Effect of Baking Temperature on the Phenolic Content and Antioxidant Activity of Black Corn (Zea mays L.) Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Materials
2.3. Extraction
2.4. Total Phenol Content (TPC)
2.5. Total Anthocyanin Content (TAC)
2.6. DPPH Activity
2.7. Photochemiluminiscence (PCL) Activity
2.8. Content of Phenolic Compounds
2.9. Statistical Analysis
3. Results and Discussion
3.1. Comparison between Millo corvo Corn Flour and White Corn Flour
3.2. Effect of Temperature on the Antioxidant Content in Millo corvo Flour
3.3. Comparison between Raw Millo corvo Flour and Millo corvo Bread
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zilic, S.; Serpen, A.; Akillioglui, G.; Gökmen, V.; Vancetovic, J. Phenolic Compounds, Carotenoids, Anthocyanins, and Antioxidant Capacity of Colored Maize (Zea mays L.) Kernels. J. Agric. Food Chem. 2012, 60, 1224–1231. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Teresa, S.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. LC-MS analysis of anthocyanins from purple corn cob. J. Sci. Food Agric. 2002, 82, 1003–1006. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Heinonen, M. Antioxidant activity of anthocyanins and their aglycons. J. Agric. Food Chem. 2003, 51, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Aoki, H.; Kuze, N.; Kato, Y. Anthocyanins Isolated from Purple Corn (Zea mays L.). 2001. Available online: http://www.ffcr.or.jp/zaidan/FFCHROME.nsf/7bd44c20b0dc56264925602001b65e9/c6698773361b42b249256ba60018e581/SFILE/anthocyanin-FFIJ199.pdf (accessed on 1 April 2021).
- Adom, K.K.; Liu, R.H. Antioxidant activity of grains. J. Agric. Food Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef]
- Cronin, K.; Preis, C. A statistical ana-lysis of biscuit physical properties as affected by baking. J. Food Eng. 2000, 46, 217–225. [Google Scholar] [CrossRef]
- Sablani, S.S.; Marcotte, M.; Baik, O.D.; Castaigne, F. Modeling of simultaneous heat and water transport in the baking process. Lebensm Wiss Technol. 1998, 31, 201–209. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Acylated anthocyanins from edible sources and their application in food systems. Biochem. Eng. J. 2003, 14, 217–225. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A.; Menon, V.P. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Giusti, M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV Visible Spectroscopy. In Current Protocols in Food Analytical Chemistry; Giusti, M.M., Wrolstad, R.E., Eds.; Wiley: New York, NY, USA, 2001; p. 1. [Google Scholar]
- Smith, R.C.; Reeves, J.C.; Dage, R.C.; Schnettler, R.A. Antioxidant properties of 2-imidazolones and 2-imidazolthiones. Biochem. Pharmacol. J. 1987, 36, 1457–1460. [Google Scholar] [CrossRef]
- Besco, E.; Braccioli, E.; Vertuani, S.; Ziosi, P.; Brazzo, F.; Bruni, R.; Sacchetti, G.; Manfredini, S. The use of photochemiluminescence for the measurement of the integral antioxidant capacity of baobab products. Food Chem. 2007, 102, 1352–1356. [Google Scholar] [CrossRef]
- Wesołowska, M.; Dżugan, M. The Use of the Photochem Device in Evaluation of Antioxidant Activity of Polish Honey. Food Anal. Methods 2017, 10, 1568–1574. [Google Scholar] [CrossRef]
- Blanch, G.P.; Gómez-Jiménez, M.C.; Ruiz del Castillo, M.L. Exogenous salicylic acid improves phenolic content and antioxidant activity in table grapes. Plant Food Hum. Nutrit. 2020, 75, 177–183. [Google Scholar] [CrossRef]
- Dżugan, M.; Kisała, J. Application of the Photochem System in Agricultural Investigations. In Modern Methods in Analysis of Agricultural Raw Materials; Puchalski, C., Bartosz, G., Eds.; University of Rzeszow Publishing Office: Rzeszów, Poland, 2011; pp. 193–203. [Google Scholar]
- Del Pozo-Insfran, D.; Brenes, C.H.; Saldivar, S.O.S.; Talcott, S.T. Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products. Food Res. Intern. 2006, 39, 696–703. [Google Scholar] [CrossRef]
- López-Martínez, L.X.; Oliart-Ros, R.M.; Valerio-Alfaro, G.; Lee, C.-H.; Parkin, K.L.; García, H.S. Antioxidant capacity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT-Food Sci. Tecnhol. 2009, 42, 1187–1192. [Google Scholar] [CrossRef]
- Rodríguez, V.M.; Soengas, P.; Landa, A.; Ordás, A.; Revilla, P. Effects of selection for color intensity on antioxidant capacity in maize (Zea mays L.). Euphytica 2013, 193, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Zilic, S.; Kocadagli, T.; Vancetovic, J.; Gökmen, V. Effects of baking conditions and dough formualtions on phenolic compounds stability, antioxidant capacity and color of cookies made from anthocyanin-rich corn flour. LWT-Food Sci. Technol. 2016, 65, 597–603. [Google Scholar] [CrossRef]
- Jaeger, H.; Janositz, A.; Knorr, D. The Maillard reaction and its control during food processing. The potential of emerging technologies. Pathol. Biol. 2010, 58, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Srinivason, M.; Sudheer, A.R. Ferulic acid: Therapeutic potential through its antioxidant activity. J. Clin. Biochem. Nutr. 2007, 40, 92–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eliasova, M.; Kotikova, Z.; Lachman, J.; Orsak, M.; Martinek, P. Influence of baking on anthocyanin content in coloured-grain wheat bread. Plant Soil Environ. 2020, 66, 381–386. [Google Scholar] [CrossRef]
- Bartl, P.; Albreth, A.; Skrt, M.; Tremlova, B.; Ostadalova, M.; Smejkal, K.; Vovk, I.; Ulrich, N.P. Anthocyianins in purple and blue wheat grains and in resulting bread: Quantity, composition, and thermal stability. Int. J. Food. Sci. Nutr. 2015, 66, 514–519. [Google Scholar] [CrossRef] [PubMed]
Sample | TPC | PCL | IC50 |
---|---|---|---|
White corn flour | 169.7 ± 0.12 a | 331.9 ± 0.09 a | 2182.2 ± 0.12 a |
Millo corvo corn flour | 305.3 ± 0.15 b | 734.3 ± 0.15 b | 1091.7 ± 0.16 b |
Phenolics | Millo corvo Flour Samples | |||
---|---|---|---|---|
Unheated | 150 °C | 180 °C | 200 °C | |
Chlorogenic acid | 1.17 ± 0.09 a | 0.16 ± 0.05 b | 0.10 ± 0.03 b | 0.13 ± 0.06 b |
Caffeic acid | 1.43 ± 0.08 a | 0.16 ± 0.06 b | 0.11 ± 0.06 b | 0.15 ± 0.03 b |
Trans-ferulic acid | 0.05 ± 0.01 a | 0.03 ± 0.08 a | 0.05 ± 0.03 a | 0.13 ± 0.07 a |
Quercetin | 1.77 ± 0.12 a | 0.18 ± 0.08 b | 0.07 ± 0.03 b | 0.16 ± 0.03 b |
Quercetin-3-glucoside | 0.12 ± 0.04 a | 0.02 ± 0.05 b | 0.03 ± 0.02 b | 0.02 ± 0.02 b |
Cyanidin-3-O-glucoside | 0.48 ± 0.03 a | 0.18 ± 0.01 b | 0.10 ± 0.01 b | 0.13 ± 0.02 b |
Sample | TPC | TAC | IC50 |
---|---|---|---|
Unheated Millo corvo flour | 291.1 ± 0.08 a | 381.2 ± 0.10 a | 1022.2 ± 0.18 a |
Homemade Millo corvo bread | 48.1 ± 0.05 b | 507.0 ± 0.13 b | 875.3 ± 0.16 a |
Phenolics | Millo corvo Flour Samples | |
---|---|---|
Unheated Millo corvo Flour | Home-made Millo corvo Bread | |
Chlorogenic acid | 1.17 ± 0.06 a | 0.08 ± 0.01 a |
Caffeic acid | 1.43 ± 0.02 a | 0.08 ± 0.02 b |
Trans-ferulic acid | 0.12 ± 0.01 a | 0.10 ± 0.02 a |
Quercetin | 1.77 ± 0.03 a | 0.07 ± 0.01 b |
Quercetin-3-glucoside | 0.09 ± 0.01 a | 0.08 ± 0.01 a |
Cyanidin-3-O-glucoside | 0.48 ± 0.04 a | 0.32 ± 0.01 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanch, G.P.; Ruiz del Castillo, M.L. Effect of Baking Temperature on the Phenolic Content and Antioxidant Activity of Black Corn (Zea mays L.) Bread. Foods 2021, 10, 1202. https://doi.org/10.3390/foods10061202
Blanch GP, Ruiz del Castillo ML. Effect of Baking Temperature on the Phenolic Content and Antioxidant Activity of Black Corn (Zea mays L.) Bread. Foods. 2021; 10(6):1202. https://doi.org/10.3390/foods10061202
Chicago/Turabian StyleBlanch, Gracia Patricia, and Maria Luisa Ruiz del Castillo. 2021. "Effect of Baking Temperature on the Phenolic Content and Antioxidant Activity of Black Corn (Zea mays L.) Bread" Foods 10, no. 6: 1202. https://doi.org/10.3390/foods10061202
APA StyleBlanch, G. P., & Ruiz del Castillo, M. L. (2021). Effect of Baking Temperature on the Phenolic Content and Antioxidant Activity of Black Corn (Zea mays L.) Bread. Foods, 10(6), 1202. https://doi.org/10.3390/foods10061202