 | 2.0 ± 0.05 | −9.5% |
Zinc (mg) | 1.4 | 1.1 ± 0.09 | −16.1% |
Histidine (mg) | 290 | 292 ± 0.01 | 0.57% |
Isoleucine (mg) | 440 | 450 ± 0.00 | 2.3% |
Leucine (mg) | 800 | 825 ± 0.03 | 3.1% |
Lysine (mg) | 630 | 575 ± 0.03 | −8.0% |
Methionine (mg) | 180 | 150 ± 0.00 | −14.3% |
Phenylalanine (mg) | 650 | 675 ± 0.03 | 5.5% |
Threonine (mg) | 450 | 442 ± 0.01 | −1.9% |
Valine (mg) | 520 | 492 ± 0.01 | −5.5% |
Reference Amino Acid Scoring Pattern (mg/g) | Amino Acid Pattern in Food Product (mg/g) | % of Reference Amino Acid Scoring Pattern | |
---|---|---|---|
Histidine | 15 | 24.7 | 165% |
Isoleucine | 30 | 38.1 | 127% |
Leucine | 59 | 69.9 | 118% |
Lysine | 45 | 48.7 | 108% |
Methionine + Cysteine | 22 | 12.7 a | 58% |
Phenylalanine + Tyrosine | 38 | 57.2 b | 151% |
Threonine | 23 | 37.5 | 163% |
Valine | 39 | 41.7 | 107% |
Predicted (µg) | Actual (µg) | % Difference | |
---|---|---|---|
Unsterilized final product | 17,296 (1442) a | 8579 +/− 213 (715) b | −50% |
Sterilized final product | 17,296 (1442) a | 5893 +/− 135 (491) c | −66% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewandowski, K.; Zhang, X.; Hayes, M.; Ferruzzi, M.G.; Paton, C.M. Design and Nutrient Analysis of a Carotenoid-Rich Food Product to Address Vitamin A and Protein Deficiency. Foods 2021, 10, 1019. https://doi.org/10.3390/foods10051019
Lewandowski K, Zhang X, Hayes M, Ferruzzi MG, Paton CM. Design and Nutrient Analysis of a Carotenoid-Rich Food Product to Address Vitamin A and Protein Deficiency. Foods. 2021; 10(5):1019. https://doi.org/10.3390/foods10051019
Chicago/Turabian StyleLewandowski, Kristina, Xiaoyu Zhang, Micala Hayes, Mario G. Ferruzzi, and Chad M. Paton. 2021. "Design and Nutrient Analysis of a Carotenoid-Rich Food Product to Address Vitamin A and Protein Deficiency" Foods 10, no. 5: 1019. https://doi.org/10.3390/foods10051019
APA StyleLewandowski, K., Zhang, X., Hayes, M., Ferruzzi, M. G., & Paton, C. M. (2021). Design and Nutrient Analysis of a Carotenoid-Rich Food Product to Address Vitamin A and Protein Deficiency. Foods, 10(5), 1019. https://doi.org/10.3390/foods10051019