Tropical Beef: Is There an Axiomatic Basis to Define the Concept?
Abstract
:1. Introduction
2. Cattle Production in the Tropics
2.1. Breeds
2.2. Production Systems
3. Carcass and Meat Quality
4. Nutrient Composition
4.1. Macronutrients
4.2. Fatty Acids and Cholesterol
4.3. Minerals
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Bartends, W. Climate adaptation of tropical cattle. Annu. Rev. Anim. Biosci. 2017, 5, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Tewolde, A. Evaluation and utilization of tropical breeds for efficient beef production in the Tropics: Challenges and opportunities. In Proceedings of the 3rd World Congress on Genetics Applied to Livestock Production, Lincoln, NE, USA, 16–22 July 1986; pp. 283–329. [Google Scholar]
- Prayaga, K.C.; Henshall, J.M. Adaptability in tropical beef cattle: Genetic parameters of growth, adaptive and temperament traits in a crossbred population. Aust. J. Exp. Agric. 2005, 45, 971–983. [Google Scholar] [CrossRef] [Green Version]
- Wolcott, M.L.; Johnston, D.J.; Barwick, S.A.; Iker, C.L.; Thompson, H.M.; Burrow, H.M. Genetics of meat quality and carcass traits and the impact of tenderstretching in two tropical beef genotypes. Anim. Prod. Sci. 2009, 49, 383–398. [Google Scholar] [CrossRef]
- Meat and Livestock Australia Ltd. Tropical Beef Production Manual; Meat and Livestock Australia Ltd.: Sydney, Australia, 2011. [Google Scholar]
- Burrow, H.M. Importance of adaptation and genotype x environment interactions in tropical beef breeding systems. Animal 2012, 6, 729–740. [Google Scholar] [CrossRef] [Green Version]
- Carrasco-García, A.A.; Pardío-Sedas, V.T.; León-Banda, G.G.; Ahuja-Aguirre, C.; Paredes-Ramos, P.; Hernández-Cruz, B.C.; Murillo, V.V. Effect of stress during slaughter on carcass characteristics and meat quality in tropical beef cattle. Asian Australas. J. Anim. Sci. 2020, 33, 1656–1665. [Google Scholar] [CrossRef] [Green Version]
- National Geographic Society. Tropics. 2011. Available online: https://www.nationalgeographic.org/encyclopedia/tropics/ (accessed on 3 March 2021).
- State of the Tropics. State of the Tropics 2020 Report; James Cook University: Townsville, Australia, 2020. [Google Scholar]
- Arnfield, J.A. Köppen Climate Classification. Encyclopedia Britannica. 2020. Available online: https://www.britannica.com/science/Koppen-climate-classification (accessed on 24 February 2021).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- FAO. How to feed the world in 2050. In Proceedings of the Expert Meeting on How to Feed the World in 2050, Rome, Italy, 24–26 June 2009. [Google Scholar]
- Setshwaelo, L.L. Beef cattle breeding in the tropics. In Dairy Cattle Genetics and Breeding, Adaptation, Conservation XIV, Proceedings of the 4th World Congress of Genetics Applied to Livestock Production, Edinburgh, UK, 23–27 July 1990; Organizing Committee: Edinburgh, UK, 1990; pp. 349–359. [Google Scholar]
- Eberhard, D.; Simons, G.; Fennig, C. Ethnologue: Languages of the world, 24th ed.; SIL International: Dallas, TX, USA, 2021. [Google Scholar]
- Scholtz, M.M.; McManus, C.; Okeyo, A.M.; Theunissen, A. Opportunities for beef production in developing countries of the southern hemisphere. Livest. Sci. 2011, 142, 195–202. [Google Scholar] [CrossRef]
- Cooke, R.F.; Daigle, C.L.; Moriel, P.; Smith, S.B.; Tedeschi, L.O.; Vendramini, J.M.B. Cattle adapted to tropical and subtropical environments: Social, nutritional, and carcass quality considerations. J. Anim. Sci. 2020, 98, skaa014. [Google Scholar] [CrossRef]
- Elferink, E.V.; Nonhebel, S. Variations in land requirements for meat production. J. Clean Prod. 2007, 15, 1778–1786. [Google Scholar] [CrossRef]
- Preston, T.R. A strategy for cattle production in the tropics. World Anim. Rev. 1977, 21, 11–17. [Google Scholar]
- Preston, T.R. Sustainable systems of intensive livestock production for the humid tropics using local resources. BSAP Occas. Publ. 1993, 16, 101–105. [Google Scholar] [CrossRef]
- Ferraz, J.B.S.; de Felício, P.E. Production systems—An example from Brazil. Meat Sci. 2010, 84, 238–243. [Google Scholar] [CrossRef]
- Meat and Livestock Australia Ltd. Meat Standards Australia Beef Information Kit. 2011. Available online: https://www.mla.com.au/globalassets/mla-corporate/marketing-beef-and-lamb/msa_tt_beefinfokit_jul13_lr.pdf (accessed on 20 February 2021).
- Strother, G.R.; Burns, E.C.; Smart, L.I. Resistance of purebred Brahman, Hereford, and Brahman times Hereford crossbred cattle to the lone star tick, Amblyomma americanum (Acarina: Ixodidae). J. Med. Entomol. 1974, 11, 559–563. [Google Scholar]
- Frisch, J.E.; Vercoe, J.E. Food intake, eating rate, weight gains, metabolic rate and efficiency of feed utilization in Bos taurus and Bos indicus crossbred cattle. Anim. Sci. 1977, 25, 343–358. [Google Scholar] [CrossRef]
- Turner, J.W. Genetic and biological aspects of Zebu adaptability. J. Anim. Sci. 1980, 50, 1201–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, M.; Trail, J.C.M.; Davis, C.E.; Black, S.J. Genetic resistance to African trypanosomiasis. J. Infect. Dis. 1984, 149, 311–319. [Google Scholar] [CrossRef]
- Felius, M. Cattle Breeds: An Encyclopedia; Misset: Doetinchem, The Netherlands, 1995. [Google Scholar]
- Rege, J.E.O.; Tawah, C.L. The state of African cattle genetic resources II. Geographical distribution, characteristics and uses of present-day breeds and strains. Anim. Genet. Resour. Inf. 1999, 26, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Hansen, P.J. Physiological and cellular adaptations of zebu cattle to thermal stress. Anim. Reprod. Sci. 2004, 82, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.F.A.; Quigley, S.P.; Isherwood, P.; McLennan, S.R.; Sun, X.Q.; Gibbs, S.J.; Poppi, D.P. Small differences in biohydrogenation resulted from the similar retention times of fluid in the rumen of cattle grazing wet season C3 and C4 forage species. Anim. Feed Sci. Technol. 2019, 253, 101–112. [Google Scholar] [CrossRef]
- Mattioli, R.C.; Pandey, V.S.; Murray, M.; Fitzpatrick, J.L. Immunogenetic influences on tick resistance in African cattle with particular reference to trypanotolerant N’Dama (Bos taurus) and trypanosusceptible Gobra zebu (Bos indicus) cattle. Acta Trop. 2000, 75, 263–277. [Google Scholar] [CrossRef]
- Renaudeau, D.; Collin, A.; Yahav, S.; de Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, T.L.; Cundiff, L.V.; Koch, R.M. Effect of marbling degree on beef palatability in Bos taurus and Bos indicus cattle. J. Anim. Sci. 1994, 72, 3145–3151. [Google Scholar] [CrossRef] [PubMed]
- Hammond, A.C.; Olson, T.A.; Chase, C.C., Jr.; Bowers, E.J.; Randel, R.D.; Murphy, C.N.; Vogt, D.W.; Tewolde, A. Heat tolerance in two tropically adapted Bos taurus breeds, Senepol and Romosinuano, compared with Brahman, Angus, and Hereford cattle in Florida. J. Anim. Sci. 1996, 74, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Elzo, M.A.; Johnson, D.D.; Wasdin, J.G.; Driver, J.D. Carcass and meat palatability breed differences and heterosis effects in an Angus–Brahman multibreed population. Meat Sci. 2012, 90, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Gama, L.T.; Bressan, M.C.; Rodrigues, E.C.; Rossato, L.V.; Moreira, O.C.; Alves, S.P.; Bessa, R.J.B. Heterosis for meat quality and fatty acid profiles in crosses among Bos indicus and Bos taurus finished on pasture or grain. Meat Sci. 2013, 93, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Prayaga, K.C.; Corbet, N.J.; Johnston, D.J.; Wolcott, M.L.; Fordyce, G.; Burrow, H.M. Genetics of adaptive traits in heifers and their relationship to growth, pubertal and carcass traits in two tropical beef cattle genotypes. Anim. Prod. Sci. 2009, 49, 413–425. [Google Scholar] [CrossRef] [Green Version]
- Riley, D.G.; Chase, C.C., Jr.; Coleman, S.W.; Olson, T.A. Genetic assessment of rectal temperature and coat score in Brahman, Angus, and Romosinuano crossbred and straightbred cows and calves under subtropical summer conditions. Livest. Sci. 2012, 148, 109–118. [Google Scholar] [CrossRef]
- Riley, D.G.; Burke, J.M.; Chase, C.C., Jr.; Coleman, S.W. Genetic effects for reproductive performance of straightbred and crossbred Romosinuano and Angus cows in a temperate zone. Livest. Sci. 2015, 180, 22–26. [Google Scholar] [CrossRef]
- Rocha, J.F.; Martínez, R.; López-Villalobos, N.; Morris, S.T. Tick burden in Bos taurus cattle and its relationship with heat stress in three agroecological zones in the tropics of Colombia. Parasites Vectors 2019, 12, 73. [Google Scholar] [CrossRef]
- Pryce, J.E.; Royal, M.D.; Garnsworthy, P.C.; Mao, I.L. Fertility in the high-producing dairy cow. Livest. Prod. Sci. 2004, 86, 125–135. [Google Scholar] [CrossRef]
- de Roos, A.P.W.; Hayes, B.J.; Spelman, R.J.; Goddard, M.E. Linkage disequilibrium and persistence of phase in Holstein–Friesian, Jersey and Angus cattle. Genetics 2008, 179, 1503–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mwai, O.; Hanotte, O.; Kwon, Y.J.; Cho, S. African indigenous cattle: Unique genetic resources in a rapidly changing world. Asian Australas. J. Anim. Sci. 2015, 28, 911–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, D.M.; Estell, R.E.; Gonzalez, A.L.; Cibils, A.F.; Torell, L.A. Criollo cattle: Heritage genetics for arid landscapes. Rangelands 2015, 37, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Restrepo, C.A.; Vera, R.R.; Rao, I.M. Dynamics of animal performance, and estimation of carbon footprint of two breeding herds grazing native neotropical savannas in eastern Colombia. Agric. Ecosyst. Environ. 2019, 281, 35–46. [Google Scholar] [CrossRef]
- Rege, J.E.O. The state of African cattle genetic resources. I. Classification framework and identification of threatened and extinct breeds. Anim. Genet. Resour. Inf. 1999, 25, 1–26. [Google Scholar] [CrossRef]
- Peel, D.S.; Johnson, R.J.; Mathews, K.H. Cow-Calf Beef Production in Mexico; USDA: Washington, DC, USA, 2010.
- Parra-Bracamonte, G.M.; Lopez-Villalobos, N.; Morris, S.T.; Vázquez-Armijo, J.F. An overview on production, consumer perspectives and quality assurance schemes of beef in Mexico. Meat Sci. 2020, 170, 108239. [Google Scholar] [CrossRef]
- Rubio Lozano, M.S.; Braña Varela, D.; Méndez Medina, R.D. Carne de res Mexicana; Folleto Técnico No. 15; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ajuchitlán: Colón, Querétaro, Mexico, 2012.
- Poppi, D.P.; Quigley, S.P.; da Silva, T.A.C.C.; McLennan, S.R. Challenges of beef cattle production from tropical pastures. Rev. Bras. Zootec. 2018, 47, e20160419. [Google Scholar] [CrossRef] [Green Version]
- Ash, A.; Hunt, L.; McDonald, C.; Scanlan, J.; Bell, L.; Cowley, R.; Watson, I.; Mclvor, J.; MacLeod, N. Boosting the productivity and profitability of northern Australian beef enterprises: Exploring innovation options using simulation modelling and systems analysis. Agric. Syst. 2015, 139, 50–65. [Google Scholar] [CrossRef] [Green Version]
- O’Reagain, P.; Bushell, J.; Holmes, B. Managing for rainfall variability: Long-term profitability of different grazing strategies in a northern Australian tropical savanna. Anim. Prod. Sci. 2011, 51, 210–224. [Google Scholar] [CrossRef]
- Agus, A.; Widi, T.S.M. Current situation and future prospects for beef cattle production in Indonesia—A review. Asian Australas. J. Anim. Sci. 2018, 31, 976–983. [Google Scholar] [CrossRef] [Green Version]
- Teye, G.A.; Sunkwa, W.K. Carcass characteristics of tropical beef cattle breeds (West African Shorthorn, sanga and zebu) in Ghana. Afr. J. Food Agric. Nutr. Dev. 2010, 10, 2866–2883. [Google Scholar] [CrossRef] [Green Version]
- Rege, J.E.O.; Aboagye, G.S.; Tawah, C.L. Shorthorn cattle of West and Central Africa IV. Production characteristics. World Anim. Rev. 1994, 78, 33–48. [Google Scholar]
- Asizua, D.; Mpairwe, D.; Kabi, F.; Mutetikka, D.; Hvelplund, T.; Weisbjerg, M.R.; Madsen, J. Effects of grazing and feedlot finishing duration on the performance of three beef cattle genotypes in Uganda. Livest. Sci. 2017, 199, 25–30. [Google Scholar] [CrossRef]
- Nfor, B.M.; Corazzin, M.; Fonteh, F.A.; Aziwo, N.T.; Galeotti, M.; Piasentier, E. Quality and safety of beef produced in Central African Sub-region. Ital. J. Anim. Sci. 2014, 214, 392–397. [Google Scholar] [CrossRef]
- Deffo, V.; Pamo, E.T.; Tchotsoua, M.; Lieugomg, M.; Arene, C.J.; Nwagbo, E.C. Determination of the Critical Period for Cattle Farming in Cameroon. 2011. Available online: http://academicjournals.org/article/article1379432605_Deffo%20et%20al.pdf (accessed on 24 February 2021).
- Salifou, C.F.A.; Dahouda, M.; Houaga, I.; Picard, B.; Hornick, J.L.; Micol, D.; Farougou, S.; Mensah, G.A.; Clinquart, A.; Youssao, A.K.I. Muscle characteristics, meat tenderness and nutritional qualities traits of Borgou, Lagunaire and Zebu Fulani bulls raised on natural pasture in Benin. Int. J. Anim. Vet. Adv. 2013, 5, 143–155. [Google Scholar] [CrossRef]
- Ball, B.; Johnson, E.R. The influence of breed and sex on saleable beef yield. Aust. J. Exp. Agric. 1989, 29, 483–487. [Google Scholar] [CrossRef]
- Wythes, J.R.; Shorthose, W.R.; Dodt, R.M.; Dickinson, R.F. Carcass and meat quality of Bos indicus x Bos taurus and Bos taurus cattle in northern Australia. Aust. J. Exp. Agric. 1989, 29, 757–763. [Google Scholar] [CrossRef]
- Wythes, J.R.; Shorthose, W.R. Chronological age and dentition effects on carcass and meat quality of cattle in northern Australia. Aust. J. Exp. Agric. 1991, 31, 145–152. [Google Scholar] [CrossRef]
- Newman, S.; Burrow, H.M.; Shepherd, R.K.; Bindon, B.M. Meat quality traits of grass-and grain-finished Brahman crosses for domestic and export markets. Proc. Assoc. Adv. Anim. Breed. Genet. 1999, 13, 235–238. [Google Scholar]
- Newman, S.; Burrow, H.M.; Shepherd, R.K.; Bindon, B.M. Carcass yield traits of grass-and grain-finished Brahman crosses for domestic and export markets. Proc. Assoc. Adv. Anim. Breed. Genet. 1999, 13, 231–234. [Google Scholar]
- Schatz, T.J.; Thomas, S.; Geesink, G. Comparison of the growth and meat tenderness of Brahman and F1 Senepol × Brahman steers. Anim. Prod. Sci. 2014, 54, 1867–1870. [Google Scholar] [CrossRef]
- Norman, G.A.; de Felicio, P.E. Effects of breed and nutrition on the productive traits of Zebu, Charolais and crossbreed beef cattle in south-east Brazil—Part 1: Body and gross carcase composition. Meat Sci. 1981, 5, 425–438. [Google Scholar] [CrossRef]
- Maggioni, D.; de Marques, J.A.; Rotta, P.P.; Perotto, D.; Ducatti, T.; Visentainer, J.V.; do Prado, I.N. Animal performance and meat quality of crossbred young bulls. Livest. Sci. 2010, 127, 176–182. [Google Scholar] [CrossRef]
- Pflanzer, S.B.; de Felício, P.E. Moisture and fat content, marbling level and color of boneless rib cut from Nellore steers varying in maturity and fatness. Meat Sci. 2011, 87, 7–11. [Google Scholar] [CrossRef]
- Bressan, M.C.; Rodrigues, E.C.; Rossato, L.V.; Ramos, E.M.; da Gama, L.T. Physicochemical properties of meat from Bos taurus and Bos indicus. Rev. Bras. Zootec. 2011, 40, 1250–1259. [Google Scholar] [CrossRef] [Green Version]
- Diniz, F.B.; Villela, S.D.J.; Mourthé, M.H.F.; Paulino, P.V.R.; Boari, C.A.; Ribeiro, J.S.; Barroso, J.A.; Pires, A.V.; Martins, P.G.M.A. Evaluation of carcass traits and meat characteristics of Guzerat-crossbred bulls. Meat Sci. 2016, 112, 58–62. [Google Scholar] [CrossRef]
- Pereira, A.S.C.; Baldi, F.; Sainz, R.D.; Utembergue, B.L.; Chiaia, H.L.J.; Magnabosco, C.U.; Manicardi, F.R.; Araujo, F.R.C.; Guedes, C.F.; Margarido, R.C.; et al. Growth performance, and carcass and meat quality traits in progeny of Poll Nellore, Angus and Brahman sires under tropical conditions. Anim. Prod. Sci. 2015, 55, 1295–1302. [Google Scholar] [CrossRef] [Green Version]
- Belew, J.B.; Brook, J.C.; McKenna, D.R.; Savell, J.W. Warner-Bratzler shear evaluations of 40 bovine muscles. Meat Sci. 2003, 64, 507–512. [Google Scholar] [CrossRef]
- Rodas-González, A.; Huerta-Leidenz, N.; Jerez-Timaure, N.; Miller, M.F. Establishing tenderness thresholds of Venezuelan beef steaks using consumer and trained sensory panels. Meat Sci. 2009, 83, 218–223. [Google Scholar] [CrossRef]
- Rodriguez, J.; Unruh, J.; Villarreal, M.; Murillo, O.; Rojas, S.; Camacho, J.; Jaeger, J.; Reinhardt, C. Carcass and meat quality characteristics of Brahman cross bulls and steers finished on tropical pastures in Costa Rica. Meat Sci. 2014, 96, 1340–1344. [Google Scholar] [CrossRef]
- Chávez, A.; Pérez, E.; Rubio, M.S.; Méndez, R.D.; Delgado, E.J.; Díaz, D. Chemical composition and cooking properties of beef forequarter muscles of Mexican cattle from different genotypes. Meat Sci. 2012, 91, 160–164. [Google Scholar] [CrossRef]
- de Nadai Bonin, M.; Pedrosa, V.B.; e Silva, S.D.L.; Bünger, L.; Ross, D.; da Costa Gomes, R.; de Almeida Santana, M.H.; de Córdova Cucco, D.; de Rezende, F.M.; Ítavo, L.C.V.; et al. Genetic parameters associated with meat quality of Nellore cattle at different anatomical points of longissimus: Brazilian standards. Meat Sci. 2021, 171, 108281. [Google Scholar] [CrossRef]
- Civit, G.S.; Méndez, M.R.D.; Iturbe, C.F.; Rosiles, R.; Casis, L.; Rubio, L.M.S. Chemical composition, meat quality and consumer acceptability in Mexican (Guadalajara, Chihuahua and Veracruz) retail beef. In Proceedings of the 51st International Congress of Meat Science and Technology, Baltimore, MA, USA, 7–12 August 2005; pp. 424–428. [Google Scholar]
- Santrich-Vacca, D.; Cianzio, D.; Rivera, A.; Casas, A.; Macchiavelli, R. Quality and chemical composition of beef from cattle of two age groups in Puerto Rico. J. Agric. Univ. Puerto Rico 2013, 97, 57–74. [Google Scholar] [CrossRef]
- Vazquez-Mendoza, O.V.; Aranda-Osorio, G.; Huerta-Bravo, M.; Kholif, A.E.; Elghandour, M.M.Y.; Salem, A.Z.M.; Maldonado-Simán, E. Carcass and meat properties of six genotypes of young bulls finished under feedlot tropical conditions of Mexico. Anim. Prod. Sci. 2017, 57, 1186–1192. [Google Scholar] [CrossRef]
- Jerez-Timaure, N.; Huerta-Leidenz, N. Effects of breed type and supplementation during grazing on carcass traits and meat quality of bulls fattened on improved savannah. Livest. Sci. 2009, 121, 219–226. [Google Scholar] [CrossRef]
- Nassu, R.T.; Tullio, R.R.; Berndt, A.; Francisco, V.C.; Diesel, T.A.; Alencar, M.M. Effect of the genetic group, production system and sex on the meat quality and sensory traits of beef from crossbred animals. Trop. Anim. Health Prod. 2017, 49, 1289–1294. [Google Scholar] [CrossRef] [PubMed]
- Pflanzer, S.B.; de Felício, P.E. Effects of teeth maturity and fatness of Nellore (Bos indicus) steer carcasses on instrumental and sensory tenderness. Meat Sci. 2009, 83, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Van Cleef, E.H.C.B.; D’Áurea, A.P.; Fávaro, V.R.; van Cleef, F.O.S.; Barducci, R.S.; Almeida, M.T.C.; Machado Neto, O.R.; Ezequiel, J.M.B. Effects of dietary inclusion of high concentrations of crude glycerin on meat quality and fatty acid profile of feedlot fed Nellore bulls. PLoS ONE 2017, 12, e0179830. [Google Scholar] [CrossRef]
- Lage, J.F.; Berchielli, T.T.; San Vito, E.; Silva, R.A.; Ribeiro, A.F.; Reis, R.A.; Dallantonia, L.R.; Simonetti, L.R.; Delevatti, L.M.; Machado, M. Fatty acid profile, carcass and meat quality traits of young Nellore bulls fed crude glycerin replacing energy sources in the concentrate. Meat Sci. 2014, 96, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Méndez, R.D.; Meza, C.O.; Berruecos, J.M.; Garcés, P.; Delgado, E.J.; Rubio, M.S. A survey of beef carcass quality and quantity attributes in Mexico. J. Anim. Sci. 2009, 87, 3782–3790. [Google Scholar] [CrossRef]
- Huerta-Leidenz, N.; Jerez Timaure, N. Eating quality of meat from bovines in Venezuela: A review. Rev. Fac. Agron. LUZ 2020, 37, 169–206. [Google Scholar]
- Mach, N.; Bach, A.; Realini, C.E.; Font i Furnols, M.; Velarde, A.; Devant, M. Burdizzo pre-pubertal castration effects on performance, behaviour, carcass characteristics, and meat quality of Holstein bulls fed high-concentrate diets. Meat Sci. 2009, 81, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Seideman, S.C.; Cross, H.R.; Oltjen, R.R.; Schanbacher, B.D. Utilization of the intact male for red meat production: A review. J. Anim. Sci. 1982, 55, 826–840. [Google Scholar] [CrossRef] [Green Version]
- Huerta-Leidenz, N.O.; Rodas-González, A.; Jerez Timaure, N.; Arispe, M.; Rivero, J.M. Efecto de la clase de machos bovinos y el peso de la canal sobre el rendimiento comercial en cortes Venezolanos. Rev. Cient. 1999, 9, 33–39. [Google Scholar]
- Field, R.A. Effect of castration on meat quality and quantity. J. Anim. Sci. 1971, 32, 849–858. [Google Scholar] [CrossRef]
- Seideman, S.C.; Cross, H.R.; Crouse, J.D. Carcass characteristics, sensory properties and mineral content of meat from bulls and steers. J. Food Qual. 1989, 11, 497–507. [Google Scholar] [CrossRef]
- Zorrilla-Ríos, J.M.; Lancaster, P.A.; Goad, C.L.; Horn, G.W.; Hilton, G.G.; Galindo, J.G. Quality evaluation of beef carcasses produced under tropical conditions of México. J. Anim. Sci. 2013, 91, 477–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, E.J.; Rubio, M.S.; Iturbe, F.A.; Méndez, R.D.; Cassís, L.; Rosiles, R. Composition and quality of Mexican and imported retail beef in Mexico. Meat Sci. 2005, 69, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Duckett, S.K.; Neel, J.P.S.; Lewis, R.M.; Fontenot, J.P.; Clapham, W.M. Effects of forage species or concentrate finishing on animal performance, carcass and meat quality. J. Anim. Sci. 2013, 91, 1454–1467. [Google Scholar] [CrossRef] [Green Version]
- Leheska, J.M.; Thompson, L.D.; Howe, J.C.; Hentges, E.; Boyce, J.; Brooks, J.C.; Shriver, B.; Hoover, L.; Miller, M.F. Effects of conventional and grass-feeding systems on the nutrient composition of beef. J. Anim. Sci. 2008, 86, 3575–3585. [Google Scholar] [CrossRef] [Green Version]
- Huerta-Leidenz, N.; Hernández, O.; Rodas-González, A.; Ordóñez, V.; Pargas, J.H.L.; Rincón, E.; del Villar, A.; Bracho, B. Body weight and carcass dressing as affected by sex class, breed type, muscle thickness, age and provenance of Venezuelan cattle. NACAMEH 2013, 7, 75–96. [Google Scholar] [CrossRef]
- Uzcátegui Bracho, S.; Arenas de Moreno, L.; Jerez-Timaure, N.; Huerta-Leidenz, N.; Byers, F.M. Bull production factors affecting proximate and mineral composition of cooked longissimus steaks. In Proceedings of the 50th International Congress of Meat Science and Technology, Helsinki, Finland, 8–13 August 2004. [Google Scholar]
- Ngapo, T.M.; Braña Varela, D.; Rubio Lozano, M. Mexican consumers at the point of meat purchase. Beef choice. Meat Sci. 2017, 134, 34–43. [Google Scholar] [CrossRef]
- Bautista-Martínez, Y.; Hernández-Mendo, O.; Crosby-Galván, M.M.; Joaquin-Cancino, S.; Albarrán, M.R.; Salinas-Chavira, J.; Granados-Rivera, L.D. Physicochemical characteristics and fatty acid profile of beef in Northeastern Mexico: Grazing vs feedlot systems. CyTA J. Food 2020, 18, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Valero Leal, K.; Huerta-Leidenz, N.; Uzcátegui Bracho, S.; de Moreno, L.A.; Ettiene, G.; Buscema, I. Comparative analyses of proximal and fatty acid composition of grass-fed meat from water buffaloes (Bubalus bubalis) and zebu-influenced beef cattle at 24 months of age. In Proceedings of the 46th International Congress of Meat Science and Technology, Buenos Aires, Argentina, 27 August–1 September 2000; pp. 74–75. [Google Scholar]
- Uzcátegui, B.S.; Huerta-Leidenz, N.; de Moreno, L.A.; Colina, G.; Jerez-Timaure, N. Contenido de humedad, lípidos totales y ácidos grasos del músculo longissimus crudo de bovinos en Venezuela. Arch. Latinoam. Nutr. 1999, 49, 171–180. [Google Scholar] [PubMed]
- Uzcátegui-Bracho, S.; Arenas de Moreno, L.; Jerez-Timaure, N.; Huerta-Leidenz, N.; Giuffrida-Mendoza, M.; Ortega, J. Principal component analysis to characterise the chemical composition of beef according to age and gender. In Proceedings of the 52nd International Congress of Meat Science and Technology, Dublin, Ireland, 13–18 August 2006; pp. 155–156. [Google Scholar]
- Arenas de Moreno, L.; Vidal, A.; Huerta-Sánchez, D.; Navas, Y.; Uzcátegui-Bracho, S.; Huerta-Leidenz, N. Análisis comparativo proximal y de minerales entre carnes de iguana, pollo y res. Arch. Latinoam. Nutr. 2000, 4, 409–415. [Google Scholar]
- Uzcátegui-Bracho, S.; Giuffrida-Mendoza, M.; Arenas de Moreno, L.; Jerez-Timaure, N. Contenido proximal, lípidos y colesterol de las carnes de res, cerdo y pollo obtenidas de expendios carniceros de la zona sur de Maracaibo. Rev. Venez. de Tecnol. y Soc. 2010, 3, 13–29. [Google Scholar]
- Riyanto, J.; Nuhriawangsa, A.M.P.; Pramono, A.; Widyawati, S.D.; Purnika, D. The chemical quality of silverside Simental Ongole crossbred meat at various roasting temperatures. In Proceedings of the International Conference on Science and Applied Science, Surakarta City, Indonesia, 12 May 2018; AIP Publishing LLC.: Melville, NY, USA, 2014; p. 020042. [Google Scholar]
- Das Graças Padre, R.; Aricetti, J.A.; Gomes, S.T.M.; de Goes, R.H.d.T.B.; Moreira, F.B.; do Prado, I.N.; Visentainer, J.V.; de Souza, N.E.; Matsushita, M. Analysis of fatty acids in Longissimus muscle of steers of different genetic breeds finished in pasture systems. Livest. Sci. 2007, 110, 57–63. [Google Scholar] [CrossRef]
- Ojong, W.B.; Saccà, E.; Corazzin, M.; Sepulcri, A.; Piasentier, E. Body and meat characteristics of young bulls from Zebu Goudali of Cameroon and its crosses with the Italian Simmental. Ital. J. Anim. Sci. 2018, 17, 240–249. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, M.R.; Matsushita, M.; Visentainer, J.V.; Hernandez, J.A.; Ribeiro, E.L.d.A.; Shimokomaki, M.; Reeves, J.J.; de Souza, N.E. Proximate chemical composition and fatty acid profiles of Longissimus thoracis from pasture fed LHRH immunocastrated, castrated and intact Bos indicus bulls. S. Afr. J. Anim. Sci. 2005, 35, 13–18. [Google Scholar]
- Aricetti, J.A.; Rotta, P.P.; Prado, R.M.D.; Perotto, D.; Moletta, J.L.; Matsushita, M.; Prado, I.N.D. Carcass characteristics, chemical composition and fatty acid profile of longissimus muscle of bulls and steers finished in a pasture system bulls and steers finished in pasture systems. Asian Australas. J. Anim. Sci. 2008, 21, 1441–1448. [Google Scholar] [CrossRef]
- Giuffrida-Mendoza, M.; de Moreno, L.A.; Huerta-Leidenz, N.; Uzcátegui-Bracho, S.; Valero-Leal, K.; Romero, S.; Rodas-González, A. Cholesterol and fatty acid composition of longissimus thoracis from water buffalo (Bubalus bubalis) and Brahman-influenced cattle raised under savannah conditions. Meat Sci. 2015, 106, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Ilavarasan, R.; Abraham, R.J.J.; Appa Rao, V. Influence of age on meat quality characteristics and proximate composition of cattle meat of Tamil Nadu. J. Environ. Biol. Sci. 2016, 30, 185–187. [Google Scholar]
- Arenas de Moreno, L.; Giuffrida-Mendoza, M.; Bulmes, L.; Uzcátegui-Bracho, S.; Huerta-Leidenz, N.; Jerez-Timaure, N. Effect of strategic supplementation, implant regime and gender on the proximate and mineral composition of raw and cooked bovine meat. Rev. Cient. 2008, 18, 65–72. [Google Scholar]
- Uzcátegui-Bracho, S.; Rodas-González, A.; Hennig, K.; Arenas de Moreno, L.; Leal, M.; Vergara-López, J.; Huerta-Leidenz, N. Efecto de la suplementación a pastoreo sobre la composición proximal, mineral y contenido de colesterol del músculo longissimus dorsi de novillos Criollo Limonero. In Proceedings of the XX Reunión de ALPA, Cusco, Peru, 22–25 October 2007. [Google Scholar]
- Uzcátegui-Bracho, S.; Rodas-González, A.; Hennig, K.; Arenas de Moreno, L.; Leal, M.; Vergara-López, J.; Jerez-Timaure, N. Composición proximal, mineral y contenido de colesterol del músculo Longissimus dorsi de novillos Criollo Limonero suplementados a pastoreo. Rev. Cient. 2008, 18, 589–594. [Google Scholar]
- Montero-Lagunes, M.; Juárez-Lagunes, F.I.; García-Galindo, H.S. Perfil de ácidos grasos en carne de toretes Europeo x Cebú finalizados en pastoreo y en corral. Rev. Mex. Cienc. Pecu. 2011, 2, 137–149. [Google Scholar]
- Huerta-Sánchez, D.; Villa, V.; Arenas de Moreno, L.; Huerta-Leidenz, N.; Guiffrida, M.; Rodas-González, A. Comparison of imported vs. domestic beef cuts for restaurant use in Venezuela, II Marbling level, proximate and mineral composition. In Proceedings of the 50th International Congress of Meat Science and Technology, Helsinki, Finland, 8–13 August 2004; pp. 1091–1094. [Google Scholar]
- Huerta-Montauti, D.; Villa, V.; Arenas de Moreno, L.; Rodas-González, A.; Giuffrida-Mendoza, M.; Huerta-Leidenz, N. Proximate and mineral composition of imported versus domestic beef cuts for restaurant use in Venezuela. J. Muscle Foods 2007, 18, 237–252. [Google Scholar] [CrossRef]
- Bressan, M.C.; Rodrigues, E.C.; de Paula, M.d.L.; Ramos, E.M.; Portugal, P.V.; Silva, J.S.; Bessa, R.B.; Telo da Gama, L. Differences in intramuscular fatty acid profiles among Bos indicus and crossbred Bos Taurus × Bos indicus bulls finished on pasture or with concentrate feed in Brazil. Ital. J. Anim. Sci. 2016, 15, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, T.L.; Miller, R.K.; Savell, J.W.; Cross, H.R. Palatability of chilled and frozen beef steaks. J. Food Sci. 1990, 55, 301–304. [Google Scholar] [CrossRef]
- Miller, M.F.; Cross, H.R.; Lunt, D.K.; Smith, S.B. Lipogenesis in acute and 48-hour cultures of bovine intramuscular and subcutaneous adipose tissue explants. J. Anim. Sci. 1991, 69, 162–170. [Google Scholar] [CrossRef]
- Campbell, E.M.G.; Sanders, J.O.; Lunt, D.K.; Gill, C.A.; Taylor, J.F.; Davis, S.K.; Riley, D.G.; Smith, S.B. Adiposity, lipogenesis, and fatty acid composition of subcutaneous and intramuscular adipose tissues of Brahman and Angus crossbred cattle. J. Anim. Sci. 2016, 94, 1415–1425. [Google Scholar] [CrossRef] [Green Version]
- Huerta-Léidenz, N.; Ríos, G. La castración del bovino a diferentes estadios de su crecimiento. II. Las características de la canal. Una revisión. Rev. Fac. Agron. LUZ 1993, 10, 163–187. [Google Scholar]
- Dikeman, M.E. Effects of metabolic modifiers on carcass traits and meat quality. Meat Sci. 2007, 77, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Webb, E.C.; Erasmus, L.J. The effect of production system and management practices on the quality of meat products from ruminant livestock. S. Afr. J. Anim. Sci. 2013, 43, 413–423. [Google Scholar] [CrossRef] [Green Version]
- Nfor, B.M.; Corazzin, M.; Fonteh, F.A.; Sepulcri, A.; Aziwo, N.T.; Piasentier, E. Fatty acid profile of zebu beef cattle from the Central African sub-region. S. Afr. J. Anim. Sci. 2014, 44, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd-and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Itoh, M.; Johnson, C.B.; Cosgrove, G.P.; Muir, P.D.; Purchas, R.W. Intramuscular fatty acid composition of neutral and polar lipids for heavy-weight Angus and Simmental steers finished on pasture or grain. J. Sci. Food Agric. 1999, 79, 821–827. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-6/omega-3 essential fatty acid ratio and chronic diseases. Food Rev. Int. 2004, 20, 77–90. [Google Scholar] [CrossRef]
- Piasentier, E.; Bovolenta, S.; Moioli, B.; Orrù, L.; Valusso, R.; Corazzin, M. Fatty acid composition and sensory properties of Italian Simmental beef as affected by gene frequency of Montbéliarde origin. Meat Sci. 2009, 83, 543–550. [Google Scholar] [CrossRef]
- Corazzin, M.; Bovolenta, S.; Sepulcri, A.; Piasentier, E. Effect of whole linseed addition on meat production and quality of Italian Simmental and Holstein young bulls. Meat Sci. 2012, 90, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, G.; Blanco, M.; Albertí, P.; Panea, B.; Joy, M.; Casasús, I. Effect of two Spanish breeds and diet on beef quality including consumer preferences. J. Sci. Food Agric. 2014, 94, 983–992. [Google Scholar] [CrossRef]
- Enser, M.; Richardson, R.I.; Wood, J.D.; Gill, B.P.; Sheard, P.R. Feeding linseed to increase the n-3 PUFA of pork: Fatty acid composition of muscle, adipose tissue, liver and sausages. Meat Sci. 2000, 55, 201–212. [Google Scholar] [CrossRef]
- Yang, A.; Lanari, M.C.; Brewster, M.; Tume, R.K. Lipid stability and meat colour of beef from pasture- and grain-fed cattle with or without vitamin E supplement. Meat Sci. 2002, 60, 41–50. [Google Scholar] [CrossRef]
- Madron, M.S.; Peterson, D.G.; Dwyer, D.A.; Corl, B.A.; Baumgard, L.H.; Beermann, D.H.; Bauman, D.E. Effect of extruded full-fat soybeans on conjugated linoleic acid content of intramuscular, intermuscular, and subcutaneous fat in beef steers. J. Anim. Sci. 2002, 80, 1135–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Realini, C.E.; Duckett, S.K.; Brito, G.W.; Dalla Rizza, M.; De Mattos, D. Effect of pasture vs. concentrate feeding with or without antioxidants on carcass characteristics, fatty acid composition, and quality of Uruguayan beef. Meat Sci. 2004, 66, 567–577. [Google Scholar] [CrossRef]
- Giuffrida de Mendoza, M.; Arenas de Moreno, L.; Huerta-Leidenz, N.; Uzcátegui-Bracho, S.; Beriain, M.J.; Smith, G.C. Occurrence of conjugated linoleic acid in longissimus dorsi muscle of water buffalo (Bubalus bubalis) and zebu-type cattle raised under savannah conditions. Meat Sci. 2005, 69, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.L.; Kolver, E.S.; Bauman, D.E.; Van Amburgh, M.E.; Muller, L.D. Effect of intake of pasture on concentrations of conjugated linoleic acid in milk of lactating cows. J. Dairy Sci. 1998, 81, 1630–1636. [Google Scholar] [CrossRef]
- Lobato, J.F.P.; Freitas, A.K.; Devincenzi, T.; Cardoso, L.L.; Tarouco, J.U.; Vieira, R.M.; Dillenburg, D.R.; Castro, I. Brazilian beef produced on pastures: Sustainable and healthy. Meat Sci. 2014, 98, 336–345. [Google Scholar] [CrossRef]
- Montoya, C.; García, J.F.; Barahona, R. Contenido de ácidos grasos en carne de bovinos cebados en diferentes sistemas de produccíon en el trópico Colombiano. Vitae 2015, 22, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Eichhorn, J.M.; Coleman, L.J.; Wakayama, E.J.; Blomquist, G.J.; Bailey, C.M.; Jenkins, T.G. Effects of breed type and restricted versus ad libitum feeding on fatty acid composition and cholesterol content of muscle and adipose tissue from mature bovine females. J. Anim. Sci. 1986, 63, 781–794. [Google Scholar] [CrossRef]
- Manner, W.; Maxwell, R.J.; Williams, J.E. Effects of dietary regimen and tissue site on bovine fatty acid profiles. J. Anim. Sci. 1984, 59, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Aboujaoude, C.; Pereira, A.S.C.; Feitosa, F.L.B.; de Lemos, M.V.A.; Chiaia, H.L.J.; Berton, M.P.; Peripolli, E.; de Oliveira Silva, R.M.; Ferrinho, A.M.; Mueller, L.F.; et al. Genetic parameters for fatty acids in intramuscular fat from feedlot-finished Nelore carcasses. Anim. Prod. Sci. 2018, 58, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Kelly, M.J.; Tume, R.K.; Newman, S.; Thompson, J.M. Genetic variation in fatty acid composition of subcutaneous fat in cattle. Anim. Prod. Sci. 2013, 53, 129–133. [Google Scholar] [CrossRef]
- Ribeiro, D.M.; Mourato, M.P.; Almeida, A.M. Assessing mineral status in edible tissues of domestic and game animals: A review with special emphasis in tropical regions. Trop. Anim. Health Prod. 2019, 51, 1019–1032. [Google Scholar] [CrossRef]
- Fernandes, E.A.D.N.; Sarriés, G.A.; Bacchi, M.A.; Mazola, Y.T.; Gonzaga, C.L.; Sarriés, S.R.V. Trace elements and machine learning for Brazilian beef traceability. Food Chem. 2020, 333, 127462. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Leidenz, N.; Arenas de Moreno, L.; Moron-Fuenmayor, O.; Uzcátegui-Bracho, S. Composición mineral del músculo longissimus crudo derivado de canales producidas y clasificadas en Venezuela. Arch. Latinoam. Nutr. 2003, 53, 96–101. [Google Scholar]
- Giuffrida-Mendoza, M.; Arenas de Moreno, L.; Uzcátegui-Bracho, S.; Rincón-Villalobos, G.; Huerta-Leidenz, N. Mineral content of Longissimus dorsi thoracis from water buffalo and Zebu-influenced cattle at four comparative ages. Meat Sci. 2007, 75, 487–493. [Google Scholar] [CrossRef] [PubMed]
Country | Breed or Purchased Meat | n | Sex | Age (Months) | Feed | Other | Shear Force (N) | Days p.m. 2 | Muscle 3 | Ref |
---|---|---|---|---|---|---|---|---|---|---|
No Comparison | ||||||||||
Brazil | Nellore | 1329 | Bulls | 21–24 | Feedlot-finished | 59 | 2 | LT | [75] | |
58 | 7 | |||||||||
62 | 9 | |||||||||
Mexico 4 | Purchased steaks | 20 | 41 | LD | [76] | |||||
Puerto Rico | Non-specified “typical” breeds | 105 | Male, female | ≤30, ≥36 | Pasture | 46 | 1 | LL | [77] | |
43 | St | |||||||||
49 | Sm | |||||||||
Breed | ||||||||||
Brazil | Nellore | 306 | Steers, heifers | 22–24 | Feedlot-finished | 42 a | 15 | LD | [70] | |
Nellore × Angus | 33 b | |||||||||
Brahman × Nellore | 39 ab | |||||||||
Brazil | Bos taurus | 160 | Bulls | 26–40 | Pasture or concentrate-finished | 74 | 1 | LT | [68] | |
Bos indicus | 88 | 1 | ||||||||
Bos taurus | 54 | 10 | ||||||||
Bos indicus | 60 | 10 | ||||||||
Brazil | Guzerat × Holstein | 36 | Bulls | 26 | Feedlot-finished | 43 a | 1 | LL | [69] | |
Guzerat × Nellore | 51 b | |||||||||
½Simmental × ¼Guzerat × ¼Nellore | 50 b | |||||||||
Australia | Brahman × Shorthorn | 170 | Bulls | 36–84 | Pasture | 75 | 1 | LD | [60] | |
Shorthorn | 75 | |||||||||
Australia | Brahman × Shorthorn | 240 | Cows | 60–120 | Pasture | 89 | 1 | LD | [60] | |
Shorthorn | 96 | |||||||||
Australia | Brahman | 50 | Steers | About 22 | Feedlot-finished | 39 a | 15 | LD | [64] | |
Brahman × Senepol | 34 b | |||||||||
Mexico | Brahman | 20 | Bulls | 18–24 | Feedlot | β-adrenergic agonist used | 54 a | 2 | [74] | |
Charolais | 49 b | |||||||||
Mexico | Zebu | 90 | Bulls | Concentrate + forage finishing | β-adrenergic agonist used, acetate + estradiol implants | 80 a | 2 | LD | [78] | |
Zebu × Holstein | 62 b | |||||||||
Zebu × American Brown Swiss | 63 b | |||||||||
Zebu × European Brown Swiss | 63 b | |||||||||
Holstein | 61 b | |||||||||
European Brown Swiss | 68 b | |||||||||
Benin | Zebu Fulani | 25 | Bulls | 60 | Pasture | 102 | 1 | LT | [58] | |
Lagunaire | 91 | 1 | ||||||||
Borgou | 122 | 1 | ||||||||
Zebu Fulani | 60 | 3 | ||||||||
Lagunaire | 51 | 3 | ||||||||
Borgou | 90 | 3 | ||||||||
Zebu Fulani | 38 | 9 | ||||||||
Lagunaire | 37 | 9 | ||||||||
Borgou | 66 | 9 | ||||||||
Cameroon | Goudali | 60 | Bulls | 36–60 | Pasture | 112 b | 8 | LT | [56] | |
White Fulani | 72 b | |||||||||
Red Mbororo | 78 b | |||||||||
Venezuela | Brahman, | 71 | Bulls | Pasture-finished, Supplement-finished | 40 ab | 2 | LD | [79] | ||
Brahman × Angus, | 36 c | |||||||||
Brahman × Gelbvieh | 38 bc | |||||||||
Brahman × Limousin, | 36 bc | |||||||||
Brahman × Romosinuano | 35 c | |||||||||
Brahman × ¾ Bos taurus | 43 a | |||||||||
Sex | ||||||||||
Brazil | Nellore, Nellore × Angus, Brahman × Nellore | 306 | Steers | 22–24 | Feedlot-finished | 39 | 15 | LD | [70] | |
Heifers | 36 | |||||||||
Brazil | Angus × (Limousin × Nellore), Angus × (Simmental × Nellore) | 225 | Bulls | 12.5, 18 | Pasture-finished, feedlot-finished | 84 a | 1 | LD | [80] | |
Heifers | 94 b | |||||||||
Costa Rica | ¾Brahman × ¼Charolais | 47 | Steers-3 | 61–66 | Pasture | 86 e | 2, 7, 14, 28 | LL | [73] | |
Steers-7 | 93 f | LL | ||||||||
Steers-12 | 91 ef | LL | ||||||||
Bulls | 100 g | LL | ||||||||
Steers-3 | 64 bc | GM | ||||||||
Steers-7 | 66 bcd | GM | ||||||||
Steers-12 | 70 cd | GM | ||||||||
Bulls | 73 d | GM | ||||||||
Steers-3 | 61 b | St | ||||||||
Steers-7 | 63 bc | St | ||||||||
Steers-12 | 63 bc | St | ||||||||
Bulls | 61 b | St | ||||||||
Steers-3 | 40 a | PM | ||||||||
Steers-7 | 39 a | PM | ||||||||
Steers-12 | 38 a | PM | ||||||||
Bulls | 39 a | PM | ||||||||
Age or Dentition (Permanent Incisors) | ||||||||||
Australia 6 | 198 | Cows | 2 teeth | Pasture | 99 | 1 | LD | [61] | ||
4 teeth | 97 | |||||||||
6 teeth | 82 | |||||||||
8 teeth | 96 | |||||||||
Australia 6 | 168 | Steers | 4 teeth | Pasture | 82 | 1 | LD | [61] | ||
6 teeth | 77 | |||||||||
8 teeth | 76 | |||||||||
Brazil | Nellore | 60 | Steers | 20–24 | 68 | 15 | LD | [81] | ||
30–36 | 68 | |||||||||
42–48 | 57 | |||||||||
Puerto Rico | Non-specified “typical” breeds | 105 | Male, female | ≤30, | Pasture | 30 a | 1 | LL, St, Sm | [77] | |
≥36 | 46 b | |||||||||
Feed | ||||||||||
Brazil | Bos indicus, Bos Taurus | 160 | Bulls | 26–40 | Pasture-finished | 85 | 1 | LT | [68] | |
Concentrate-finished | 77 | 1 | ||||||||
Pasture-finished | 59 | 10 | ||||||||
Concentrate-finished | 55 | 10 | ||||||||
Brazil | Nellore | 30 | Bulls | 22 | No glycerin in dry feed | 47 | 1 | LD | [82] | |
7.5% glycerin | 46 | |||||||||
15% glycerin | 37 | |||||||||
22.5% glycerin | 44 | |||||||||
30% glycerin | 40 | |||||||||
Brazil | Nellore | 60 | Bulls | 22 | No glycerin in dry feed | 30 | 1 | LD | [83] | |
Glycerin + corn | 32 | |||||||||
Glycerin + soybean hulls | 28 | |||||||||
Australia | Brahman, Brahman × (Brahman x Santa Gertrudis, sanga × Belmont Red, Angus, Hereford, Shorthorn, Charolais, or Limousin) | 349 | Heifers, Steers | 22–24 | Pasture-finished (heifers) | 55 | LD | [63] | ||
Feedlot-finished (heifers) | 48 | |||||||||
Feedlot-finished (steers) | 47 | |||||||||
Venezuela | Brahman, Brahman × (Gelbvieh, Romosinuano, Limousin, Angus or ¾ Bos Taurus) | 71 | Bulls | Pasture-finished | 58 a | 2 | LD | [79] | ||
Supplement-finished | 67 b | |||||||||
Other: Fat Class (F), Ageing Time of the Meat | ||||||||||
Brazil | Nellore | 60 | Steers | 22–48 | F: Slight | 70 a | 15 | LD | [81] | |
F: Average | 59 b | |||||||||
Costa Rica | ¾Brahman × ¼Charolais | 47 | Steers castrated at 3, 7 or 12 months, bulls | 61–66 | Pasture | 102 i | 2 | LL | [73] | |
96 h | 7 | LL | ||||||||
96 h | 14 | LL | ||||||||
76 f | 28 | LL | ||||||||
83 g | 2 | GM | ||||||||
68 e | 7 | GM | ||||||||
64 de | 14 | GM | ||||||||
57 c | 28 | GM | ||||||||
66 e | 2 | St | ||||||||
61 cd | 7 | St | ||||||||
62 cd | 14 | St | ||||||||
60 cd | 28 | St | ||||||||
44 b | 2 | PM | ||||||||
38 ab | 7 | PM | ||||||||
38 ab | 14 | PM | ||||||||
36 a | 28 | PM |
Country | Breed or Purchased Meat | n | Sex | Age (Months) | Feed | Other | Moisture (%) | Protein (%) | IMF (%) | Ref |
---|---|---|---|---|---|---|---|---|---|---|
No Comparison | ||||||||||
Venezuela | Brahman × (Brahman, Black Angus, Red Angus, Romosinuano or Charolais) | 17 | Bulls, steers | 24 | Pasture | 75.3 | 20.9 | [99] | ||
Venezuela | Zebu crossbreeds, dairy crossbreeds | 145 | Bulls, steers, heifers | 30–48 | Pasture | 73.9 | [100,101] | |||
Venezuela | Brahman, Zebu × Brown Swiss, Bos taurus (Angus, Limousin, Gelbvieh, Criollo Romosinuano) × Brahman | 20 | Bulls, steers | 30–60 | Pasture | 73.0 | 22.3 | 2.6 | [102] | |
Venezuela | Purchased meat | 20 | 74.2 | 22.4 | 3.6 | [103] | ||||
Mexico 2 | Purchased steaks | 20 | 73.5 | 19.4 | 1.9 | [76] | ||||
Mexico 3 | Purchased steaks | 20 | 72.2 | 22.3 | 3.6 | [92] | ||||
Indonesia | Simmental × Ongole | 72.4 | 21.8 | 3.5 | [104] | |||||
Breed | ||||||||||
Brazil | Nellore | 45 | Bulls | 24 | Feedlot-finished | 72.2 | 25.1 a | 1.7 | [66] | |
½Nellore × ½European | 73.2 | 23.8 b | 2.0 | |||||||
¼Nellore × ¾European | 73.5 | 23.7 b | 1.8 | |||||||
Brazil | Bos taurus | 160 | Bulls | 26–40 | Pasture- or concentrate-finished | 73.3 | 19.7 | 5.0 a | [68] | |
Bos indicus | 72.7 | 19.8 | 5.7 b | |||||||
Brazil | Nellore | 18 | Steers | 25 | Pasture-finished | 74.1 a | 23.4 a | 2.7 a | [105] | |
Simmental × Nellore | 73.9 ab | 23.0 ab | 3.1 a | |||||||
Santa Gertrudis × Nellore | 73.3 b | 22.7 b | 3.6 b | |||||||
Cameroon | Goudali | 50 | Bulls | 20–41 | Pasture | 76.6 | 20.1 | 0.60 | [106] | |
Italian Simmental × Goudali | 76.0 | 20.5 | 0.76 | |||||||
Cameroon | Goudali | 60 | Bulls | 36–60 | Pasture | 74.9 | 22.1 a | 1.1 | [56] | |
White Fulani | 75.5 | 21.5 b | 1.4 | |||||||
Red Mbororo | 75.8 | 21.6 b | 0.9 | |||||||
Mexico | Zebu | 90 | Bulls | Concentrate + forage-finished | β-adrenergic agonist used; trenbolone acetate + estradiol implants | 74.1 | 20.3 | 1.7 | [78] | |
Zebu × Holstein | 74.3 | 20.8 | 1.7 | |||||||
Zebu × American Brown Swiss | 74.4 | 20.6 | 1.7 | |||||||
Zebu × European Brown Swiss | 74.0 | 20.3 | 2.0 | |||||||
Holstein | 75.2 | 19.8 | 1.6 | |||||||
European Brown Swiss | 75.4 | 20.8 | 1.3 | |||||||
Mexico | Brahman | 20 | Bulls | 18–24 | Feedlot | β-adrenergic agonist used | 73.7 a | 2.9 a | [74] | |
Charolais | 75.1 b | 2.4 b | ||||||||
Benin | Zebu Fulani | 25 | Bulls | 60 | Pasture | 21.7 | 1.25 | [58] | ||
Lagunaire | 19.5 | 0.44 | ||||||||
Borgou | 20.7 | 0.61 | ||||||||
Sex | ||||||||||
Brazil | Nellore crosses | 30 | Steers Imm 4 | 36 | Pasture + supplement-finished | 75.7 | 21.1 | 1.6 a | [107] | |
Steers Surg | 74.7 | 20.9 | 2.2 b | |||||||
Bulls | 76.2 | 19.9 | 1.2 c | |||||||
Brazil | Zebu × Aberdeen Angus | 27 | Steers | 27 | Pasture + supplement-finished | 73.1 a | 23.8 a | 2.0 a | [108] | |
Bulls | 76.2 b | 22.9 b | 1.0 b | |||||||
Venezuela | Brahman | 34 | Steers | 19, 24 | Pasture | 2.1 a | [109] | |||
Bulls | 1.8 b | |||||||||
Age | ||||||||||
Brazil | Nellore | 60 | Steers | 20–24 | 72.3 a | 4.2 a | [67] | |||
30–36 | 71.9 ab | 5.0 ab | ||||||||
42–48 | 71.0 b | 5.7 b | ||||||||
India | Kangayam | 12 | 12–18 | 76.1 a | 20.7 a | 2.1 a | [110] | |||
>36 | 74.0 b | 22.0 b | 2.9 b | |||||||
Puerto Rico | Non-specified “typical” breeds | 105 | Male, female | ≤30 | Pasture | 74.6 | 20.1 | 1.9 a | [77] | |
≥36 | 73.8 | 20.6 | 2.7 b | |||||||
Venezuela | Brahman | 34 | Bulls, steers | 19 | Pasture | 1.4 | [109] | |||
24 | 2.0 | |||||||||
Feed | ||||||||||
Brazil | Bos indicus, Bos Taurus | 160 | Bulls | 26–40 | Pasture-finished | 73.8 a | 21.4 a | 3.0 a | [68] | |
Concentrate-finished | 72.2 b | 18.2 b | 7.7 b | |||||||
Brazil | Nellore | 60 | Bulls | 22 | No glycerin in dry feed | 2.5 | [83] | |||
Glycerin + corn | 3.0 | |||||||||
Glycerin + soybean hulls | 2.9 | |||||||||
Brazil | Nellore | 30 | Bulls | 22 | No glycerin in dry feed | 76.3 | 21.8 | 2.1 | [82] | |
7.5% glycerin | 75.1 | 22.1 | 2.5 | |||||||
15% glycerin | 76.0 | 21.2 | 2.3 | |||||||
22.5% glycerin | 75. | 22.4 | 2.3 | |||||||
30% glycerin | 75.8 | 21.8 | 1.9 | |||||||
Venezuela | Brahman, Angus, Romosinuano, Senepol, Simmental, commercial zebu crosses | 89 | Bulls, steers | Pasture | Implants (Ralgro, Revalor) | 73.9 a | 21.4 | [96,111] | ||
Pasture + supplement | 74.2 b | 21.7 | ||||||||
Venezuela | Criollo Limonero | 23 | Steers | 36 | Pasture | - | 71.9 | 22.4 | 2.9 | [112,113] |
Pasture + concentrate | 71.5 | 22.9 | 3.1 | |||||||
Pasture + legume | 72.2 | 22.3 | 3.1 | |||||||
Mexico | “Multi-racial” | 80 | Steers | 22–38 | Pasture + supplement | 71.6 a | 21.3 | 5.6 a | [98] | |
Feedlot | 67.3 b | 22.7 | 8.9 b | |||||||
Mexico | ¾ Zebu, ¾ Bos taurus (Holstein crosses) | 52 | Steers | Pasture-finished | 71.3 | 20.8 | 2.3 | [114] | ||
Feedlot-finished | 73.8 | 22.2 | 2.2 | |||||||
Other: Fat Class (F), Carcass Grade (C), Muscle (M), Implants (I) | ||||||||||
Brazil | Nellore | 60 | Steers | F: Slight | 72.3 a | 4.2 a | [67] | |||
F: Medium | 71.1 b | 5.7 b | ||||||||
Venezuela | Angus, ¾ Brahman (n = 18); purchased meat (n = 40) | 58 | Steers | Pasture + supplement-finished | C 5: BF A | 74.4 | 20.5 | 3.5 | [115,116] | |
C: BF AA | 74.3 | 20.4 | 4.0 | |||||||
C: LD A | 74.7 | 21.9 | 2.0 | |||||||
C: LD AA | 74.0 | 21.5 | 3.0 | |||||||
Venezuela | Brahman, Angus, Romosinuano, Senepol, Simmental, commercial zebu crosses | 77 | Bulls | Pasture ± supplement | I 6: Ral-Ral | 60.0 | 35.5 | 3.6 a | [96] | |
I: Rev-Ral | 59.4 | 35.9 | ||||||||
Venezuela | Brahman, Angus, Romosinuano, Senepol, Simmental, commercial zebu crosses | 89 | Bulls, steers | Pasture ± supplement | I 7: Ral-Ral | 1.3 a | [111] | |||
I: Rev-Ral | 1.4 b | |||||||||
Breed × Production System Interaction | ||||||||||
Brazil | Nellore | 134 | Bulls | 23.5, 27.5 | Feedlot-finished | 2.7 a | [117] | |||
Simmental × Nellore | Feedlot-finished | 2.1 b | ||||||||
Nellore | Pasture-finished | 1.3 c | ||||||||
Simmental × Nellore | Pasture-finished | 1.6 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubio Lozano, M.S.; Ngapo, T.M.; Huerta-Leidenz, N. Tropical Beef: Is There an Axiomatic Basis to Define the Concept? Foods 2021, 10, 1025. https://doi.org/10.3390/foods10051025
Rubio Lozano MS, Ngapo TM, Huerta-Leidenz N. Tropical Beef: Is There an Axiomatic Basis to Define the Concept? Foods. 2021; 10(5):1025. https://doi.org/10.3390/foods10051025
Chicago/Turabian StyleRubio Lozano, Maria Salud, Tania M. Ngapo, and Nelson Huerta-Leidenz. 2021. "Tropical Beef: Is There an Axiomatic Basis to Define the Concept?" Foods 10, no. 5: 1025. https://doi.org/10.3390/foods10051025
APA StyleRubio Lozano, M. S., Ngapo, T. M., & Huerta-Leidenz, N. (2021). Tropical Beef: Is There an Axiomatic Basis to Define the Concept? Foods, 10(5), 1025. https://doi.org/10.3390/foods10051025