Four Types of TiO2 Reduced the Growth of Selected Lactic Acid Bacteria Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanoparticles
2.2. Sample Preparation
2.3. NPs Characterization
2.3.1. Zeta-Potential Measurements
2.3.2. Microscopy Analysis
2.4. Bacterial Cultures
3. Results
3.1. Characterization of E171/TiO2 NPs
3.1.1. Zeta Potential of E171/TiO2 Nanoparticles
3.1.2. Transmission Electron Microscopy (TEM) Analysis of the Samples
3.2. Bacteria
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gultekin, F.; Oner, M.E.; Savas, H.B.; Dogan, B. Food additives and microbiota. North Clin. Istanb. 2020, 7, 192–200. [Google Scholar] [CrossRef]
- Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; von Goetz, N. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 2012, 46, 2242–2250. [Google Scholar] [CrossRef] [Green Version]
- Peters, R.J.; van Bemmel, G.; Herrera-Rivera, Z.; Helsper, H.P.; Marvin, H.J.; Weigel, S.; Tromp, P.C.; Oomen, A.G.; Rietveld, A.G.; Bouwmeester, H. Characterization of Titanium Dioxide Nanoparticles in Food Products: Analytical Methods To Define Nanoparticles. J. Agric. Food Chem. 2014, 62, 6285–6293. [Google Scholar] [CrossRef] [PubMed]
- Dudefoi, W.; Terrisse, H.; Richard-Plouet, M.; Gautron, E.; Popa, F.; Humbert, B.; Ropers, M.H. Criteria to define a more relevant reference sample of titanium dioxide in the context of food: A multiscale approach. Food Addit. Contam. Part A 2017, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Doudrick, K.; Bi, X.; Hristovski, K.; Herckes, P.; Westerhoff, P.; Kaegi, R. Characterization of Food-Grade Titanium Dioxide: The Presence of Nanosized Particles. Environ. Sci. Technol. 2014, 48, 6391–6400. [Google Scholar] [CrossRef] [PubMed]
- EFSA FAF Panel. Scientific Opinion on the Proposed Amendment of the EU Specifications for Titanium Dioxide (E 171) with Respect to the Inclusion of Additional Parameters Related to Its Particle Size Distribution. EFSA J. 2019, 17, 5760. [Google Scholar]
- Geiss, O.; Ponti, J.; Senaldi, C.; Bianchi, I.; Mehn, D.; Barrero, J.; Gilliland, D.; Matissek, R.; Anklam, E. Characterisation of food grade titania with respect to nanoparticle content in pristine additives and in their related food products. Food Addit. Contam. Part A 2019, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranowska-Wójcik, E. Factors Conditioning the Potential Effects TiO2 NPs Exposure on Human Microbiota: A Mini-Review. Biol. Trace Elem. Res. 2021. [Google Scholar] [CrossRef]
- Chen, Z.; Han, S.; Zhou, S.; Feng, H.; Liu, Y.; Jia, G. Review of health safety aspects of titanium dioxide nanoparticles in food application. NanoImpact 2020, 18, 100224. [Google Scholar] [CrossRef]
- EFSA. Panel on Food Additives and Nutrient Sources Added to Food. Scientific opinion on the re-evaluation of titanium dioxide (E171) as a food additive. EFSA J. 2016, 14, 4545. [Google Scholar] [CrossRef]
- Cao, X.; Han, Y.; Gu, M.; Du, H.; Song, M.; Zhu, X.; Ma, G.; Pan, C.; Wang, W.; Zhao, E.; et al. Foodborne Titanium Dioxide Nanoparticles Induce Stronger Adverse Effects in Obese Mice than Non-Obese Mice: Gut Microbiota Dysbiosis, Colonic Inflammation, and Proteome Alterations. Small 2020, 2001858. [Google Scholar] [CrossRef] [PubMed]
- Baranowska-Wójcik, E.; Szwajgier, D.; Oleszczuk, P.; Winiarska-Mieczan, A. Effects of titanium dioxide nanoparticles exposure on human health—A review. Biol. Trace Elem. Res. 2020, 193, 118–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martirosyan, A.; Schneider, Y.J. Engineered Nanomaterials in Food: Implications for Food Safety and Consumer Health. Int. J. Environ. Res. Public Health 2014, 11, 5720–5750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, K.; DeCoffe, D.; Molcan, E.; Gibson, D.L. Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease. Nutrients 2012, 4, 1095–1119. [Google Scholar] [CrossRef] [Green Version]
- Verdu, E.F.; Galipeau, H.J.; Jabri, B. Novel players in coeliac disease pathogenesis: Role of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 497–506. [Google Scholar] [CrossRef]
- Lamas, B.; Martins Breyner, N.; Houdeau, E. Impacts of foodborne inorganic nanoparticles on the gut microbiota-immune axis: Potential consequences for host health. Part. Fibre Toxicol. 2020, 17. [Google Scholar] [CrossRef]
- Radziwill-Bienkowska, J.M.; Talbot, P.; Kamphuis, J.B.; Robert, V.; Cartier, C.; Fourquaux, I.; Lentzen, E.; Audinot, J.N.; Jamme, F.; Réfrégiers, M.; et al. Toxicity of Food-Grade TiO2 to Commensal Intestinal and Transient Food-Borne Bacteria: New Insights Using Nano-SIMS and Synchrotron UV Fluorescence Imaging. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Derrien, M.; Levenez, F.; Brazeilles, R.; Ballal, S.A.; Kim, J.; Degivry, M.C.; Quéré, G.; Garault, P.; van Hylckama Vlieg, J.E.; et al. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. ISME J. 2016, 10, 2235–2245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudefoi, W.; Moniz, K.; Allen-Vercoe, E.; Ropers, M.H.; Walker, V.K. Impact of food grade and nano-TiO2 particles on a human intestinal community. Food Chem. Toxicol. 2017, 106, 242–249. [Google Scholar] [CrossRef]
- Rooks, M.G.; Garrett, W.S. Gut microbiota. metabolites and host immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef]
- Limage, R.; Tako, E.; Kolba, N.; Guo, Z.; García-Rodríguez, A.; Marques, C.N.H.; Mahler, G.J. TiO2 Nanoparticles and Commensal Bacteria Alter Mucus Layer Thickness and Composition in a Gastrointestinal Tract Model. Small 2020, 2000601. [Google Scholar] [CrossRef]
- Pradhan, N.; Singh, S.; Ojha, N.; Shrivastava, A.; Barla, A.; Rai, V.; Bose, S. Facets of Nanotechnology as Seen in Food Processing. Packaging. and Preservation Industry. BioMed Res. Int. 2015, 365672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagnout, C.; Jomini, S.; Dadhwal, M.; Caillet, C.; Thomas, F.; Bauda, P. Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli. Colloids Surf. B Biointerfaces 2012, 92, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.; Morton, J.; Smith, I.; Jurkschat, K.; Harding, A.-H.; Evans, G. Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles. Toxicol. Lett. 2015, 233, 95–101. [Google Scholar] [CrossRef]
- Pietroiusti, A.; Magrini, A.; Campagnolo, L. New frontiers in nanotoxicology: Gut microbiota/microbiome-mediated effects of engineered nanomaterials. Toxicol. Appl. Pharmacol. 2016, 299, 90–95. [Google Scholar] [CrossRef]
- Pietroiusti, A.; Bergamaschi, E.; Campagna, M.; Campagnolo, L.; De Palma, G.; Iavicoli, S.; Leso, V.; Magrini, A.; Miragoli, M.; Pedata, P.; et al. The unrecognized occupational relevance of the interaction between engineered nanomaterials and the gastro-intestinal tract: A consensus paper from a multidisciplinary working group. Part. Fibre Toxicol. 2017, 14. [Google Scholar] [CrossRef]
- Gustaw, K.; Michalak, M.; Polak-Berecka, M.; Waśko, A. Isolation and characterization of a new fructophilic Lactobacillus plantarum FPL strain from honeydew. Ann. Microbiol. 2018, 68, 459–470. [Google Scholar] [CrossRef]
- Hoeflinger, J.L.; Hoeflinger, D.E.; Miller, M.J. A dynamic regression analysis tool for quantitative assessment of bacterial growth written in Python. J. Microbiol. Methods 2017, 132, 83–85. [Google Scholar] [CrossRef]
- Wei, L.; Yue, G.; Hongjian, P.; Hongying, C. Dispersion stability of titanium dioxide in aqueous isopropanol with polymer dispersant. J. Coat. Technol. Res. 2020. [Google Scholar] [CrossRef]
- Lin, X.; Li, J.; Ma, S.; Liu, G.; Yang, K.; Tong, M.; Lin, D. Toxicity of TiO2 Nanoparticles to Escherichia coli: Effects of Particle Size. Crystal Phase and Water Chemistry. PLoS ONE 2014, 9, e110247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ripolles-Avila, C.; Martinez-Garcia, M.; Hascoët, A.-S.; Rodríguez-Jerez, J.J. Bactericidal efficacy of UV activated TiO2 nanoparticles against Gram-positive and Gram-negative bacteria on suspension. CyTA J. Food 2019, 17, 408–418. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, N.; Mitra, S.; Adak, S.; Chakraborty, S.; Sau, A.; Goswami, A. Evaluation of the growth response of spore forming lactic acid Bacillus–Bacillus coagulans in presence of oxide nanoparticles. Appl. Nanosci. 2020, 10, 4075–4086. [Google Scholar] [CrossRef]
- Waller, T.; Chen, C.; Walker, S.L. Food and Industrial Grade Titanium Dioxide Impacts Gut Microbiota. Environ. Eng. Sci. 2017, 34, 537–550. [Google Scholar] [CrossRef]
- Planchon, M.; Léger, T.; Spalla, O.; Huber, G.; Ferrari, R. Metabolomic and proteomic investigations of impacts of titanium dioxide nanoparticles on Escherichia coli. PLoS ONE 2017, 12, e0178437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.S.; Ho, S.B. Intestinal Goblet Cells and Mucins in Health and Disease: Recent Insights and Progress. Curr. Gastroenterol. Rep. 2010, 12, 319–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zhang, Y.; Li, B.; Cui, J.; Gao, N.; Sun, H.; Meng, Q.; Wu, S.; Bo, J.; Yan, L.; et al. Prebiotic protects against anatase titanium dioxide nanoparticles-induced microbiota-mediated colonic barrier defects. NanoImpact 2019, 14, 100164. [Google Scholar] [CrossRef]
- Pinget, G.; Tan, J.; Janac, B.; Kaakoush, N.O.; Angelatos, A.S.; O’Sullivan, J.; Koay, Y.C.; Sierro, F.; Davis, J.; Divakarla, S.K.; et al. Impact of the food additive titanium dioxide (E171) on gut microbiota-host interaction. Front. Nutr. 2019, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Mu, W.; Wang, Y.; Huang, C.; Fu, Y.; Li, J.; Wang, H.; Jia, X.; Ba, Q. Effect of Long-Term Intake of Dietary Titanium Dioxide Nanoparticles on Intestine Inflammation in Mice Agric. J. Agric. Food Chem. 2019, 67, 9382–9389. [Google Scholar] [CrossRef] [PubMed]
Species and Strain |
---|
|
Species | Types of TiO2 | Lag Time (h) | Max Specific Growth Rate (h-1) | Doubling Time (h) | Max OD | Min OD | R2 |
---|---|---|---|---|---|---|---|
L. plantarum | control | 4.70 | 0.15 | 4.48 | 1.86 | 0.05 | 1.00 |
1 | 1.36 | 0.04 | 16.65 | 0.64 | 0.02 | 0.99 | |
2 | 0.00 | 0.03 | 24.79 | 0.47 | 0.03 | 0.98 | |
3 | 0.00 | 0.03 | 24.47 | 0.54 | 0.05 | 0.96 | |
4 | 9.94 | 0.05 | 14.08 | 0.49 | 0.05 | 1.00 | |
B. adolescentis | control | 31.24 | 0.05 | 12.89 | 0.92 | 0.01 | 0.99 |
1 | 34.21 | 0.07 | 10.11 | 0.65 | 0.00 | 1.00 | |
2 | n.g | n.g | n.g | 0.10 | 0.01 | n.g | |
3 | n.g | n.g | n.g | 0.19 | 0.02 | n.g | |
4 | n.g | n.g | n.g | 0.15 | 0.01 | n.g | |
L. intermedius | control | 8.54 | 0.08 | 9.00 | 1.63 | 0.07 | 1.00 |
1 | 0.10 | 0.01 | 56.67 | 0.30 | 0.06 | 0.98 | |
2 | 0.79 | 0.06 | 11.92 | 0.59 | 0.05 | 0.98 | |
3 | 51.19 | 0.02 | 34.48 | 0.43 | 0.00 | 1.00 | |
4 | 20.55 | 0.01 | 83.28 | 0.44 | 0.05 | 1.00 | |
L. fermentum | control | 3.74 | 0.05 | 13.01 | 1.43 | 0.04 | 1.00 |
1 | 16.21 | 0.16 | 4.45 | 1.67 | 0.01 | 1.00 | |
2 | 0.00 | 0.04 | 17.38 | 0.49 | 0,01 | 0.98 | |
3 | n.g | n.g | n.g | 0.12 | 0.01 | n.g | |
4 | n.g | n.g | n.g | 0.14 | 0.01 | n.g | |
L. brevis | control | 7.39 | 0.10 | 6.95 | 1.73 | 0.07 | 1.00 |
1 | 1.38 | 0.07 | 9.33 | 0.60 | 0.02 | 0.99 | |
2 | 0.00 | 0.03 | 20.18 | 0.34 | 0.03 | 0.97 | |
3 | 0.00 | 0.03 | 23.54 | 0.34 | 0.02 | 0.99 | |
4 | 9.80 | 0.04 | 16.11 | 0.63 | 0.03 | 0.99 | |
L. casei Lby | control | 5.91 | 0.17 | 4.05 | 1.73 | 0.02 | 1.00 |
1 | 6.51 | 0.05 | 13.50 | 0.52 | 0.01 | 1.00 | |
2 | 7.65 | 0.03 | 23.27 | 0.29 | 0.00 | 1.00 | |
3 | 9.83 | 0.03 | 20.44 | 0.31 | 0.01 | 0.91 | |
4 | 9.94 | 0.05 | 14.08 | 0.49 | 0.05 | 1.00 | |
L. plantarum IB | control | 14.55 | 0.24 | 2.84 | 1.83 | 0.01 | 1.00 |
1 | 11.72 | 0.12 | 6.01 | 0.92 | 0.00 | 0.99 | |
2 | 10.47 | 0.13 | 5.15 | 1.32 | 0.10 | 1.00 | |
3 | 11.30 | 0.12 | 5.63 | 1.05 | 0.03 | 0.99 | |
4 | 9.93 | 0.11 | 6.09 | 1.18 | 0.00 | 1.00 | |
B. bifidum | control | 26.82 | 0.15 | 4.58 | 1.79 | 0.07 | 1.00 |
1 | 0.00 | 0.03 | 23.45 | 0.71 | 0.05 | 0.97 | |
2 | 8.83 | 0.03 | 24.79 | 0.53 | 0.03 | 0.96 | |
3 | 11.68 | 0.03 | 22.35 | 0.46 | 0.06 | 0.98 | |
4 | 13.22 | 0.06 | 10.67 | 0.78 | 0.01 | 0.99 | |
L. rhamnosus | control | 9.24 | 0.16 | 4.21 | 1.75 | 0.05 | 1.00 |
1 | 1.91 | 0.05 | 13.75 | 0.72 | 0.12 | 1.00 | |
2 | 0.00 | 0.05 | 13.07 | 0.62 | 0.02 | 0.98 | |
3 | 0.00 | 0.03 | 21.36 | 0.43 | 0.03 | 0.99 | |
4 | 2.85 | 0.08 | 9.10 | 0.92 | 0.03 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranowska-Wójcik, E.; Gustaw, K.; Szwajgier, D.; Oleszczuk, P.; Pawlikowska-Pawlęga, B.; Pawelec, J.; Kapral-Piotrowska, J. Four Types of TiO2 Reduced the Growth of Selected Lactic Acid Bacteria Strains. Foods 2021, 10, 939. https://doi.org/10.3390/foods10050939
Baranowska-Wójcik E, Gustaw K, Szwajgier D, Oleszczuk P, Pawlikowska-Pawlęga B, Pawelec J, Kapral-Piotrowska J. Four Types of TiO2 Reduced the Growth of Selected Lactic Acid Bacteria Strains. Foods. 2021; 10(5):939. https://doi.org/10.3390/foods10050939
Chicago/Turabian StyleBaranowska-Wójcik, Ewa, Klaudia Gustaw, Dominik Szwajgier, Patryk Oleszczuk, Bożena Pawlikowska-Pawlęga, Jarosław Pawelec, and Justyna Kapral-Piotrowska. 2021. "Four Types of TiO2 Reduced the Growth of Selected Lactic Acid Bacteria Strains" Foods 10, no. 5: 939. https://doi.org/10.3390/foods10050939
APA StyleBaranowska-Wójcik, E., Gustaw, K., Szwajgier, D., Oleszczuk, P., Pawlikowska-Pawlęga, B., Pawelec, J., & Kapral-Piotrowska, J. (2021). Four Types of TiO2 Reduced the Growth of Selected Lactic Acid Bacteria Strains. Foods, 10(5), 939. https://doi.org/10.3390/foods10050939