Autolysis and Cell Death Is Affected by pH in L. reuteri DSM 20016 Cells
Abstract
:1. Introduction
2. Methods and Materials
2.1. Induction of Autolysis
2.2. D Native/SDS Page Analysis
2.3. Monitoring the Effects of pH Adjustment of Consumed Media on Autolysis
2.4. Monitoring the Effects of HC-3 on Autolytic Induction
2.5. Monitoring the Effects of pH Adjustment of Fresh Media on Autolysis
2.6. Monitoring the Effects of Unsweetened Almond Drink on L. reuteri Cells
2.7. Stastical Analyeses
3. Results
3.1. Adding Phosphate Leads to Autolysis but Not to Observed Changes in Protein Expression
3.2. pH Value Is a Factor in Both Autolysis (Phosphate and Non-Phosphate Induced) and Cell Viability in L. reuteri
3.3. pH Induced Autolysis Is Blocked by Hemicholinium-3
3.4. Phosphate Alone Cannot Induce Autolysis
3.5. Almond Drink Can Both Maintain pH and Slow Losses in Cell Viability
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Tomaro-Duchesneau, C.; Jones, M.L.; Shah, D.; Jain, P.; Saha, S.; Prakash, S. Cholesterol assimilation by Lactobacillus probiotic bacteria: An in vitro investigation. Biomed. Res. Int. 2014, 2014, 380316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Yang, W.; Hostetler, A.; Schultz, N.; Suckow, M.A.; Stewart, K.L.; Kim, D.D.; Kim, H.S. Characterization of the anti-inflammatory Lactobacillus reuteri BM36301 and its probiotic benefits on aged mice. BMC Microbiol. 2016, 16, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakritz, J.R.; Poutahidis, T.; Levkovich, T.; Varian, B.J.; Ibrahim, Y.M.; Chatzigiagkos, A.; Mirabal, S.; Alm, E.J.; Erdman, S.E. Beneficial bacteria stimulate host immune cells to counteract dietary and genetic predisposition to mammary cancer in mice. Int. J. Cancer 2014, 135, 529–540. [Google Scholar] [CrossRef] [Green Version]
- Zommiti, M.; Feuilloley, M.G.J.; Connil, N. Update of Probiotics in Human World: A Nonstop Source of Benefactions till the End of Time. Microorganisms 2020, 8, 1907. [Google Scholar] [CrossRef]
- Rice, K.C.; Bayles, K.W. Molecular control of bacterial death and lysis. Microbiol. Mol. Biol. Rev. 2008, 72, 85–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohmiya, K.; Sato, Y. Promotion of Autolysis in Lactobacilli. Agric. Biol. Chem. Tokyo 1975, 39, 585–589. [Google Scholar] [CrossRef]
- Kang, O.J.; Vezinz, L.P.; Laberge, S.; Simard, R.E. Some factors influencing the autolysis of Lactobacillus bulgaricus and Lactobacillus casei. J. Dairy Sci. 1998, 81, 639–646. [Google Scholar] [CrossRef]
- Ramirez-Nunez, J.; Romero-Medrano, R.; Nevarez-Moorillon, G.V.; Gutierrez-Mendez, N. Effect of Ph and Salt Gradient on the Autolysis of Lactococcus Lactis Strains. Braz. J. Microbiol. 2011, 42, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Lepeuple, A.S.; Van Gemert, E.; Chapot-Chartier, M.P. Analysis of the bacteriolytic enzymes of the autolytic Lactococcus lactis subsp. cremoris strain AM2 by renaturing polyacrylamide gel electrophoresis: Identification of a prophage-encoded enzyme. Appl. Environ. Microbiol. 1998, 64, 4142–4148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamato, M.; Nakada, R.; Nakamura, Y. Release of spirosin associated with potassium phosphate-induced autolysis in Lactobacillus reuteri DSM 20016. Microbiol. Res. 1998, 153, 29–35. [Google Scholar] [CrossRef]
- Zimmerman, T.; Gyawali, R.; Ibrahim, S. Autolyse the cell in order to save it? Inducing, then blocking, autolysis as a strategy for delaying cell death in the probiotic Lactobacillus reuteri. Biotechnol. Lett. 2017, 39, 1547–1551. [Google Scholar] [CrossRef] [PubMed]
- Shukolyukov, S.A. Native electrophoresis in cell proteomic: BN-PAGE and CN-PAGE. Cell Tissue Biol. 2011, 5, 311–318. [Google Scholar] [CrossRef]
- Pan, J.-Y.; Wu, H.; Liu, X.; Li, P.-P.; Li, H.; Wang, S.-Y.; Peng, X.-X. Complexome of Escherichia coli cytosolic proteins under normal native conditions. Mol. Biosyst. 2011, 7, 2651. [Google Scholar] [CrossRef]
- Li, H.; Pan, J.-Y.; Liu, X.-J.; Gao, J.-X.; Wu, H.-K.; Wang, C.; Peng, X.-X. Alterations of protein complexes and pathways in genetic information flow and response to stimulus contribute to Escherichia coli resistance to balofloxacin. Mol. Biosyst. 2012, 8, 2303. [Google Scholar] [CrossRef]
- Gyawali, R.; Oyeniran, A.; Zimmerman, T.; Aljaloud, S.O.; Krastanov, A.; Ibrahim, S.A. A comparative study of extraction techniques for maximum recovery of beta-galactosidase from the yogurt bacterium Lactobacillus delbrueckii ssp. bulgaricus. J. Dairy Res. 2020, 87, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Guan, N.; Liu, L. Microbial response to acid stress: Mechanisms and applications. Appl. Microbiol. Biotechnol. 2019, 104, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Lund, P.; Tramonti, A.; De Biase, D. Coping with low pH: Molecular strategies in neutralophilic bacteria. FEMS Microbiol. Rev. 2014, 38, 1091–1125. [Google Scholar] [CrossRef] [Green Version]
- Hernández, A.; Larsson, C.U.; Sawicki, R.; van Niel, E.W.J.; Roos, S.; Håkansson, S. Impact of the fermentation parameters pH and temperature on stress resilience of Lactobacillus reuteri DSM 17938. AMB Express 2019, 9, 66. [Google Scholar] [CrossRef]
- Verluyten, J.; Leroy, F.D.R.; de Vuyst, L. Influence of Complex Nutrient Source on Growth of and Curvacin A Production by Sausage Isolate Lactobacillus curvatus LTH 1174. Appl. Environ. Microbiol. 2004, 70, 5081–5088. [Google Scholar] [CrossRef] [Green Version]
- Riepe, H.R.; Pillidge, C.J.; Gopal, P.K.; McKay, L.L. Characterization of the highly autolytic Lactococcus lactis subsp. cremoris strains CO and 2250. Appl. Environ. Microbiol. 1997, 63, 3757–3763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernat, N.; Chafer, M.; Chiralt, A.; Gonzalez-Martinez, C. Probiotic fermented almond “milk” as an alternative to cow-milk yoghurt. Int. J. Food Stud. 2015, 4, 201–211. [Google Scholar] [CrossRef]
- Ter Kuile, B.H.; Wiemer, E.A.C.; Michels, P.A.M.; Opperdoes, F.R. The electrochemical proton gradient in the bloodstream form of Trypanosoma brucei is dependent on the temperature. Mol. Biochem. Parasitol. 1992, 55, 21–27. [Google Scholar] [CrossRef]
- Lee, J.; Townsend, J.A.; Thompson, T.; Garitty, T.; De, A.; Yu, Q.; Peters, B.M.; Wen, Z.T. Analysis of the Cariogenic Potential of Various Almond Milk Beverages using a Streptococcus mutans Biofilm Model in vitro. Caries Res. 2018, 52, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Bernat, N.; Chafer, M.; Chiralt, A.; Gonzalez-Martinez, C. Development of a non-dairy probiotic fermented product based on almond milk and inulin. Food Sci. Technol. Int. 2015, 21, 440–453. [Google Scholar] [CrossRef]
- van de Vossenberg, J.L.C.M.; Driessen, A.J.M.; da Costa, M.S.; Konings, W.N. Homeostasis of the membrane proton permeability in Bacillus subtilis grown at different temperatures. Biochim. Biophys. Acta (BBA) Biomembr. 1999, 1419, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Hutkins, R.W.; Nannen, N.L. Ph Homeostasis in Lactic-Acid Bacteria. J. Dairy Sci. 1993, 76, 2354–2365. [Google Scholar] [CrossRef]
- Lipan, L.; Rusu, B.; Sendra, E.; Hernández, F.; Vázquez-Araújo, L.; Vodnar, D.C.; Carbonell-Barrachina, Á.A. Spray drying and storage of probiotic-enriched almond milk: Probiotic survival and physicochemical properties. J. Sci. Food Agric. 2020, 100, 3697–3708. [Google Scholar] [CrossRef] [PubMed]
- Adams, M. Bacteriophages; Interscience Publishers: London, UK, 1959. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmerman, T.; Ibrahim, S.A. Autolysis and Cell Death Is Affected by pH in L. reuteri DSM 20016 Cells. Foods 2021, 10, 1026. https://doi.org/10.3390/foods10051026
Zimmerman T, Ibrahim SA. Autolysis and Cell Death Is Affected by pH in L. reuteri DSM 20016 Cells. Foods. 2021; 10(5):1026. https://doi.org/10.3390/foods10051026
Chicago/Turabian StyleZimmerman, Tahl, and Salam A. Ibrahim. 2021. "Autolysis and Cell Death Is Affected by pH in L. reuteri DSM 20016 Cells" Foods 10, no. 5: 1026. https://doi.org/10.3390/foods10051026
APA StyleZimmerman, T., & Ibrahim, S. A. (2021). Autolysis and Cell Death Is Affected by pH in L. reuteri DSM 20016 Cells. Foods, 10(5), 1026. https://doi.org/10.3390/foods10051026