Recent Advances in Panax ginseng C.A. Meyer as a Herb for Anti-Fatigue: An Effects and Mechanisms Review
Abstract
:1. Introduction
2. Biomarkers and Main Mechanisms Involved in Anti-Fatigue Activity of P. ginseng
3. Anti-Fatigue Effect of P. ginseng on Animal Models
3.1. The Anti-Fatigue Effects of P. ginseng Extract
3.1.1. In Normal Fatigue
3.1.2. In Chronic Fatigue Syndrome
3.1.3. In Cancer-Related Fatigue
3.2. The Anti-Fatigue Effects of Monomer Compounds
3.2.1. In Normal Fatigue
3.2.2. In Postoperative Fatigue Syndrome
4. Anti-Fatigue Effect in the Clinical Setting
4.1. In Normal Fatigue
4.2. In Pathological Fatigue
4.2.1. In Chronic Fatigue
4.2.2. In Cancer-Related Fatigue
4.2.3. In Other Pathological Fatigue
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Luo, C.; Xu, X.; Wei, X.; Feng, W.; Huang, H.; Liu, H.; Xu, R.; Lin, J.; Han, L.; Zhang, D. Natural medicines for the treatment of fatigue: Bioactive components, pharmacology, and mechanisms. Pharm. Res. 2019, 148, 104409. [Google Scholar] [CrossRef]
- Maes, M.; Song, C.; Lin, A.; De Jongh, R.; Van Gastel, A.; Kenis, G.; Bosmans, E.; De Meester, I.; Benoy, I.; Neels, H.; et al. The effects of psychological stress on humans: Increased production of pro-inflammatory cytokines and a Th1-like response in stress-induced anxiety. Cytokine 1998, 10, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.Y.; Hsu, Y.J.; Tung, Y.T.; Lee, M.C.; Huang, C.C.; Hsieh, C.C. Effects of Antrodia camphorata and Panax ginseng supplementation on anti-fatigue properties in mice. J. Vet. Med. Sci. 2018, 80, 284–291. [Google Scholar] [CrossRef] [Green Version]
- Finsterer, J.; Mahjoub, S.Z. Fatigue in healthy and diseased individuals. Am. J. Hosp. Palliat Care 2014, 31, 562–575. [Google Scholar] [CrossRef] [PubMed]
- Matura, L.A.; Malone, S.; Jaime-Lara, R.; Riegel, B. A Systematic Review of Biological Mechanisms of Fatigue in Chronic Illness. Biol. Res. Nurs 2018, 20, 410–421. [Google Scholar] [CrossRef]
- Louati, K.; Berenbaum, F. Fatigue in chronic inflammation—A link to pain pathways. Arthritis Res. 2015, 17, 254. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Jiang, J.G. Origin and concept of medicine food homology and its application in modern functional foods. Food Funct. 2013, 4, 1727–1741. [Google Scholar] [CrossRef]
- Gong, X.; Ji, M.; Xu, J.; Zhang, C.; Li, M. Hypoglycemic effects of bioactive ingredients from medicine food homology and medicinal health food species used in China. Crit. Rev. Food Sci. Nutr. 2020, 60, 2303–2326. [Google Scholar] [CrossRef]
- Xiang, Y.Z.; Shang, H.C.; Gao, X.M.; Zhang, B.L. A comparison of the ancient use of Ginseng in traditional Chinese medicine with moder pharmacological experiments and clinical trials. Phytother. Res. 2008, 22, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kim, Y.K.; Park, N.I.; Kim, C.S.; Lee, C.Y.; Park, S.U. Chemical constituents and biological activities of the berry of Panax ginseng. J. Med. Plants Res. 2010, 4, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.T. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharm. Sin. 2008, 29, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Osman, W.N.W.; Mohamed, S. Standardized Morinda citrifolia L. and Morinda elliptica L. leaf extracts alleviated fatigue by improving glycogen storage and lipid/carbohydrate metabolism. Phytother. Res. 2018, 32, 2078–2085. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 2005, 1, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.C.; Hsu, M.C.; Huang, W.C.; Yang, H.R.; Hou, C.C. Triterpenoid-Rich Extract from Antrodia camphorata Improves Physical Fatigue and Exercise Performance in Mice. Evid. Based Complement. Altern. Med. 2012, 2012, 364741. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Puigserver, P.; Andersson, U.; Zhang, C.; Adelmant, G.; Mootha, V.; Troy, A.; Saverio, C.; Lowell, B.; Scarpulla, R.C.; et al. Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1. Cell 1999, 98, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Virbasius, J.V.; Scarpulla, R.C. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: A potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl. Acad. Sci. USA 1994, 91, 1309–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, W.; Signore, A.P.; Iwai, M.; Cao, G.; Gao, Y.; Chen, J. Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke 2008, 39, 3057–3063. [Google Scholar] [CrossRef] [PubMed]
- Onyango, I.G.; Lu, J.; Rodova, M.; Lezi, E.; Crafter, A.B.; Swerdlow, R.H. Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim. Biophys Acta 2010, 1802, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Lamou, B.; Taiwe, G.S.; Hamadou, A.; Houlray, J.; Atour, M.M.; Tan, P.V. Antioxidant and Antifatigue Properties of the Aqueous Extract of Moringa oleifera in Rats Subjected to Forced Swimming Endurance Test. Oxid. Med. Cell Longev. 2016, 2016, 3517824. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, Y.; Ito, Y.; Kyo, K.; Tateishi, T. Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al. Mater. Sci. Eng. A. 1996, 213, 138–147. [Google Scholar] [CrossRef]
- Gibson, H.; Edwards, R.H. Muscular exercise and fatigue. Sports Med. 1985, 2, 120–132. [Google Scholar] [CrossRef]
- Wang, X.; Qu, Y.; Zhang, Y.; Li, S.; Sun, Y.; Chen, Z.; Teng, L.; Wang, D. Antifatigue Potential Activity of Sarcodon imbricatus in Acute Excise-Treated and Chronic Fatigue Syndrome in Mice via Regulation of Nrf2-Mediated Oxidative Stress. Oxid. Med. Cell Longev. 2018, 2018, 9140896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passarella, S.; de Bari, L.; Valenti, D.; Pizzuto, R.; Paventi, G.; Atlante, A. Mitochondria and L-lactate metabolism. FEBS Lett. 2008, 582, 3569–3576. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, L.; An, S.; Zhang, Y.; Feng, S.; Zhao, L.; Teng, L.; Wang, D. Antifatigue Effects of Antrodia cinnamomea Cultured Mycelium via Modulation of Oxidative Stress Signaling in a Mouse Model. Biomed. Res. Int 2017, 2017, 9374026. [Google Scholar] [CrossRef]
- Chen, K.; You, J.; Tang, Y.; Zhou, Y.; Liu, P.; Zou, D.; Zhou, Q.; Zhang, T.; Zhu, J.; Mi, M. Supplementation of Superfine Powder Prepared from Chaenomeles speciosa Fruit Increases Endurance Capacity in Rats via Antioxidant and Nrf2/ARE Signaling Pathway. Evidence Based Complement. Altern. Med. 2014, 2014, 976438. [Google Scholar] [CrossRef]
- Nguyen, T.; Nioi, P.; Pickett, C.B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem 2009, 284, 13291–13295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharm. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leone, T.C.; Lehman, J.J.; Finck, B.N.; Schaeffer, P.J.; Wende, A.R.; Boudina, S.; Courtois, M.; Wozniak, D.F.; Sambandam, N.; Bernal-Mizrachi, C.; et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005, 3, e101. [Google Scholar] [CrossRef] [Green Version]
- Bower, J.E. Cancer-related fatigue--mechanisms, risk factors, and treatments. Nat. Rev. Clin. Oncol. 2014, 11, 597–609. [Google Scholar] [CrossRef]
- Liu, X.; Liu, M.; Liu, X.; Zheng, L. Grape seed proanthocyanidin extract supplementation affects exhaustive exercise-induced fatigue in mice. Food Nutr. Res. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Badyal, D.K.; Desai, C. Animal use in pharmacology education and research: The changing scenario. Indian J. Pharm. 2014, 46, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, S.; Fan, Y.; Chen, Y.; Liu, D.; Cheng, H.; Gao, X.; Zhou, Y. Anti-fatigue activity of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. J. Ethnopharmacol. 2010, 130, 421–423. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.D.; Chiu, C.H.; Hsu, Y.J.; Hou, C.W.; Chen, Y.M.; Huang, C.C. Changbai Mountain Ginseng (Panax ginseng C.A. Mey) Extract Supplementation Improves Exercise Performance and Energy Utilization and Decreases Fatigue-Associated Parameters in Mice. Molecules 2017, 22, 237. [Google Scholar] [CrossRef]
- Bao, L.; Cai, X.; Wang, J.; Zhang, Y.; Sun, B.; Li, Y. Anti-Fatigue Effects of Small Molecule Oligopeptides Isolated from Panax ginseng C. A. Meyer in Mice. Nutrients 2016, 8, 807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Sun, C.; Zheng, Y.; Pan, H.; Zhou, Y.; Fan, Y. The effective mechanism of the polysaccharides from Panax ginseng on chronic fatigue syndrome. Arch. Pharm. Res. 2014, 37, 530–538. [Google Scholar] [CrossRef]
- Park, H.J.; Shim, H.S.; Kim, J.Y.; Kim, J.Y.; Park, S.K.; Shim, I. Ginseng Purified Dry Extract, BST204, Improved Cancer Chemotherapy-Related Fatigue and Toxicity in Mice. Evid. Based Complement. Alternat. Med. 2015, 2015, 197459. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.; Kim, J.; Park, J.; Yun, H.; Cheon, W.K.; Kim, B.; Lee, C.H.; Suh, H.; Lim, K. Red ginseng treatment for two weeks promotes fat metabolism during exercise in mice. Nutrients 2014, 6, 1874–1885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.Y.; Woo, T.S.; Yoon, S.Y.; Ike Campomayor Dela, P.; Choi, Y.J.; Ahn, H.S.; Lee, Y.S.; Yu, G.Y.; Cheong, J.H. Red ginseng supplementation more effectively alleviates psychological than physical fatigue. J. Ginseng Res. 2011, 35, 331–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.F.; Li, L.; Zhang, C.K.; Wang, H.Y.; Yan, Z.; Bing, X. Study on Anti-fatigue Effect of RADIX ET RHIZOMA GINSENG and RADIX NOTOGINSENG Extracts in Mice. Med. Plant. 2011, 2, 40–44. [Google Scholar]
- An, L.P.; Li, T.C.; Liu, Y.J.; Shao, X.T.; Zhang, M.C.; Chen, L.N.; Han, X.; Xu, G.Y.; Li, H.Y.; Wang, M.L. Anti-Fatigue Effect of Ginseng and Acanthopanax Senticosus Extracts. Appl. Mech. Mater. 2014, 675–677, 1658–1663. [Google Scholar] [CrossRef]
- Hu, Y.; Cao, Y.; Liu, M.; Liu, P.; Cui, H.; Dai-Hong, G. Behavioral and biochemical effects of a formulation of the traditional Chinese medicine, Kai-Xin-San, in fatigued rats. Exp. Med. 2013, 6, 973–976. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Hu, Y.; Liu, P.; Zhao, H.X.; Zhou, X.J.; Wei, Y.M. Effects of a Chinese traditional formula Kai Xin San (KXS) on chronic fatigue syndrome mice induced by forced wheel running. J. Ethnopharmacol. 2012, 139, 19–25. [Google Scholar] [CrossRef]
- Oh, H.A.; Kim, D.E.; Choi, H.J.; Kim, N.J.; Kim, D.H. Anti-fatigue Effects of 20(S)-Protopanaxadiol and 20(S)-Protopanaxatriol in Mice. Biol. Pharm. Bull. 2015, 38, 1415–1419. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Zhu, K.; Chen, L.; Ouyang, L.; Chen, C.; Gu, L.; Jiang, Y.; Wang, Z.; Lin, Z.; Zhang, Q.; et al. Protein target identification of ginsenosides in skeletal muscle tissues: Discovery of natural small-molecule activators of muscle-type creatine kinase. J. Ginseng. Res. 2020, 44, 461–474. [Google Scholar] [CrossRef] [PubMed]
- Shin, I.S.; Kim, D.H.; Jang, E.Y.; Kim, H.Y.; Yoo, H.S. Anti-Fatigue Properties of Cultivated Wild Ginseng Distilled Extract and Its Active Component Panaxydol in Rats. J. Pharm. 2019, 22, 68–74. [Google Scholar] [CrossRef]
- Tan, S.J.; Zhou, F.; Li, N.; Dong, Q.; Zhang, X.; Ye, X.; Guo, J.; Chen, B.; Yu, Z. Anti-fatigue effect of ginsenoside Rb1 on postoperative fatigue syndrome induced by major small intestinal resection in rat. Biol. Pharm. Bull. 2013, 36, 1634–1639. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, C.L.; Mao, X.Y.; Liu, S.; Chen, W.Z.; Huang, D.D.; Zhang, C.J.; Chen, B.C.; Shen, X.; Yu, Z. Ginsenoside Rb1 improves postoperative fatigue syndrome by reducing skeletal muscle oxidative stress through activation of the PI3K/Akt/Nrf2 pathway in aged rats. Eur. J. Pharmacol. 2014, 740, 480–487. [Google Scholar] [CrossRef]
- Yang, Q.Y.; Lai, X.D.; Jing, O.Y.; Yang, J.D. Effects of Ginsenoside Rg3 on fatigue resistance and SIRT1 in aged rats. Toxicology 2018, 409, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Qiong, W.; Yong-Liang, Z.; Ying-Hui, L.; Shan-Guang, C.; Jiang-Hui, G.; Yi-Xi, C.; Ning, J.; Xin-Min, L. The memory enhancement effect of Kai Xin San on cognitive deficit induced by simulated weightlessness in rats. J. Ethnopharmacol. 2016, 187, 9–16. [Google Scholar] [CrossRef]
- Wang, J.J.; Shieh, M.J.; Kuo, S.L.; Lee, C.L.; Pan, T.M. Effect of red mold rice on antifatigue and exercise-related changes in lipid peroxidation in endurance exercise. Appl. Microbiol. Biotechnol. 2006, 70, 247–253. [Google Scholar] [CrossRef]
- Felipe, A.M.; Rincao, V.P.; Benati, F.J.; Linhares, R.E.; Galina, K.J.; de Toledo, C.E.; Lopes, G.C.; de Mello, J.C.; Nozawa, C. Antiviral effect of Guazuma ulmifolia and Stryphnodendron adstringens on poliovirus and bovine herpesvirus. Biol. Pharm. Bull. 2006, 29, 1092–1095. [Google Scholar] [CrossRef] [Green Version]
- Meyer, W.R.; Muoio, D.; Hackney, T.C. Effect of sex steroids on β-endorphin levels at rest and during submaximal treadmill exercise in anovulatory and ovulatory runners. Fertil. Steril. 1999, 71, 1085–1091. [Google Scholar] [CrossRef]
- Yu, F.; Lu, S.; Yu, F.; Feng, S.; McGuire, P.M.; Li, R.; Wang, R. Protective effects of polysaccharide from Euphorbia kansui (Euphorbiaceae) on the swimming exercise-induced oxidative stress in mice. Can. J. Physiol. Pharm. 2006, 84, 1071–1079. [Google Scholar] [CrossRef]
- Tan, W.; Yu, K.Q.; Liu, Y.Y.; Ouyang, M.Z.; Yan, M.H.; Luo, R.; Zhao, X.S. Anti-fatigue activity of polysaccharides extract from Radix Rehmanniae Preparata. Int. J. Biol. Macromol. 2012, 50, 59–62. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, Y.H.; Park, S.K.; Kang, E.S.; Kim, H.J.; Lee, Y.C.; Choi, C.S.; Park, S.E.; Ahn, C.W.; Cha, B.S.; et al. Korean red ginseng (Panax ginseng) improves insulin sensitivity and attenuates the development of diabetes in Otsuka Long-Evans Tokushima fatty rats. Metabolism 2009, 58, 1170–1177. [Google Scholar] [CrossRef]
- Kim, D.H.; Moon, Y.S.; Jung, J.S.; Min, S.K.; Son, B.K.; Suh, H.W.; Song, D.K. Effects of ginseng saponin administered intraperitoneally on the hypothalamo-pituitary-adrenal axis in mice. Neurosci. Lett. 2003, 343, 62–66. [Google Scholar] [CrossRef]
- Prins, J.B.; van der Meer, J.W.; Bleijenberg, G. Chronic fatigue syndrome. Lancet 2006, 367, 346–355. [Google Scholar] [CrossRef]
- Derman, W.; Schwellnus, M.P.; Lambert, M.I.; Emms, M.; Sinclair-Smith, C.; Kirby, P.; Noakes, T.D. The ‘worn-out athlete’: A clinical approach to chronic fatigue in athletes. J. Sports Sci. 1997, 15, 341–351. [Google Scholar] [CrossRef]
- Behan, W.M.; More, I.A.; Behan, P.O. Mitochondrial abnormalities in the postviral fatigue syndrome. Acta Neuropathol. 1991, 83, 61–65. [Google Scholar] [CrossRef]
- Ahlberg, K.; Ekman, T.; Gaston-Johansson, F.; Mock, V. Assessment and management of cancer-related fatigue in adults. Lancet 2003, 362, 640–650. [Google Scholar] [CrossRef]
- Wagner, L.I.; Cella, D. Fatigue and cancer: Causes, prevalence and treatment approaches. Br. J. Cancer 2004, 91, 822–828. [Google Scholar] [CrossRef] [Green Version]
- Berger, A.M.; Mooney, K.; Alvarez-Perez, A.; Breitbart, W.S.; Carpenter, K.M.; Cella, D.; Cleeland, C.; Dotan, E.; Eisenberger, M.A.; Escalante, C.P.; et al. Cancer-Related Fatigue, Version 2.2015. J. Natl. Compr. Canc. Netw. 2015, 13, 1012–1039. [Google Scholar] [CrossRef]
- Akao, T.; Kanaoka, M.; Kobashi, K. Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administration--measurement of compound K by enzyme immunoassay. Biol. Pharm. Bull. 1998, 21, 245–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akao, T.; Kida, H.; Kanaoka, M.; Hattori, M.; Kobashi, K. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J. Pharm. 1998, 50, 1155–1160. [Google Scholar] [CrossRef]
- Bae, E.A.; Han, M.J.; Choo, M.K.; Park, S.Y.; Kim, D.H. Metabolism of 20(S)- and 20(R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Biol. Pharm. Bull. 2002, 25, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H. Chemical Diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J. Ginseng Res. 2012, 36, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Guzun, R.; Timohhina, N.; Tepp, K.; Gonzalez-Granillo, M.; Shevchuk, I.; Chekulayev, V.; Kuznetsov, A.V.; Kaambre, T.; Saks, V.A. Systems bioenergetics of creatine kinase networks: Physiological roles of creatine and phosphocreatine in regulation of cardiac cell function. Amino Acids 2011, 40, 1333–1348. [Google Scholar] [CrossRef]
- Rubin, G.J.; Hardy, R.; Hotopf, M. A systematic review and meta-analysis of the incidence and severity of postoperative fatigue. J. Psychosom. Res. 2004, 57, 317–326. [Google Scholar] [CrossRef]
- Schroeder, D.; Hill, G.L. Postoperative fatigue: A prospective physiological study of patients undergoing major abdominal surgery. Aust. N. Z. J. Surg. 1991, 61, 774–779. [Google Scholar] [CrossRef]
- Christensen, T.; Bendix, T.; Kehlet, H. Fatigue and cardiorespiratory function following abdominal surgery. Br. J. Surg. 1982, 69, 417–419. [Google Scholar] [CrossRef]
- Christensen, T.; Kehlet, H. Postoperative fatigue. World J. Surg. 1993, 17, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.J.; Li, N.; Zhou, F.; Dong, Q.T.; Zhang, X.D.; Chen, B.C.; Yu, Z. Ginsenoside Rb1 improves energy metabolism in the skeletal muscle of an animal model of postoperative fatigue syndrome. J. Surg. Res. 2014, 191, 344–349. [Google Scholar] [CrossRef]
- Huang, X.P.; Tan, H.; Chen, B.Y.; Deng, C.Q. Astragalus extract alleviates nerve injury after cerebral ischemia by improving energy metabolism and inhibiting apoptosis. Biol. Pharm. Bull. 2012, 35, 449–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leppik, J.A.; Aughey, R.J.; Medved, I.; Fairweather, I.; Carey, M.F.; McKenna, M.J. Prolonged exercise to fatigue in humans impairs skeletal muscle Na+-K+-ATPase activity, sarcoplasmic reticulum Ca2+ release, and Ca2+ uptake. J. Appl. Physiol. 2004, 97, 1414–1423. [Google Scholar] [CrossRef] [Green Version]
- Kolling, J.; Scherer, E.B.; Siebert, C.; Hansen, F.; Torres, F.V.; Scaini, G.; Ferreira, G.; de Andrade, R.B.; Goncalves, C.A.; Streck, E.L.; et al. Homocysteine induces energy imbalance in rat skeletal muscle: Is creatine a protector? Cell Biochem. Funct. 2013, 31, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Chae, S.; Lee, J.H.; Hyun, J.W. The cytoprotective effect of butin against oxidative stress is mediated by the up-regulation of manganese superoxide dismutase expression through a PI3K/Akt/Nrf2-dependent pathway. J. Cell Biochem. 2012, 113, 1987–1997. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jeong, H.Y.; Kim, Y.B.; Lee, Y.J.; Won, S.Y.; Shim, J.H.; Cho, M.K.; Nam, H.S.; Lee, S.H. Reactive oxygen species and PI3K/Akt signaling play key roles in the induction of Nrf2-driven heme oxygenase-1 expression in sulforaphane-treated human mesothelioma MSTO-211H cells. Food Chem. Toxicol. 2012, 50, 116–123. [Google Scholar] [CrossRef]
- Fueger, P.T.; Li, C.Y.; Ayala, J.E.; Shearer, J.; Bracy, D.P.; Charron, M.J.; Rottman, J.N.; Wasserman, D.H. Glucose kinetics and exercise tolerance in mice lacking the GLUT4 glucose transporter. J. Physiol. 2007, 582, 801–812. [Google Scholar] [CrossRef]
- Kang, K.S.; Yamabe, N.; Kim, H.Y.; Park, J.H.; Yokozawa, T. Effects of heat-processed ginseng and its active component ginsenoside 20(S)-Rg3 on the progression of renal damage and dysfunction in type 2 diabetic Otsuka Long-Evans Tokushima Fatty rats. Biol. Pharm. Bull. 2010, 33, 1077–1081. [Google Scholar] [CrossRef] [Green Version]
- Puigserver, P.; Rhee, J.; Donovan, J.; Walkey, C.J.; Yoon, J.C.; Oriente, F.; Kitamura, Y.; Altomonte, J.; Dong, H.; Accili, D.; et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 2003, 423, 550–555. [Google Scholar] [CrossRef]
- Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]
- Brunet, A.; Sweeney, L.B.; Sturgill, J.F.; Chua, K.F.; Greer, P.L.; Lin, Y.; Tran, H.; Ross, S.E.; Mostoslavsky, R.; Cohen, H.Y.; et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004, 303, 2011–2015. [Google Scholar] [CrossRef] [Green Version]
- Motta, M.C.; Divecha, N.; Lemieux, M.; Kamel, C.; Chen, D.; Gu, W.; Bultsma, Y.; McBurney, M.; Guarente, L. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004, 116, 551–563. [Google Scholar] [CrossRef] [Green Version]
- Stebbings, S.; Treharne, G.J. Fatigue in rheumatic disease: An overview. Int. J. Clin. Rheumatol. 2010, 5, 487–502. [Google Scholar] [CrossRef]
- Cella, D.; Peterman, A.; Passik, S.; Jacobsen, P.; Breitbart, W. Progress toward guidelines for the management of fatigue. Oncology 1998, 12, 369–377. [Google Scholar] [PubMed]
- Hewlett, S.; Dures, E.; Almeida, C. Measures of fatigue: Bristol Rheumatoid Arthritis Fatigue Multi-Dimensional Questionnaire (BRAF MDQ), Bristol Rheumatoid Arthritis Fatigue Numerical Rating Scales (BRAF NRS) for severity, effect, and coping, Chalder Fatigue Questionnaire (CFQ), Checklist Individual Strength (CIS20R and CIS8R), Fatigue Severity Scale (FSS), Functional Assessment Chronic Illness Therapy (Fatigue) (FACIT-F), Multi-Dimensional Assessment of Fatigue (MAF), Multi-Dimensional Fatigue Inventory (MFI), Pediatric Quality Of Life (PedsQL) Multi-Dimensional Fatigue Scale, Profile of Fatigue (ProF), Short Form 36 Vitality Subscale (SF-36 VT), and Visual Analog Scales (VAS). Arthritis. Care Res. 2011, 63 (Suppl. 11), S263–S286. [Google Scholar] [CrossRef]
- Schwartz, J.E.; Jandorf, L.; Krupp, L.B. The measurement of fatigue: A new instrument. J. Psychosom. Res. 1993, 37, 753–762. [Google Scholar] [CrossRef]
- Morriss, R.K.; Wearden, A.J.; Mullis, R. Exploring the validity of the Chalder Fatigue scale in chronic fatigue syndrome. J. Psychosom. Res. 1998, 45, 411–417. [Google Scholar] [CrossRef]
- Mendoza, T.R.; Wang, X.S.; Cleeland, C.S.; Morrissey, M.; Johnson, B.A.; Wendt, J.K.; Huber, S.L. The rapid assessment of fatigue severity in cancer patients: Use of the Brief Fatigue Inventory. Cancer 1999, 85, 1186–1196. [Google Scholar] [CrossRef]
- Catania, G.; Bell, C.; Ottonelli, S.; Marchetti, M.; Bryce, J.; Grossi, A.; Costantini, M. Cancer-related fatigue in Italian cancer patients: Validation of the Italian version of the Brief Fatigue Inventory (BFI). Support Care Cancer 2013, 21, 413–419. [Google Scholar] [CrossRef]
- Ghaem, H.; Borhani Haghighi, A.; Jafari, P.; Nikseresht, A.R. Validity and reliability of the Persian version of the multiple sclerosis quality of life questionnaire. Neurol. India 2007, 55, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Mscfcp, G. Fatigue and Multiple Sclerosis: Evidence-Based Management Strategies for Fatigue in Multiple Sclerosis; Paralyzed Veterans of America: Washington, DC, USA, 1998. [Google Scholar]
- Whynes, D.K.; Group, T. Correspondence between EQ-5D health state classifications and EQ VAS scores. Health Qual. Life Outcomes 2008, 6, 94. [Google Scholar] [CrossRef] [Green Version]
- Herdman, M.; Gudex, C.; Lloyd, A.; Janssen, M.; Kind, P.; Parkin, D.; Bonsel, G.; Badia, X. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual. Life Res. 2011, 20, 1727–1736. [Google Scholar] [CrossRef] [Green Version]
- Koh, K.B.; Park, J.K.; Kim, C.H.; Cho, S. Development of the stress response inventory and its application in clinical practice. Psychosom. Med. 2001, 63, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Richter, P.; Werner, J.; Heerlein, A.; Kraus, A.; Sauer, H. On the validity of the Beck Depression Inventory. A review. Psychopathology 1998, 31, 160–168. [Google Scholar] [CrossRef]
- Jung, H.L.; Kwak, H.E.; Kim, S.S.; Kim, Y.C.; Lee, C.D.; Byurn, H.K.; Kang, H.Y. Effects of Panax ginseng Supplementation on Muscle Damage and Inflammation after Uphill Treadmill Running in Humans. Am. J. Chin. Med. 2011, 39, 441–450. [Google Scholar] [CrossRef]
- Jung, S.J.; Hwang, J.H.; Park, S.H.; Choi, E.K.; Ha, K.C.; Baek, H.I.; Shin, D.G.; Seo, J.H.; Chae, S.W. A 12-week, randomized, double-blind study to evaluate the efficacy and safety of liver function after using fermented ginseng powder (GBCK25). Food Nutr. Res. 2020, 64, 32425736. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Liu, Y.; Shi, A.; Wang, Z.; Aa, J.; Huang, X.; Liu, Y. Investigation of the Antifatigue Effects of Korean Ginseng on Professional Athletes by Gas Chromatography-Time-of-Flight-Mass Spectrometry-Based Metabolomics. J. AOAC Int. 2018, 101, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Lee, S.H.; Yoo, H.R.; Yoo, H.S. Anti-Fatigue Effects of Enzyme-Modified Ginseng Extract: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Altern. Complement. Med. 2016, 22, 859–864. [Google Scholar] [CrossRef]
- Kim, H.-G.; Cho, J.-H.; Yoo, S.-R.; Lee, J.-S.; Han, J.-M.; Lee, N.-H.; Ahn, Y.-C.; Son, C.-G. Antifatigue effects of Panax ginseng C.A. Meyer: A randomised, double-blind, placebo-controlled trial. PLoS ONE 2013, 8, e61271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, W.S.; Kang, H.R.; Jung, C.Y.; Park, S.S.; Lee, S.H.; Kim, E.J. Efficacy of Korean red ginseng (Panax ginseng) for middle-aged and moderate level of chronic fatigue patients: A randomized, double-blind, placebo-controlled trial. Complement. Med. 2020, 48, 102246. [Google Scholar] [CrossRef] [PubMed]
- Yennurajalingam, S.; Tannir, N.M.; Williams, J.L.; Lu, Z.N.; Hess, K.R.; Frisbee-Hume, S.; House, H.L.; Lim, Z.D.; Lim, K.H.; Lopez, G.; et al. A Double-Blind, Randomized, Placebo-Controlled Trial of Panax Ginseng for Cancer-Related Fatigue in Patients With Advanced Cancer. J. Natl. Compr. Cancer Netw. 2017, 15, 1111–1120. [Google Scholar] [CrossRef] [Green Version]
- Pourmohamadi, K.; Ahmadzadeh, A.; Latifi, M. Investigating the Effects of Oral Ginseng on the Cancer-Related Fatigue and Quality of Life in Patients with Non-Metastatic Cancer. Int. J. Hematol. Oncol. Stem Cell Res. 2018, 12, 313–317. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Han, S.W.; Cho, J.Y.; Chung, I.J.; Kim, J.G.; Lee, K.H.; Park, K.U.; Baek, S.K.; Oh, S.C.; Lee, M.A.; et al. Korean red ginseng for cancer-related fatigue in colorectal cancer patients with chemotherapy: A randomised phase III trial. Eur. J. Cancer 2020, 130, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Chen, X.; Cheng, Y.; Chen, Q.; Tan, H.; Son, D.; Chang, D.; Bian, Z.; Fang, H.; Xu, H. Safety and antifatigue effect of Korean Red Ginseng: A randomized, double-blind, and placebo-controlled clinical trial. J. Ginseng Res. 2019, 43, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Etemadifar, M.; Sayahi, F.; Abtahi, S.H.; Shemshaki, H.; Dorooshi, G.A.; Goodarzi, M.; Akbari, M.; Fereidan-Esfahani, M. Ginseng in the treatment of fatigue in multiple sclerosis: A randomized, placebo-controlled, double-blind pilot study. Int. J. Neurosci. 2013, 123, 480–486. [Google Scholar] [CrossRef]
- Hong, M.; Lee, Y.H.; Kim, S.; Suk, K.T.; Bang, C.S.; Yoon, J.H.; Baik, G.H.; Kim, D.J.; Kim, M.J. Anti-inflammatory and antifatigue effect of Korean Red Ginseng in patients with nonalcoholic fatty liver disease. J. Ginseng Res. 2016, 40, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Kirwan, J.P.; Hickner, R.C.; Yarasheski, K.E.; Kohrt, W.M.; Wiethop, B.V.; Holloszy, J.O. Eccentric exercise induces transient insulin resistance in healthy individuals. J. Appl. Physiol. 1992, 72, 2197–2202. [Google Scholar] [CrossRef] [PubMed]
- Del Aguila, L.F.; Krishnan, R.K.; Ulbrecht, J.S.; Farrell, P.A.; Correll, P.H.; Lang, C.H.; Zierath, J.R.; Kirwan, J.P. Muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E206-212. [Google Scholar] [CrossRef]
- Armstrong, R.B.; Ogilvie, R.W.; Schwane, J.A. Eccentric exercise-induced injury to rat skeletal muscle. J. Appl Physiol. 1983, 54, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Ostrowski, K.; Rohde, T.; Asp, S.; Schjerling, P.; Pedersen, B.K. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J. Physiol. 1999, 515 Pt 1, 287–291. [Google Scholar] [CrossRef]
- Jang, S.I.; Lee, Y.W.; Cho, C.K.; Yoo, H.S.; Jang, J.H. Identification of Target Genes Involved in the Antiproliferative Effect of Enzyme-Modified Ginseng Extract in HepG2 Hepatocarcinoma Cell. Evid. Based Complement. Alternat. Med. 2013, 2013, 502568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aravinthan, A.; Antonisamy, P.; Kim, B.; Kim, N.S.; Shin, D.G.; Seo, J.H.; Kim, J.H. Fermented ginseng, GBCK25, ameliorates hemodynamic function on experimentally induced myocardial injury. J. Ginseng Res. 2016, 40, 462–465. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Lu, G.; Liu, X.; Li, J.; Zhao, F.; Li, K. Assessment of Phytochemicals and Herbal Formula for The Treatment of Depression through Metabolomics. Curr. Pharm. Des. 2020, 27, 840–854. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.J.; Coates, P.M.; Hale, D.E.; Millington, D.S.; Pollitt, R.J.; Rinaldo, P.; Roe, C.R.; Tanaka, K. Analysis of abnormal urinary metabolites in the newborn period in medium-chain acyl-CoA dehydrogenase deficiency. J. Inherit. Metab. Dis. 1990, 13, 707–715. [Google Scholar] [CrossRef]
- Jason, L.A.; Richman, J.A.; Rademaker, A.W.; Jordan, K.M.; Plioplys, A.V.; Taylor, R.R.; McCready, W.; Huang, C.F.; Plioplys, S. A community-based study of chronic fatigue syndrome. Arch. Intern. Med. 1999, 159, 2129–2137. [Google Scholar] [CrossRef] [Green Version]
- Purcell, A.; Fleming, J.; Bennett, S.; McGuane, K.; Burmeister, B.; Haines, T. A multidimensional examination of correlates of fatigue during radiotherapy. Cancer 2010, 116, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Donovan, K.A.; Jacobsen, P.B.; Andrykowski, M.A.; Winters, E.M.; Balducci, L.; Malik, U.; Kenady, D.; McGrath, P. Course of fatigue in women receiving chemotherapy and/or radiotherapy for early stage breast cancer. J. Pain Symptom Manag. 2004, 28, 373–380. [Google Scholar] [CrossRef]
- Xiao, N.; De Franco, D.B. Overexpression of unliganded steroid receptors activates endogenous heat shock factor. Mol. Endocrinol. 1997, 11, 1365–1374. [Google Scholar] [CrossRef]
- Dobson, R.; Giovannoni, G. Multiple sclerosis—A review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flensner, G.; Ek, A.C.; Landtblom, A.M.; Soderhamn, O. Fatigue in relation to perceived health: People with multiple sclerosis compared with people in the general population. Scand. J. Caring Sci. 2008, 22, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.T.; Sharma, R.; Lim, J.L.; Haider, L.; Frischer, J.M.; Drexhage, J.; Mahad, D.; Bradl, M.; van Horssen, J.; Lassmann, H. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain 2012, 135, 886–899. [Google Scholar] [CrossRef] [Green Version]
- Powell, T.; Sussman, J.G.; Davies-Jones, G.A. MR imaging in acute multiple sclerosis: Ringlike appearance in plaques suggesting the presence of paramagnetic free radicals. Ajnr. Am. J. Neuroradiol. 1992, 13, 1544–1546. [Google Scholar] [PubMed]
- Newton, J.L.; Jones, D.E.; Henderson, E.; Kane, L.; Wilton, K.; Burt, A.D.; Day, C.P. Fatigue in non-alcoholic fatty liver disease (NAFLD) is significant and associates with inactivity and excessive daytime sleepiness but not with liver disease severity or insulin resistance. Gut 2008, 57, 807–813. [Google Scholar] [CrossRef]
- Morris, G.; Berk, M.; Walder, K.; Maes, M. Central pathways causing fatigue in neuro-inflammatory and autoimmune illnesses. BMC Med. 2015, 13, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lihn, A.S.; Pedersen, S.B.; Richelsen, B. Adiponectin: Action, regulation and association to insulin sensitivity. Obes. Rev. 2005, 6, 13–21. [Google Scholar] [CrossRef]
Materials | Compounds | Classification | Animal Model | Effects | Reference |
---|---|---|---|---|---|
P. ginseng | Water-soluble polysaccharides | Normal fatigue | Male ICR mice | Enhanced swimming time Increased SOD and GPx activity, glucose levels Decreased LDH and CK activity, TG and MDA levels | Wang et al. [32]. |
Extracts | Normal fatigue | Male ICR mice | Enhanced forelimb grip strength, swimming time Increased glucose, total protein, albumin and muscle glycogen levels Decreased BLA, NH3, BUN and TG levels, CK activity | Ma et al. [33]. | |
GOP | Normal fatigue | Male ICR mice | Enhanced swimming time Increased liver glycogen level, LDH, SOD and catalase activity Decreased BUN, MDA and BLA levels Increased expression of NRF-1 and TFAM | Bao et al. [34]. | |
Water-soluble polysaccharides | CFS | Male ICR mice | Enhanced swimming time Increased SOD and GPx activity Decreased LDH activity and MDA levels | Wang et al. [35]. | |
BST204 (purified dry extract) | Cancer chemotherapy-related fatigue | Female BALB/c-nu/nu mice | Enhanced running wheel activity, swimming time Increased muscle glycogen, WBC, NEUT, RBC and HGB levels Decreased ALT and AST activity, Cr, TNF-α and IL-6 levels | Park et al. [36]. | |
Red ginseng | Extracts | Peripheral fatigue | Male ICR mice | Enhanced liver glycogen storage Accelerate fat oxidation | Hwang et al. [37]. |
Psychological fatigue | Male ICR mice | Improved performance in electric field test, locomotor activity, rotating rod test, balanced wire test, exploring elevated plus maze, stress-related rearing behavior and swimming test Inhibited release of corticosterone | Choi et al. [38]. | ||
P. ginseng with notoginseng | Extracts | Normal fatigue | Male Kunming mice | Enhanced swimming time Increased liver glycogen levels Decreased BLA, BUN levels | Chen et al. [39]. |
P. ginseng with Antrodia camphorata | Extracts | Normal fatigue | Male ICR mice | Enhanced swimming time and forelimb grip strength Increased glucose and muscle glycogen levels Decreased BUN and ammonia levels, CK activity | Hsiao et al. [3]. |
P. ginseng with Acanthopanax senticosus | Extracts | Normal fatigue | Male ICR mice | Enhanced swimming time Increased liver glycogen level, LDH, GPx and SOD activity Decreased BUN levels | An et al. [40]. |
Kai Xin San | Extracts | Normal fatigue | Sprague-Dawley (SD) rats | Enhanced running time Increased muscle and liver glycogen and testosterone levels, SOD activity Decreased BUN, BLA, β-endorphin and MDA levels | Hu et al. [41]. |
Extracts | CFS | Male Kunming mice | Improved performance in running wheel test Increased muscle and liver glycogen, testosterone levels Decreased MDA and BUN levels, LDH activity Increased IL-4 levels Decreased IL-6 levels | Cao et al. [42]. |
Compounds | Classification | Animal Model | Effects | Reference |
---|---|---|---|---|
20(S)-protopanaxatriol | Normal fatigue | Male ICR mice | Improved performance in swimming test and rotarod test Increased glucose levels Decreased corticosterone, BLA, FFA, Cr levels and LDH activity | Oh et al. [43]. |
Normal fatigue | Male ICR mice | Increased CK-MM activity | Chen et al. [44]. | |
20(S)-protopanaxadiol | Normal fatigue | Male ICR mice | Increased glucose levels Decreased corticosterone, BLA, FFA, Cr levels and LDH activity | Oh et al. [43]. |
Normal fatigue | Male ICR mice | Enhanced swimming test Increased CK-MM activity, muscle phosphocreatine and ATP levels Decreased MLA levels | Chen et al. [44]. | |
Ginsenoside Rh2 | Normal fatigue | Male ICR mice | Increased CK-MM activity | Chen et al. [44]. |
Panaxydol | Normal fatigue | Male SD rats | Enhanced swimming time Increased LDH activity | Shin et al. [45]. |
Ginsenoside Rb1 | Postoperative fatigue syndrome | Male SD rats | Enhanced grip strength Increased muscle and liver glycogen level, ATP, Na+-K+-ATPase, SDH, LDH and SOD activity Decreased MDA and BLA levels | Tan et al. [46]. |
Postoperative fatigue syndrome | Aged male SD rats | Improved performance in open field test Increased SOD activity Decreased MDA, ROS levels Increased expression of Nrf2 and Akt | Zhuang et al. [47]. | |
Ginsenoside Rg3 | Postoperative fatigue syndrome | Aged male SD rats | Improved performance in open field test Increased TC, TG levels and LDH, SOD, SIRT1 activity Decreased MDA levels and transcriptional activity of p53 Increased expression of PGC-1α and PEPCK | Yang et al. [48]. |
Classification | Study Design | Participants (Total/Final) | Age (Years) | Placebo Group | Intervention Group | Effects on Fatigue | Reference |
---|---|---|---|---|---|---|---|
Normal fatigue | Single-blind—7 days before exercise and 3 days after exercise | 18/18 Male college students | 19.9 ± 0.6 (placebo group) 20.2 ± 0.5 (red ginseng group) | 200 mL × 0.02 g mL−1 Agastachis Herba tea 3 times per day (n = 9) | 200 mL × 0.1 g mL−1 red ginseng extract 3 times per day (n = 9) | Decreased CK activity and IL-6 level Improved insulin sensitivity | Jung et al. [97]. |
Double-blind—12 weeks | 90/84 People with serum ALT level of 35–105 IU/L | 43.52 ± 11.02 | 1.4 g d−1 placebo | 1.4 g d−1 powder with 125 mg d−1 fermented ginseng (low dose) 1.4 g d−1 powder with 500 mg d−1 fermented ginseng (high dose) | Decreased MFS scores | Jung et al. [98]. | |
Single-blind—30 days | 21/21 Professional players | 22 ± 3 (placebo group) 24 ± 5 (treatment group) | 500 mg d−1 placebo | 500 mg d−1 Korean ginseng powder | Increased testosterone level Increased 3-hydroxybutyrate, 9-hexadecenoic acid, suberyl glycine, ribose and 3 unknown metabolites levels Decreased glyoxylate, 3-methyl-2-hydroxybutyrate, mannose and myoinositol levels | Yan et al. [99]. | |
Double-blind—4 weeks | 52/47 Healthy adults | 60.1 ± 4.44 (placebo group) 62.1 ± 5.18 (treatment group) | Two placebo capsules twice a day | Two enzyme-modified ginseng extract capsules twice a day (2000 mg d−1) | Decreased VAFS scores more No adverse effect | Lee et al. [100]. | |
ICF | Double-blind—4 weeks | 90/88 Adults with ICF | 39.5 (median age, 20–60) | Four placebo capsules (250 mg each) twice a day | Four capsules (250 mg each) twice a day, 1 g P. ginseng totally Four capsules (250 mg each) twice a day, 2 g P. ginseng totally | Decreased VAFS scores and levels of ROS and MDA | Kim et al. [101]. |
CFS | Double-blind-treated for 6 weeks and followed up 4 weeks | 50/47 Chronic fatigue patients | 47.09 ± 10.80 (placebo group) 49.00 ± 8.35 (treatment group) | 3 g d−1 placebo | 3 g d−1 Korean red ginseng powder | Attenuated VAFS scores, SRI-short form, BDI and EQ-5D 5 L, but no statistically decreasing | Sung et al. [102]. |
Cancer-related fatigue | Double-blind—4 weeks | 127/112 Advanced cancer patients | 61.0 (median age, 54.0–67.0) | 400 mg d−1 placebo twice a day | 400 mg d−1 P. ginseng twice a day | No statistically differences between the two groups | Yennurajalingam et al. [103]. |
Single-blind—30 days | 114/113 Nonmetastatic colon cancer patients | 48.03 ± 10.56 (placebo group) 50.11 ± 10.46 (treatment group) | 100 mg d−1 placebo | 100 mg d−1 P. ginseng | Improved quality of life and appetite Ease pain | Pourmohamadi et al. [104]. | |
Double-blind—16 weeks | 429/348 colorectal cancer patients | 60 (median age, placebo group, 27–86) 60 (median age, treatment group, 29–84) | 500 mg × 2 pills placebo twice a day | 500 mg × 2 pills Korean red ginseng twice a day | Decreased BFI scores | Kim et al. [105]. | |
Diseases-related fatigue | Double-blind—4 weeks | 180/174 Asthenia syndrome volunteers | 36.13 ± 11.35 | Placebo capsules each day | 1.8 g/3.6 g Korean red ginseng each day | Decreased fatigue self-assessment scores and TCM symptom scores No increased fire-heat symptom scores and abnormalities | Zhang et al. [106]. |
Double-blind—3 months | 52/52 multiple sclerosis patients | 34.5 ± 8.9 (placebo group) 33.3 ± 7.5 (treatment group) | 250 mg d−1 placebo twice a day | 250 mg d−1 P. ginseng twice a day | Increased MSQOL scores Decreased MFIS scores | Etemadifar et al. [107]. | |
Single-blind—3 weeks | 80/66 nonalcoholic fatty liver disease patients | 47.8 ± 14.9 | 3000 mg d−1 placebo capsule | 3000 mg d−1 Korean red ginseng capsule | Increased serum adiponectin levels Decreased TNF-α levels in overweight patients | Hong et al. [108]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, G.; Liu, Z.; Wang, X.; Wang, C. Recent Advances in Panax ginseng C.A. Meyer as a Herb for Anti-Fatigue: An Effects and Mechanisms Review. Foods 2021, 10, 1030. https://doi.org/10.3390/foods10051030
Lu G, Liu Z, Wang X, Wang C. Recent Advances in Panax ginseng C.A. Meyer as a Herb for Anti-Fatigue: An Effects and Mechanisms Review. Foods. 2021; 10(5):1030. https://doi.org/10.3390/foods10051030
Chicago/Turabian StyleLu, Guanyu, Zhuoting Liu, Xu Wang, and Chunling Wang. 2021. "Recent Advances in Panax ginseng C.A. Meyer as a Herb for Anti-Fatigue: An Effects and Mechanisms Review" Foods 10, no. 5: 1030. https://doi.org/10.3390/foods10051030
APA StyleLu, G., Liu, Z., Wang, X., & Wang, C. (2021). Recent Advances in Panax ginseng C.A. Meyer as a Herb for Anti-Fatigue: An Effects and Mechanisms Review. Foods, 10(5), 1030. https://doi.org/10.3390/foods10051030