The Effect of Electrospun Polycaprolactone Nonwovens Containing Chitosan and Propolis Extracts on Fresh Pork Packaged in Linear Low-Density Polyethylene Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Propolis Extraction
2.2. Preparation of Solutions and Electrospinning Process
2.3. Pork Loin Chops
2.4. Purge Loss during Storage
2.5. Instrumental Color
2.6. pH Evaluation
2.7. Lipid Oxidation
2.8. Microbial Analysis
2.9. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Characterization of Propolis Extracts
3.2. Qualitative Observations on Composite LLDPE Films
3.3. Meat Quality Parameters
3.3.1. Purge Loss
3.3.2. Instrumental Color
3.3.3. pH
3.3.4. Lipid Oxidation
3.3.5. Microbial Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, X.D.; Holley, R.A. Antimicrobial and antioxidative strategies to reduce pathogens and extend the shelf life of fresh red meats. Compr. Rev. Food Sci. Food Saf. 2012, 11, 340–354. [Google Scholar] [CrossRef]
- Borch, E.; Kant-Muermans, M.L.; Blixt, Y. Bacterial spoilage of meat and cured meat products. Int. J. Food Microbiol. 1996, 33, 103–120. [Google Scholar] [CrossRef]
- Nychas, G.J.E.; Skandamis, P.N.; Tassou, C.C.; Koutsoumanis, K.P. Meat spoilage during distribution. Meat Sci. 2008, 78, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Lin, H.; Zou, L.; Brody, A.L.; Li, Z.; Qazi, I.M.; Pavase, T.; Lv, L. A comprehensive review on the application of active packaging technologies to muscle foods. Food Control 2017, 82, 163–178. [Google Scholar] [CrossRef]
- Dainelli, D.; Gontard, N.; Spyropoulos, D.; Zondervan-van den Beuken, E.; Tobback, P. Active and intelligent food packaging: Legal aspects and safety concerns. Trends Food Sci. Technol. 2008, 19, S103–S112. [Google Scholar] [CrossRef]
- Robertson, G.L. Food Packaging: Principles and Practice, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2013; Available online: https://books.google.com.co/books?id=y27tL_7ZJFUC (accessed on 1 March 2021).
- Yam, K.L.; Takhistov, P.T.; Miltz, J. Intelligent Packaging: Concepts and Applications. J. Food Sci. 2005, 70, R1–R10. [Google Scholar] [CrossRef]
- Gue, M.; Wang, H.; Wang, Q.; Chen, M.; Li, L.; Li, X.; Jiang, S. Intelligent double-layer fiber mats with high colorimetric response sensitivity for food freshness monitoring and preservation. Food Hydrocoll. 2020, 101, 105468. [Google Scholar] [CrossRef]
- Li, L.; Wang, H.; Chen, M.; Jiang, S.; Cheng, J.; Li, X.; Zhang, M.; Jiang, S. Gelatin/zein fiber mats encapsulated with resveratrol: Kinetics, antibacterial activity and application for pork preservation. Food Hydrocoll. 2020, 101, 105577. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Preparation of antimicrobial and antioxidant gelatin/curcumin composite films for active food packaging application. Colloid Surf. B 2020, 188, 110761. [Google Scholar] [CrossRef]
- Feng, X.; Ng, V.K.; Mikš-Krajnik, M.; Yang, H. Effects of fish gelatin and tea polyphenol coating on the spoilage and degradation of myofibril in fish fillet during cold storage. Food Bioproc. Tech. 2017, 10, 89–102. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Jo, C. Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends Food Sci. Technol. 2013, 34, 96–108. [Google Scholar] [CrossRef]
- Yang, H.; Hewes, D.; Salaheen, S.; Federman, C.; Biswas, D. Effects of blackberry juice on growth inhibition of foodborne pathogens and growth promotion of Lactobacillus. Food Control 2014, 37, 15–20. [Google Scholar] [CrossRef]
- Woodruff, M.A.; Hutmacher, D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256. [Google Scholar] [CrossRef] [Green Version]
- Cerkez, I.; Sezer, A.; Bhullar, S.K. Fabrication and characterization of electrospun poly(e-caprolactone) fibrous membrane with antibacterial functionality. R. Soc. Open Sci. 2017, 4, 160911. [Google Scholar] [CrossRef] [Green Version]
- Shao, S.; Li, L.; Yang, G.; Li, J.; Luo, C.; Gong, T.; Zhou, S. Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers. Inter. J. Pharm. 2011, 421, 310–320. [Google Scholar] [CrossRef]
- Xiao, J.; Shi, C.; Zheng, H.; Shi, Z.; Jiang, D.; Li, Y.; Huang, Q. Kafirin protein based electrospun fibers with tunable mechanical property, wettability, and release profile. J. Agric. Food Chem. 2016, 64, 3226–3233. [Google Scholar] [CrossRef]
- Tian, J.; Deng, H.; Huang, M.; Liu, R.; Yi, Y.; Dong, X. Electrospun nanofibers for food and food packaging technology. Micro Nano Technol. 2019, 455–516. [Google Scholar] [CrossRef]
- Bankova, V.; Bertelli, D.; Borba, R.; Conti, B.J.; da Silva Cunha, I.B.; Danert, C.; Eberlin, M.; I Falcão, S.; Isla, M.; Moreno, M.; et al. Standard methods for Apis mellifera propolis research. J. Apic. Res. 2016, 58, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Falcão, S.I.; Vilas-Boas, M.; Estevinho, L.M.; Barros, C.; Domingues, M.R.M.; Cardoso, S.M. Phenolic characterization of Northeast Portuguese propolis: Usual and unusual compounds. Anal. Bioanal. Chem. 2010, 396, 887–897. [Google Scholar] [CrossRef] [Green Version]
- Silici, S.; Kutluca, S. Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region. J. Ethnopharmacol. 2005, 99, 69–73. [Google Scholar] [CrossRef]
- Barrera, E.; Gil, J.; Restrepo, A.; Mosquera, K.; Durango, D. A coating of chitosan and propolis extract for the postharvest treatment of papaya (Carica papaya L. cv. Hawaiiana). Rev. Fac. Nac. Agron. Medellín 2015, 68, 7667–7678. [Google Scholar] [CrossRef]
- Gutiérrez, C.; Suárez, H. Antimicrobial activity of propolis and its effect on the physicochemical and sensoral characteristics in sausages. Vitae 2014, 21, 90–96. [Google Scholar]
- Piedrahíta, D.G.; Fuenmayor, C.A.; Suárez, H. Effect of chitosan-propolis edible coatings on stability of refrigerated cachama (Piaractus brachypomus) vacuum-packed fish fillets. Packag. Technol. Sci. 2019, 32, 143–153. [Google Scholar] [CrossRef]
- Ahi, Z.B.; Renkler, N.Z.; Gul Seker, M.; Tuzlakoglu, K. Biodegradable polymer films with a natural antibacterial extract as novel periodontal barrier membranes. Int. J. Biomater. 2019, 7932470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asawahame, C.; Sutjarittangtham, K.; Eitssayeam, S.; Tragoolpua, Y.; Sirithunyalug, B.; Sirithunyalug, J. Antibacterial activity and inhibition of adherence of Streptococcus mutans by propolis electrospun fibers. AAPS PharmSciTech 2015, 16, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.I.; Pant, H.R.; Sim, H.J.; Lee, K.M.; Kim, C.S. Electrospun propolis/polyurethane composite nanofibers for biomedical applications. Mater. Sci. Eng. 2014, 44, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Moradkhannejhad, L.; Abdouss, M.; Nikfarjam, N.; Mazinani, S.; Heydari, V. Electrospinning of zein/propolis nanofibers; antimicrobial properties and morphology investigation. J. Mater. Sci. Mater. Med. 2018, 29, 165. [Google Scholar] [CrossRef]
- Ohkawa, K.; Cha, D.; Kim, H.; Nishida, A.; Yamamoto, H. Electrospinning of chitosan. Marcomol. Rapid Commun. 2004, 25, 1600–1605. [Google Scholar] [CrossRef]
- Sutjarittangtham, K.; Sanpa, S.; Tunkasiri, T.; Chantawannakul, P.; Intatha, U.; Eitssayeam, S. Bactericidal effects of propolis/polylactic acid (PLA) nanofibres obtained via electrospinning. J. Apic. Res. 2014, 53, 109–115. [Google Scholar] [CrossRef]
- Tosi, E.A.; Ré, E.; Ortega, M.E.; Cazzoli, A.F. Food preservative based on propolis: Bacteriostatic activity of propolis polyphenols and flavonoids upon Escherichia coli. Food Chem. 2007, 104, 1025–1029. [Google Scholar] [CrossRef]
- Pobiega, P.; Igielska, M.; Włodarczyk, P.; Gniewosz, M. The use of pullulan coatings with propolis extract to extend the shelf life of blueberry (Vaccinium corymbosum) fruit. Int. J. Food Sci. Technol. 2021, 56, 1013–1020. [Google Scholar] [CrossRef]
- Pobiega, K.; Kraśniewska, K.; Gniewosz, M. Application of propolis in antimicrobial and antioxidative protection of food quality—A review. Trends Food Sci. Technol. 2019, 83, 53–62. [Google Scholar] [CrossRef]
- Bonou, J.; Ahouandjinou, H.F.; Baba-Moussa, F.; Adéoti, Z.; Dougnon, V.; Metongnon, I.; Gbenou, J.D.; Toukouro, F.; Baba-Moussa, L. Assessment of the antimicrobial activity of essential oils from some Beninese medicinal plants: Influence of different tweens. Issues Bio. Sci. Pharma. Res. 2016, 4, 43–49. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Vitchayakitti, W. Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll. 2016, 61, 695–702. [Google Scholar] [CrossRef]
- Moon, J.K.; Shibamoto, T. Antioxidant assays for plant and food components. J. Agr. Food Chem. 2009, 57, 1655–1666. [Google Scholar] [CrossRef]
- Zaitoon, A.; Lim, L.T. Effect of poly(ethylene oxide) on the electrospinning behavior and characteristics of ethyl cellulose composite fibers. Materialia 2020, 10, 100649. [Google Scholar] [CrossRef]
- Vargas, H.; Bohrer, B.M. A preliminary investigation on the effects of a hot water shrink tunnel and chill tank following vacuum packaging on commercial pork quality and bacteria growth. Can. J. Anim. Sci. 2018, 98, 893–897. [Google Scholar] [CrossRef]
- Cottica, S.M.; Sawaya, A.C.; Eberlin, M.N.; Franco, S.L.; Zeoula, L.M.; Visentainer, J.V. Antioxidant activity and composition of propolis obtained by different methods of extraction. J. Braz. Chem. Soc. 2011, 22, 929–935. [Google Scholar] [CrossRef]
- Trusheva, B.; Trunkova, D.; Bankova, V. Different extraction methods of biologically active components from propolis: A preliminary study. Chem. Cent. J. 2007, 1, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Anjum, S.I.; Ullah, A.; Khan, K.A.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M.; Tahir, M.; Ansari, M.; Ghramh, H.; et al. Composition and functional properties of propolis (bee glue): A review. Saudi J. Biol. Sci. 2018, 26, 1695–1703. [Google Scholar] [CrossRef] [PubMed]
- Harfouch, R. Antibacterial activity of Syrian propolis extract against several strains of bacteria in vitro. World J. Pharm. Pharm. Sci. 2017, 6, 42–46. [Google Scholar] [CrossRef]
- Martínez, J.; Garcia, C.; Durango, D.; Gil, J. Caracterización de propóleos provenientes del municipio de Caldas obtenido por dos métodos de recolección. Rev. MVZ Cordoba 2012, 17, 2861–2869. [Google Scholar] [CrossRef] [Green Version]
- Machado, B.S.; Pulcino, T.N.; Silva, A.L.; Melo, D.T.; Silva, R.G.; Mendonça, I.G. Propolis as an alternative in prevention and control of dental cavity. J. Apither. 2017, 1, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Parolia, A.; Thomas, M.; Mala, K.; Mohan, M. Propolis and its potential uses in oral health. Int. J. Med. Med. Sci. 2010, 2, 210–215. [Google Scholar]
- Bankova, V. Chemical diversity of propolis and the problem of standardization. J. Ethnopharmacol. 2015, 100, 114–117. [Google Scholar] [CrossRef]
- Torel, J.; Cillard, J.; Cillard, P. Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry 1986, 25, 383–385. [Google Scholar] [CrossRef]
- Bors, W.; Heller, W.; Michel, C.; Saran, M. Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Meth. Enzymol. 1990, 186, 343–355. [Google Scholar] [CrossRef]
- Palomino, G.L.R.; García, P.C.M.; Gil, G.J.H.; Rojano, B.A.; Durango, R.D.L. Determinación del contenido de fenoles y evaluación de la actividad antioxidante de propóleos recolectados en el departamento de Antioquia (Colombia). Vitae 2009, 16, 388–395. [Google Scholar]
- Salamanca, G.; Correa, I.L.; Principal, J. Perfil de flavonoides e índices de oxidación de algunos propóleos colombianos. Zootec. Trop. 2007, 25, 95–102. [Google Scholar]
- Yano, H.; Sugiyama, J.; Nakagaito, A.N.; Nogi, M.; Matsuura, T.; Hikita, M.; Handa, K. Optically transparent composites reinforced with networks of bacterial nanofibers. Adv. Mater. 2005, 17, 153–155. [Google Scholar] [CrossRef]
- Sánchez, Á.P. Preparación y caracterización de membranas poliméricas electrohiladas de policaprolactona y quitosano para la liberación controlada de clorhidrato de tiamina. Cienc. Desarro. 2016, 7, 133–152. [Google Scholar] [CrossRef] [Green Version]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- No, H.K.; Meyers, S.P.; Prinyawiwatkul, W.; Xu, Z. Applications of chitosan for improvement of quality and shelf life of foods: A review. J. Food Sci. 2007, 72, R87–R100. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Peng, W.; Liu, G.; Chen, Y.; Chen, F.; Cao, Y. Biopreservative effect of the natural antimicrobial substance from Lactobacillus paracasei subsp. tolerans FX-6 on fresh pork during chilled storage. Food Control 2015, 56, 53–56. [Google Scholar] [CrossRef]
- Fan, W.; Sun, J.; Chen, Y.; Qiu, J.; Zhang, Y.; Chi, Y. Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food Chem. 2009, 115, 66–70. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Batlle, R.; Gómez, M. Extension of the shelf-life of foal meat with two antioxidant active packaging systems. LWT Food Sci. Technol. 2014, 59, 181–188. [Google Scholar] [CrossRef]
- Sheard, P.R.; Enser, M.; Wood, J.D.; Nute, G.R.; Gill, B.P.; Richardson, R.I. Shelf life and quality of pork and pork products with raised n-3 PUFA. Meat Sci. 2000, 55, 213–221. [Google Scholar] [CrossRef]
- López-Caballero, M.E.; Gómez-Guillén, M.C.; Pérez-Mateos, M.; Montero, P. A chitosan–gelatin blend as a coating for fish patties. Food Hydrocoll. 2005, 19, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Warner, R.D.; Fang, Z. Effect of chitosan/nisin/gallic acid coating on preservation of pork loin in high oxygen modified atmosphere packaging. Food Control 2019, 101, 9–16. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Rao, M.S.; Chawla, S.P.; Sharma, A. Effects of chitosan coating on shelf-life of ready-to-cook meat products during chilled storage. LWT Food Sci. Technol. 2013, 53, 321–326. [Google Scholar] [CrossRef]
- Dos Reis, A.S.; Diedrich, C.; de Moura, C.; Pereira, D.; de Almeida, J.F.; da Silva, L.D.; Plata-Ovideo, M.S.V.; Tavarez, R.A.W.; Carpes, S.T. Physico-chemical characteristics of microencapsulated propolis co-product extract and its effect on storage stability of burger meat during storage at −15 °C. LWT Food Sci. Technol. 2017, 76, 306–313. [Google Scholar] [CrossRef]
- Torlak, E.; Sert, D. Antibacterial effectiveness of chitosan-propolis coated polypropylene films against foodborne pathogens. Int. J. Biol. Macromol. 2013, 60, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Orsi, R.D.O.; Sforcin, J.M.; Cunha Funari, S.R.; Fernandes, A.; Bankova, V. Synergistic effect of propolis and antibiotics on the Salmonella typhi. Braz. J. Microbiol. 2006, 37, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Orsi, R.O.; Fernandes, A.; Bankova, V.; Sforcin, J.M. The effects of Brazilian and Bulgarian propolis in vitro against Salmonella Typhi and their synergism with antibiotics acting on the ribosome. Nat. Prod. Res. 2012, 26, 430–437. [Google Scholar] [CrossRef]
Minimum Inhibitory Concentration (MIC) of PE from Santander, Colombia (mg/mL) | Total Phenol Content ± SD (mg GAE/g of PE) | Antioxidant Activity ABTS TEAC ± SD (µmol Trolox/g PE) | ||
---|---|---|---|---|
Staphylococcus aureus | Escherichia coli | Salmonella enteritidis | ||
0.15 | 20 | 10 | 82.6 ± 2 | 1186 ± 52 |
Day 0 | Day 4 | Day 8 | Day 12 | Day 16 | Day 20 | |
---|---|---|---|---|---|---|
Purge loss, % | ||||||
CON | 0.87 ± 0.52 b | 3.18 ± 0.98 a | 3.62 ± 1.21 a | 4.23 ± 0.81 a | 4.33 ± 1.54 a | 4.37 ± 0.45 a |
Film 1 | 1.20 ± 0.62 b | 2.55 ± 0.48 b | 4.05 ± 1.01 a | 4.06 ± 0.26 a | 4.31 ± 0.60 a | 5.10 ± 1.22 a |
Film 2 | 1.57 ± 0.44 d | 2.37 ± 0.32 d | 4.34 ± 0.11 c | 4.54 ± 0.54 bc | 5.30 ± 0.41 ab | 5.59 ± 0.77 a |
Minolta L* (lightness) color, units | ||||||
CON | 47.35 ± 1.93 b | 47.90 ± 1.85 ab | 49.43 ± 2.23 ab, y | 50.33 ± 2.75 a | 50.36 ± 2.02 a | 47.90 ± 0.85 ab |
Film 1 | 46.69 ± 2.31 b | 48.25 ± 2.05 ab | 49.16 ± 1.19 ab, y | 49.67 ± 1.59 a | 49.21 ± 1.13 ab | 49.00 ± 2.55 ab |
Film 2 | 45.40 ± 2.16 | 49.38 ± 2.97 | 52.20 ± 0.92 x | 48.35 ± 0.49 | 48.28 ± 1.77 | 49.45 ± 1.95 |
Minolta a* (redness) color, units | ||||||
CON | 7.01 ± 1.46 a | 4.68 ± 1.12 b | 4.90 ± 1.35 b | 2.73 ± 0.90 c, y | 3.62 ± 0.56 bc | 4.00 ± 0.76 b |
Film 1 | 7.53 ± 1.77 a | 4.89 ± 0.31 bc | 4.82 ± 1.33 bc | 5.37 ± 0.93 b, x | 3.90 ± 0.71 c | 4.09 ± 0.93 bc |
Film 2 | 5.94 ± 0.43 a | 5.31 ± 1.03 ab | 3.89 ± 0.74 bc | 5.59 ± 0.13 ab, x | 4.19 ± 0.80 c | 4.02 ± 0.84 c |
Minolta b* (yellowness) color, units | ||||||
CON | 4.34 ± 2.62 xy | 3.24 ± 0.92 | 3.27 ± 0.20 | 2.81 ± 0.24 y | 4.24 ± 2.04 | 3.44 ± 1.29 |
Film 1 | 5.07 ± 2.37 a, x | 3.48 ± 0.90 ab | 3.78 ± 1.50 ab | 4.28 ± 1.88 ab, x | 2.83 ± 0.59 b | 4.61 ± 1.53 a |
Film 2 | 2.61 ± 0.97 y | 4.29 ± 2.28 | 3.83 ± 1.24 | 3.29 ± 0.36 xy | 3.50 ± 1.39 | 3.46 ± 1.39 |
Thiobarbituric acid reactive substances (TBARS), mg MDA/kg meat | ||||||
CON | 0.023 ± 0.001 ab | 0.024 ± 0.002 a | 0.023 ± 0.001 b,y | 0.025 ± 0.001 a | 0.024 ± 0.001 a | 0.024 ± 0.001 ab |
Film 1 | 0.023 ± 0.002 c | 0.025 ± 0.002 abc | 0.026 ± 0.001 ab,x | 0.026 ± 0.003 a | 0.023 ± 0.001 bc | 0.025 ± 0.001 abc |
Film 2 | 0.023 ± 0.002 | 0.024 ± 0.001 | 0.024 ± 0.001 xy | 0.026 ± 0.001 | 0.024 ± 0.001 | 0.024 ± 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas Romero, E.; Lim, L.-T.; Suárez Mahecha, H.; Bohrer, B.M. The Effect of Electrospun Polycaprolactone Nonwovens Containing Chitosan and Propolis Extracts on Fresh Pork Packaged in Linear Low-Density Polyethylene Films. Foods 2021, 10, 1110. https://doi.org/10.3390/foods10051110
Vargas Romero E, Lim L-T, Suárez Mahecha H, Bohrer BM. The Effect of Electrospun Polycaprolactone Nonwovens Containing Chitosan and Propolis Extracts on Fresh Pork Packaged in Linear Low-Density Polyethylene Films. Foods. 2021; 10(5):1110. https://doi.org/10.3390/foods10051110
Chicago/Turabian StyleVargas Romero, Emeli, Loong-Tak Lim, Héctor Suárez Mahecha, and Benjamin M. Bohrer. 2021. "The Effect of Electrospun Polycaprolactone Nonwovens Containing Chitosan and Propolis Extracts on Fresh Pork Packaged in Linear Low-Density Polyethylene Films" Foods 10, no. 5: 1110. https://doi.org/10.3390/foods10051110
APA StyleVargas Romero, E., Lim, L. -T., Suárez Mahecha, H., & Bohrer, B. M. (2021). The Effect of Electrospun Polycaprolactone Nonwovens Containing Chitosan and Propolis Extracts on Fresh Pork Packaged in Linear Low-Density Polyethylene Films. Foods, 10(5), 1110. https://doi.org/10.3390/foods10051110