Preharvest Nutrient Deprivation Reconfigures Nitrate, Mineral, and Phytochemical Content of Microgreens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Material, Climate Chamber Setup, and Nutrient Solution Treatments
2.2. Colorimetric Measurement of Microgreens Canopy, Sampling, and Yield Assessment
2.3. Analysis of Nitrate and Macro-Minerals by Ion Chromatography
2.4. Analysis of Carotenoids by HPLC-DAD
2.5. Analysis of Polyphenols by UHPLC-Q-Orbitrap HRMS
2.6. Experimental Design and Statistical Analysis
3. Results
3.1. Yield Characteristics
3.2. Canopy Colorimetry
3.3. Nitrate and Mineral Content
3.4. Carotenoid Content
3.5. Phenolic Composition
4. Discussion
4.1. Yield Characteristics
4.2. Canopy Colorimetry
4.3. Nitrate and Mineral Content
4.4. Carotenoid Content
4.5. Phenolic Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Soteriou, G.A.; Colla, G.; Rouphael, Y. The occurrence of nitrate and nitrite in Mediterranean fresh salad vegetables and its modulation by preharvest practices and postharvest conditions. Food Chem. 2019, 285, 468–477. [Google Scholar] [CrossRef]
- Caracciolo, F.; El-Nakhel, C.; Raimondo, M.; Kyriacou, M.C.; Cembalo, L.; de Pascale, S.; Rouphael, Y. Sensory attributes and consumer acceptability of 12 microgreens species. Agronomy 2020, 10, 1043. [Google Scholar] [CrossRef]
- Verlinden, S. Microgreens: Definitions, Product Types, and Production Practices. In Horticultural Reviews; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 47, pp. 85–124. [Google Scholar]
- Palmitessa, O.D.; Renna, M.; Crupi, P.; Lovece, A.; Corbo, F.; Santamaria, P. Yield and quality characteristics of brassica microgreens as affected by the NH4:NO3 molar ratio and strength of the nutrient solution. Foods 2020, 9, 677. [Google Scholar] [CrossRef] [PubMed]
- El-Nakhel, C.; Pannico, A.; Graziani, G.; Kyriacou, M.C.; Gaspari, A.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Nutrient Supplementation Configures the Bioactive Profile and Production Characteristics of Three Brassica L. Microgreens Species Grown in Peat-Based Media. Agronomy 2021, 11, 346. [Google Scholar] [CrossRef]
- Teng, J.; Liao, P.; Wang, M. The role of emerging micro-scale vegetables in human diet and health benefits—An updated review based on microgreens. Food Funct. 2021, 12, 1914–1932. [Google Scholar] [CrossRef]
- Paradiso, V.M.; Castellino, M.; Renna, M.; Santamaria, P.; Caponio, F. Setup of an extraction method for the analysis of carotenoids in microgreens. Foods 2020, 9, 459. [Google Scholar] [CrossRef] [Green Version]
- El-Nakhel, C.; Pannico, A.; Kyriacou, M.C.; Giordano, M.; De Pascale, S.; Rouphael, Y. Macronutrient deprivation eustress elicits differential secondary metabolites in red and green-pigmented butterhead lettuce grown in a closed soilless system. J. Sci. Food Agric. 2019, 99, 6962–6972. [Google Scholar] [CrossRef]
- Bian, Z.; Wang, Y.; Zhang, X.; Li, T.; Grundy, S.; Yang, Q.; Cheng, R. A review of environment effects on nitrate accumulation in leafy vegetables grown in controlled environments. Foods 2020, 9, 732. [Google Scholar] [CrossRef]
- Simanavičius, L.; Viršile, A. The effects of led lighting on nitrates, nitrites and organic acids in tatsoi. Res. Rural Dev. 2018, 2, 95–99. [Google Scholar] [CrossRef]
- European Food Safety Agency (EFSA). Opinion of the Scientific Panel on Contaminants in the Food chain on a request from the European Commission to perform a scientific risk assessment on nitrate in vegetables. EFSA J. 2008, 689, 1–79. [Google Scholar]
- Cavaiuolo, M.; Ferrante, A. Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads. Nutrients 2014, 6, 1519–1538. [Google Scholar] [CrossRef] [Green Version]
- European Commission Regulation (EC) No 1882/2006 of 19 December 2006 laying down methods of sampling and analysis for the official control of the levels of nitrates in certain foodstuffs. Off. J. Eur. Union 2006, L364, 25–31.
- Anjana, S.U.; Iqbal, M. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agron. Sustain. Dev. 2007, 27, 45–57. [Google Scholar] [CrossRef]
- Colla, G.; Kim, H.J.; Kyriacou, M.C.; Rouphael, Y. Nitrate in fruits and vegetables. Sci. Hortic. 2018, 237, 221–238. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; El-Nakhel, C.; Graziani, G.; Pannico, A.; Soteriou, G.A.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem. 2019, 277, 107–118. [Google Scholar] [CrossRef]
- Lenzi, A.; Orlandini, A.; Bulgari, R.; Ferrante, A.; Bruschi, P. Antioxidant and mineral composition of three wild leafy species: A comparison between microgreens and baby greens. Foods 2019, 8, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pannico, A.; Graziani, G.; El-Nakhel, C.; Giordano, M.; Ritieni, A.; Kyriacou, M.C.; Rouphael, Y. Nutritional stress suppresses nitrate content and positively impacts ascorbic acid concentration and phenolic acids profile of lettuce microgreens. Italus Hortus 2020, 27, 41–52. [Google Scholar] [CrossRef]
- Liu, H.; Kang, Y.; Zhao, X.; Liu, Y.; Zhang, X.; Zhang, S. Effects of elicitation on bioactive compounds and biological activities of sprouts. J. Funct. Foods 2019, 53, 136–145. [Google Scholar] [CrossRef]
- Galieni, A.; Falcinelli, B.; Stagnari, F.; Datti, A.; Benincasa, P. Sprouts and microgreens: Trends, opportunities, and horizons for novel research. Agronomy 2020, 10, 1424. [Google Scholar] [CrossRef]
- Onakpoya, I.J.; Spencer, E.A.; Thompson, M.J.; Heneghan, C.J. The effect of chlorogenic acid on blood pressure: A systematic review and meta-analysis of randomized clinical trials. J. Hum. Hypertens. 2015, 29, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef]
- Whitaker, B.D.; Stommel, J.R. Distribution of hydroxycinnamic acid conjugates in fruit of commercial eggplant (Solanum melongena L.) cultivars. J. Agric. Food Chem. 2003, 51, 3448–3454. [Google Scholar] [CrossRef]
- Santos, J.S.; Escher, G.B.; Vieira do Carmo, M.; Azevedo, L.; Boscacci Marques, M.; Daguer, H.; Molognoni, L.; Inés Genovese, M.; Wen, M.; Zhang, L.; et al. A new analytical concept based on chemistry and toxicology for herbal extracts analysis: From phenolic composition to bioactivity. Food Res. Int. 2020, 132, 109090. [Google Scholar] [CrossRef]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Terao, J.; Yamaguchi, S.; Shirai, M.; Miyoshi, M.; Moon, J.H.; Oshima, S.; Inakuma, T.; Tsushida, T.; Kato, Y. Protection by Quercetin and Quercetin 3-O-β-D-glucuronide of peroxynitrite-induced antioxidant consumption in human plasma low-density lipoprotein. Free Radic. Res. 2001, 35, 925–931. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; El-Nakhel, C.; Pannico, A.; Graziani, G.; Soteriou, G.A.; Giordano, M.; Zarrelli, A.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Genotype-Specific Modulatory Effects of Select Spectral Bandwidths on the Nutritive and Phytochemical Composition of Microgreens. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Murphy, C.J.; Llort, K.F.; Pill, W.G. Factors affecting the growth of microgreen table beet. Int. J. Veg. Sci. 2010, 16, 253–266. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C.; Petropoulos, S.A.; De Pascale, S.; Colla, G. Improving vegetable quality in controlled environments. Sci. Hortic. 2018, 234, 275–289. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y. Towards a new definition of quality for fresh fruits and vegetables. Sci. Hortic. 2018, 234, 463–469. [Google Scholar] [CrossRef]
- Brazaityte, A.; Sakalauskiene, S.; Samuoliene, G.; Jankauskiene, J.; Viršile, A.; Novičkovas, A.; Sirtautas, R.; Miliauskiene, J.; Vaštakaite, V.; Dabašinskas, L.; et al. The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. Food Chem. 2015, 173, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Di Gioia, F.; De Bellis, P.; Mininni, C.; Santamaria, P.; Serio, F. Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. J. Sci. Food Agric. 2017, 97, 1212–1219. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; El-Nakhel, C.; Pannico, A.; Graziani, G.; Soteriou, G.A.; Giordano, M.; Palladino, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Phenolic constitution, phytochemical and macronutrient content in three species of microgreens as modulated by natural fiber and synthetic substrates. Antioxidants 2020, 9, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Nakhel, C.; Pannico, A.; Graziani, G.; Kyriacou, M.C.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Variation in macronutrient content, phytochemical constitution and in vitro antioxidant capacity of green and red butterhead lettuce dictated by different developmental stages of harvest maturity. Antioxidants 2020, 9, 300. [Google Scholar] [CrossRef] [Green Version]
- Ferrón-Carrillo, F.; Guil-Guerrero, J.L.; González-Fernández, M.J.; Lyashenko, S.; Battafarano, F.; da Cunha-Chiamolera, T.P.L.; Urrestarazu, M. LED Enhances Plant Performance and Both Carotenoids and Nitrates Profiles in Lettuce. Plant Foods Hum. Nutr. 2021, 1–9. [Google Scholar] [CrossRef]
- Pinto, E.; Almeida, A.A.; Aguiar, A.A.; Ferreira, I.M.P.L.V.O. Comparison between the mineral profile and nitrate content of microgreens and mature lettuces. J. Food Compos. Anal. 2015, 37, 38–43. [Google Scholar] [CrossRef]
- Borgognone, D.; Rouphael, Y.; Cardarelli, M.; Lucini, L.; Colla, G. Changes in biomass, mineral composition, and quality of cardoon in response to NO3−:Cl− ratio and nitrate deprivation from the nutrient solution. Front. Plant Sci. 2016, 7, 978. [Google Scholar] [CrossRef] [Green Version]
- Gharibzahedi, S.M.T.; Jafari, S.M. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Levander, O.A. Fruit and Vegetable Contributions to Dietary Mineral Intake in Human Health and Disease. HortScience 1990, 25, 1486–1488. [Google Scholar] [CrossRef]
- Xiao, Z.; Codling, E.E.; Luo, Y.; Nou, X.; Lester, G.E.; Wang, Q. Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. J. Food Compos. Anal. 2016, 49, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Neugart, S.; Baldermann, S.; Hanschen, F.S.; Klopsch, R.; Wiesner-Reinhold, M.; Schreiner, M. The intrinsic quality of brassicaceous vegetables: How secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Sci. Hortic. 2018, 233, 460–478. [Google Scholar] [CrossRef]
- Young, A.J.; Lowe, G.M. Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys. 2001, 385, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Kvansakul, J.; Rodriguez-Carmona, M.; Edgar, D.F.; Barker, F.M.; Köpcke, W.; Schalch, W.; Barbur, J.L. Supplementation with the carotenoids lutein or zeaxanthin improves human visual performance. Ophthalmic Physiol. Opt. 2006, 26, 362–371. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente, B.; López-García, G.; Máñez, V.; Alegría, A.; Barberá, R.; Cilla, A. Evaluation of the bioaccessibility of antioxidant bioactive compounds and minerals of four genotypes of Brassicaceae microgreens. Foods 2019, 8, 250. [Google Scholar] [CrossRef] [Green Version]
- Klopsch, R.; Baldermann, S.; Hanschen, F.S.; Voss, A.; Rohn, S.; Schreiner, M.; Neugart, S. Brassica-enriched wheat bread: Unraveling the impact of ontogeny and breadmaking on bioactive secondary plant metabolites of pak choi and kale. Food Chem. 2019, 295, 412–422. [Google Scholar] [CrossRef]
- Sun, J.; Xiao, Z.; Lin, L.Z.; Lester, G.E.; Wang, Q.; Harnly, J.M.; Chen, P. Profiling polyphenols in five brassica species microgreens by UHPLC-PDA-ESI/HRMSn. J. Agric. Food Chem. 2013, 61, 10960–10970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfaifi, M.; Alsayari, A.; Gurusamy, N.; Louis, J.; Elbehairi, S.E.; Venkatesan, K.; Annadurai, S.; Asiri, Y.I.; Shati, A.; Saleh, K.; et al. Analgesic, Anti-Inflammatory, Cytotoxic Activity Screening and UPLC-PDA-ESI-MS Metabolites Determination of Bioactive Fractions of Kleinia pendula. Molecules 2020, 25, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; van Camp, J.; Alasalvar, C.; Ismail, A.B.; et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef] [PubMed]
Fresh Weight | Dry Weight | DM | ||||
---|---|---|---|---|---|---|
(kg m−2) | (g m−2) | (%) | ||||
Species | *** | *** | *** | |||
DBH | *** | n.s. | *** | |||
Species*DBH | n.s. | *** | *** | |||
Lettuce | 2.35 ± 0.06 | b | 106.25 ± 1.39 | b | 4.53 ± 0.08 | c |
Mustard | 2.68 ± 0.07 | a | 162.18 ± 1.38 | a | 6.08 ± 0.13 | b |
Rocket | 1.44 ± 0.05 | c | 100.71 ± 2.27 | c | 7.09 ± 0.4 | a |
0 | 2.33 ± 0.2 | a | 122.28 ± 11.11 | 5.31 ± 0.27 | c | |
6 | 2.2 ± 0.18 | b | 124.03 ± 9.67 | 5.76 ± 0.34 | b | |
12 | 1.94 ± 0.18 | c | 122.83 ± 9 | 6.63 ± 0.55 | a | |
Lettuce, 0 | 2.53 ± 0.04 | 108.74 ± 0.91 | b | 4.3 ± 0.04 | d | |
Lettuce, 6 | 2.38 ± 0.01 | 107.4 ± 1.29 | b | 4.51 ± 0.04 | d | |
Lettuce, 12 | 2.14 ± 0.06 | 102.6 ± 3.23 | b | 4.79 ± 0.07 | d | |
Mustard, 0 | 2.89 ± 0.03 | 165.62 ± 2.04 | a | 5.73 ± 0.12 | c | |
Mustard, 6 | 2.72 ± 0.03 | 162.52 ± 1.2 | a | 5.98 ± 0.02 | c | |
Mustard, 12 | 2.43 ± 0.03 | 158.4 ± 1.99 | a | 6.52 ± 0.11 | b | |
Rocket, 0 | 1.57 ± 0.05 | 92.47 ± 0.36 | c | 5.91 ± 0.21 | c | |
Rocket, 6 | 1.5 ± 0.02 | 102.17 ± 1.38 | b | 6.81 ± 0.01 | b | |
Rocket, 12 | 1.26 ± 0.03 | 107.49 ± 1.42 | b | 8.57 ± 0.11 | a |
L* | a* | b* | Chroma | HUE | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(0–100) | (−60/+60) | (−60/+60) | √(a2 + b2) | (0–360)° | ||||||
Species | *** | *** | *** | *** | *** | |||||
DBH | n.s. | ** | ** | ** | n.s. | |||||
Species*DBH | ** | n.s. | n.s. | * | n.s. | |||||
Lettuce | 45.29 ± 1.76 | a | −8.59 ± 0.24 | b | 28.73 ± 0.74 | a | 29.99 ± 0.78 | a | 106.65 ± 0.18 | b |
Mustard | 31.88 ± 1.15 | c | −6.15 ± 0.26 | a | 21.96 ± 0.42 | c | 22.81 ± 0.46 | b | 105.6 ± 0.46 | b |
Rocket | 37.9 ± 0.63 | b | −8.42 ± 0.1 | b | 24.46 ± 0.36 | b | 13.5 ± 0.15 | c | 109.03 ± 0.29 | a |
0 | 38.47 ± 3.18 | −8.15 ± 0.47 | b | 26.02 ± 1.3 | a | 23.16 ± 2.73 | a | 107.42 ± 0.73 | ||
6 | 39.17 ± 1.91 | −7.78 ± 0.37 | ab | 25.19 ± 0.98 | ab | 22.24 ± 2.4 | a | 107.16 ± 0.54 | ||
12 | 37.44 ± 1.47 | −7.23 ± 0.43 | a | 23.95 ± 0.94 | b | 20.9 ± 2.1 | b | 106.7 ± 0.5 | ||
Lettuce, 0 | 50.17 ± 0.39 | a | −9.29 ± 0.07 | 30.91 ± 0.21 | 32.28 ± 0.22 | a | 106.73 ± 0.1 | |||
Lettuce, 6 | 45.2 ± 2.09 | ab | −8.52 ± 0.31 | 28.78 ± 0.24 | 30.01 ± 0.28 | ab | 106.48 ± 0.52 | |||
Lettuce, 12 | 40.5 ± 3.05 | bc | −7.96 ± 0.37 | 26.51 ± 1.3 | 27.68 ± 1.34 | b | 106.73 ± 0.32 | |||
Mustard, 0 | 28.66 ± 0.7 | d | −6.5 ± 0.72 | 22.82 ± 0.58 | 23.74 ± 0.72 | c | 105.84 ± 1.4 | |||
Mustard, 6 | 33.6 ± 2.33 | cd | −6.35 ± 0.1 | 22.29 ± 0.64 | 23.17 ± 0.63 | c | 105.91 ± 0.38 | |||
Mustard, 12 | 33.39 ± 1.44 | cd | −5.59 ± 0.28 | 20.78 ± 0.49 | 21.52 ± 0.53 | c | 105.05 ± 0.47 | |||
Rocket, 0 | 36.56 ± 1.52 | cd | −8.67 ± 0.13 | 24.32 ± 1.16 | 13.47 ± 0.47 | d | 109.68 ± 0.58 | |||
Rocket, 6 | 38.71 ± 0.32 | bc | −8.48 ± 0.17 | 24.52 ± 0.3 | 13.53 ± 0.11 | d | 109.1 ± 0.46 | |||
Rocket, 12 | 38.44 ± 1.01 | bc | −8.12 ± 0.06 | 24.55 ± 0.38 | 13.49 ± 0.16 | d | 108.32 ± 0.16 |
Source of Variance | Nitrate | P | K | Ca | Mg | S | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg kg−1 FW) | (mg g−1 DW) | (mg g−1 DW) | (mg g−1 DW) | (mg g−1 DW) | (mg g−1 DW) | |||||||
Species | *** | *** | *** | *** | *** | *** | ||||||
DBH | *** | *** | *** | n.s. | n.s. | *** | ||||||
Species*DBH | *** | n.s. | n.s. | * | * | *** | ||||||
Lettuce | 313.36 ± 53.52 | b | 3.55 ± 0.13 | c | 97.68 ± 1.11 | a | 14.66 ± 0.39 | c | 7.75 ± 0.13 | b | 3.01 ± 0.16 | c |
Mustard | 386.81 ± 82.58 | b | 4.97 ± 0.14 | a | 69.57 ± 1.47 | c | 21.32 ± 0.46 | a | 9.90 ± 0.20 | a | 4.39 ± 0.37 | a |
Rocket | 1111.22 ± 341.57 | a | 4.34 ± 0.21 | b | 77.78 ± 1.11 | b | 19.26 ± 0.33 | b | 7.91 ± 0.18 | b | 4.08 ± 0.45 | b |
0 | 1208.73 ± 313.05 | a | 4.86 ± 0.23 | a | 84.35 ± 4.34 | a | 18.48 ± 0.85 | 8.35 ± 0.28 | 4.99 ± 0.38 | a | ||
6 | 439.25 ± 56.77 | b | 4.15 ± 0.19 | b | 82.2 ± 4.21 | a | 18.42 ± 1.00 | 8.43 ± 0.38 | 3.66 ± 0.17 | b | ||
12 | 163.40 ± 19.30 | c | 3.86 ± 0.22 | c | 78.47 ± 4.26 | b | 18.34 ± 1.28 | 8.79 ± 0.46 | 2.84 ± 0.14 | c | ||
Lettuce, 0 | 502.98 ± 9.23 | bcd | 3.99 ± 0.06 | 101.24 ± 1.54 | 15.22 ± 0.48 | d | 7.99 ± 0.02 | c | 3.48 ± 0.05 | bcd | ||
Lettuce, 6 | 300.83 ± 17.81 | de | 3.54 ± 0.06 | 97.41 ± 0.69 | 14.69 ± 0.40 | d | 7.76 ± 0.32 | c | 3.13 ± 0.06 | cde | ||
Lettuce, 12 | 136.27 ± 15.18 | e | 3.12 ± 0.09 | 94.39 ± 0.5 | 14.07 ± 1.03 | d | 7.52 ± 0.19 | c | 2.42 ± 0.04 | e | ||
Mustard, 0 | 686.13 ± 18.91 | b | 5.45 ± 0.14 | 74.19 ± 1.17 | 20.15 ± 0.63 | abc | 9.38 ± 0.29 | ab | 5.72 ± 0.09 | a | ||
Mustard, 6 | 356.09 ± 8.58 | cde | 4.84 ± 0.15 | 68.7 ± 1.97 | 21.21 ± 0.65 | ab | 9.84 ± 0.18 | a | 4.17 ± 0.25 | b | ||
Mustard, 12 | 118.2 ± 7.44 | e | 4.63 ± 0.08 | 65.81 ± 1.64 | 22.59 ± 0.41 | a | 10.49 ± 0.21 | a | 3.28 ± 0.16 | cd | ||
Rocket, 0 | 2437.09 ± 188.52 | a | 5.14 ± 0.18 | 77.63 ± 2.29 | 20.06 ± 0.37 | abc | 7.68 ± 0.18 | c | 5.76 ± 0.22 | a | ||
Rocket, 6 | 660.84 ± 26.44 | bc | 4.07 ± 0.05 | 80.5 ± 0.67 | 19.36 ± 0.30 | bc | 7.69 ± 0.34 | c | 3.67 ± 0.15 | bc | ||
Rocket, 12 | 235.74 ± 13.41 | de | 3.82 ± 0.12 | 75.21 ± 1.49 | 18.35 ± 0.55 | c | 8.35 ± 0.27 | bc | 2.81 ± 0.14 | de |
Source of Variance | Lutein | β-Carotene | Total Carotenoids | |||
---|---|---|---|---|---|---|
(mg kg−1 DW) | (mg kg−1 DW) | (mg kg−1 DW) | ||||
Species | *** | *** | *** | |||
DBH | n.s. | *** | *** | |||
Species*DBH | *** | *** | *** | |||
Lettuce | 303.05 ± 3.51 | b | 442.48 ± 5.31 | a | 745.53 ± 7.28 | b |
Mustard | 395.71 ± 20.31 | a | 263.24 ± 16.94 | b | 658.96 ± 34.23 | c |
Rocket | 405.62 ± 21.98 | a | 458.42 ± 38 | a | 864.04 ± 57.8 | a |
0 | 381.7 ± 24.42 | 447.93 ± 41.59 | a | 829.63 ± 54.6 | a | |
6 | 354.42 ± 20.89 | 363.7 ± 41.95 | b | 718.12 ± 53.95 | b | |
12 | 368.26 ± 25.09 | 352.51 ± 22.94 | b | 720.77 ± 17.68 | b | |
Lettuce, 0 | 303.11 ± 4.34 | d | 459.55 ± 6.08 | b | 762.66 ± 4.24 | c |
Lettuce, 6 | 297.85 ± 5.69 | d | 426.91 ± 2.65 | b | 724.76 ± 8.09 | cd |
Lettuce, 12 | 308.19 ± 8.37 | d | 440.97 ± 5.17 | b | 749.16 ± 13.54 | c |
Mustard, 0 | 390.56 ± 12.81 | bc | 299.86 ± 13.31 | c | 690.42 ± 5.48 | cd |
Mustard, 6 | 330.65 ± 4.28 | cd | 197.74 ± 3.97 | d | 528.39 ± 3.38 | e |
Mustard, 12 | 465.93 ± 13.21 | a | 292.13 ± 4 | c | 758.06 ± 9.39 | c |
Rocket, 0 | 451.44 ± 37.62 | ab | 584.38 ± 14.09 | a | 1035.82 ± 50.3 | a |
Rocket, 6 | 434.75 ± 8.69 | ab | 466.45 ± 6.79 | b | 901.2 ± 8.06 | b |
Rocket, 12 | 330.67 ± 5.13 | cd | 324.42 ± 11.95 | c | 655.1 ± 15.06 | d |
Flavonol Glycosides | |||||||||||||||||||||||
Source of Variance | Kaempferol-3-Hydroxyferuloyl-Sophorotrioside-7-Glucoside | Quercetin-3-Sophoroside-7-Glucoside | Kaempferol-3-Glucoside | Kaempferol 3-Diglucoside | Kaempferol-3-Sinapoyl-Sophoroside-7-Glucoside | Kaempferol-3-Sinapoyl-Sophorotrioside-7-Glucoside | Quercetin-3-Sinapoyl Triglucoside | Quercetin-3-O-Rutinoside (Rutin) | Quercetin-3-Glucoside | Coumaroyl-Diglucoside | Isorhamnetin-3-Gentiobioside | Total Flavonol Glycosides | |||||||||||
(μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | ||||||||||||
Species | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | ||||||||||||
DBH | n.s. | n.s. | n.s. | n.s. | * | n.s. | *** | n.s. | *** | *** | ** | *** | |||||||||||
Species*DBH | n.s. | *** | n.s. | *** | n.s. | *** | *** | *** | ** | n.s. | *** | ||||||||||||
Lettuce | n.d. | n.d. | 5.58 ± 0.13 | a | 11.15 ± 0.67 | b | n.d. | n.d. | n.d. | 16.23 ± 0.89 | b | 124.7 ± 10.36 | a | 0.63 ± 0.06 | b | n.d. | 158.29 ± 11.56 | c | |||||
Mustard | 46.3 ± 0.78 | a | 10.53 ± 0.56 | b | 1 ± 0.09 | b | 18.57 ± 0.39 | a | 78.46 ± 1.03 | a | 79.96 ± 1.85 | 105.1 ± 8.74 | b | 24.03 ± 0.47 | a | 0.55 ± 0.08 | b | 1.54 ± 0.06 | a | 25.64 ± 1.97 | a | 391.68 ± 11.54 | a |
Rocket | 0.19 ± 0.02 | b | 13.8 ± 0.56 | a | n.d. | 6.91 ± 0.36 | c | 0.65 ± 0.05 | b | n.d. | 321.21 ± 17.24 | a | 13.67 ± 0.85 | c | 3.04 ± 0.21 | b | 1.69 ± 0.14 | a | 8.76 ± 0.41 | b | 369.92 ± 18.33 | b | |
0 | 22.86 ± 10.17 | 12.4 ± 1.59 | 3.28 ± 1.03 | 12.01 ± 1.92 | 38.86 ± 17.07 | a | 74.7 ± 1.84 | 216.18 ± 64.46 | b | 17.86 ± 1.97 | 29.91 ± 14.36 | c | 1.08 ± 0.13 | b | 15.67 ± 3.57 | b | 291.93 ± 44.52 | b | |||||
6 | 22.91 ± 10.15 | 12.27 ± 0.47 | 3.21 ± 0.98 | 12.14 ± 1.6 | 41.16 ± 18.09 | a | 80.04 ± 2.13 | 237.86 ± 50.43 | a | 18 ± 1.29 | 44.88 ± 21.44 | b | 1.2 ± 0.19 | b | 21 ± 5.11 | a | 328.51 ± 42.17 | a | |||||
12 | 23.96 ± 10.66 | 11.83 ± 0.55 | 3.39 ± 1.09 | 12.48 ± 1.78 | 38.64 ± 17.07 | a | 85.13 ± 2.39 | 185.42 ± 30.43 | c | 18.08 ± 1.86 | 53.5 ± 25.78 | a | 1.58 ± 0.21 | a | 14.92 ± 3.04 | b | 299.45 ± 30.08 | b | |||||
Lettuce, 0 | n.d. | n.d. | 5.57 ± 0.24 | a | 9.83 ± 0.66 | c | n.d. | n.d. | n.d. | 14.52 ± 0.61 | de | 87.16 ± 4.15 | c | 0.59 ± 0.02 | d | n.d. | 117.66 ± 2.93 | f | |||||
Lettuce, 6 | n.d. | n.d. | 5.37 ± 0.18 | a | 9.99 ± 0.09 | c | n.d. | n.d. | n.d. | 14.5 ± 0.18 | de | 130.42 ± 5.21 | b | 0.48 ± 0.12 | d | n.d. | 160.77 ± 5.01 | e | |||||
Lettuce, 12 | n.d. | n.d. | 5.81 ± 0.24 | a | 13.63 ± 0.31 | b | n.d. | n.d. | n.d. | 19.67 ± 0.42 | c | 156.52 ± 3.93 | a | 0.81 ± 0.08 | d | n.d. | 196.44 ± 3.64 | d | |||||
Mustard, 0 | 45.58 ± 1.04 | 8.88 ± 0.56 | c | 1 ± 0.14 | b | 19.4 ± 0.64 | a | 77.01 ± 1.14 | 74.7 ± 1.84 | 72.35 ± 6.17 | d | 25.57 ± 0.72 | a | 0.3 ± 0.01 | d | 1.32 ± 0.06 | c | 23.57 ± 1.05 | b | 349.68 ± 8.18 | b | ||
Mustard, 6 | 45.56 ± 1.59 | 11.78 ± 0.85 | b | 1.06 ± 0.25 | b | 18.36 ± 0.88 | a | 81.57 ± 1.93 | 80.04 ± 2.13 | 125.37 ± 7.24 | c | 22.97 ± 0.56 | b | 0.77 ± 0.13 | d | 1.59 ± 0.03 | bc | 31.83 ± 3.64 | a | 420.9 ± 11.28 | a | ||
Mustard, 12 | 47.76 ± 1.45 | 10.92 ± 0.69 | bc | 0.96 ± 0.07 | b | 17.95 ± 0.34 | a | 76.8 ± 0.62 | 85.13 ± 2.39 | 117.57 ± 2.67 | c | 23.56 ± 0.12 | ab | 0.57 ± 0.07 | d | 1.72 ± 0.07 | b | 21.51 ± 1.63 | b | 404.47 ± 3.49 | a | ||
Rocket, 0 | 0.14 ± 0.02 | 15.91 ± 0.14 | a | n.d. | 6.81 ± 0.44 | d | 0.71 ± 0.05 | n.d. | 360 ± 7.26 | a | 13.5 ± 0.95 | ef | 2.28 ± 0.09 | d | 1.34 ± 0.07 | bc | 7.77 ± 0.49 | c | 408.46 ± 8.09 | a | |||
Rocket, 6 | 0.26 ± 0.03 | 12.75 ± 0.35 | b | n.d. | 8.07 ± 0.19 | cd | 0.75 ± 0.09 | n.d. | 350.36 ± 2.98 | a | 16.52 ± 0.24 | d | 3.44 ± 0.12 | d | 1.53 ± 0.13 | bc | 10.17 ± 0.29 | c | 403.85 ± 2.99 | a | |||
Rocket, 12 | 0.16 ± 0.02 | 12.74 ± 0.48 | b | n.d. | 5.87 ± 0.36 | d | 0.48 ± 0.01 | n.d. | 253.26 ± 4.53 | b | 10.99 ± 0.31 | f | 3.4 ± 0.23 | d | 2.21 ± 0.07 | a | 8.33 ± 0.37 | c | 297.45 ± 3.37 | c | |||
Hydroxycinnamic acids and derivatives | Flavone glycosides | ||||||||||||||||||||||
Source of variance | Synapoyl-hexose | Ferulic acid | Trisinapoyl-gentiobiose | Disinapoyl-gentiobiose | Caffeoyl quinic acid | Total hydroxycinnamic acids and derivatives | Apigenin-7-O-glucoside | Luteolin-7-O-glucoside | Total flavone glycosides | Total polyphenols | |||||||||||||
(μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | ||||||||||||||
Species | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |||||||||||||
DBH | *** | *** | *** | n.s. | *** | ** | n.s. | n.s. | n.s. | *** | |||||||||||||
Species*DBH | *** | *** | *** | n.s. | *** | *** | n.s. | n.s. | n.s. | *** | |||||||||||||
Lettuce | 5.35 ± 0.33 | c | 2.5 ± 0.19 | b | n.d. | n.d. | 1055.3 ± 31.9 | a | 1063.15 ± 32.13 | a | n.d. | 16.51 ± 0.36 | b | 16.51 ± 0.36 | b | 1237.95 ± 39.5 | a | ||||||
Mustard | 96.86 ± 2.29 | b | 55.25 ± 2.81 | a | 23.37 ± 0.41 | b | 51.01 ± 1.16 | b | 0.48 ± 0.04 | b | 226.98 ± 2.06 | c | 30.97 ± 1.92 | a | 65.87 ± 5.01 | a | 96.84 ± 5.63 | a | 715.5 ± 10.83 | c | |||
Rocket | 557.84 ± 31.16 | a | 2.46 ± 0.12 | b | 43.18 ± 3.71 | a | 75.62 ± 1.75 | a | 1.69 ± 0.37 | b | 680.78 ± 34.68 | b | 2.32 ± 0.17 | b | n.d. | 2.32 ± 0.17 | c | 1053.02 ± 50.89 | b | ||||
0 | 252.42 ± 103.5 | a | 23.2 ± 10.14 | a | 38.5 ± 7.16 | a | 63.91 ± 6.16 | 316.55 ± 158.08 | b | 660.44 ± 110.91 | a | 18.35 ± 7.54 | 42.32 ± 11.58 | 40.45 ± 15.83 | a | 992.83 ± 80.41 | b | ||||||
6 | 220.44 ± 85.49 | b | 20.62 ± 9.08 | b | 33.8 ± 5.06 | a | 61.49 ± 4.72 | 384.14 ± 191.87 | a | 688.72 ± 134.57 | a | 14.68 ± 5.83 | 39.56 ± 12.58 | 36.16 ± 14.56 | a | 1053.38 ± 86.86 | a | ||||||
12 | 187.19 ± 67.9 | c | 16.4 ± 7.2 | c | 27.53 ± 1.8 | b | 64.54 ± 6.34 | 356.79 ± 177.63 | a | 621.75 ± 123.91 | b | 16.89 ± 6.31 | 41.7 ± 11.53 | 39.06 ± 14.75 | a | 960.26 ± 85.1 | b | ||||||
Lettuce,0 | 4.3 ± 0.19 | e | 3.11 ± 0.05 | d | n.d. | n.d. | 948.58 ± 16.38 | c | 955.99 ± 16.23 | b | n.d. | 16.46 ± 0.69 | 16.46 ± 0.69 | b | 1090.12 ± 14.6 | c | |||||||
Lettuce,6 | 5.5 ± 0.43 | e | 2.53 ± 0.1 | d | n.d. | n.d. | 1150.67 ± 32.89 | a | 1158.69 ± 32.69 | a | n.d. | 15.93 ± 0.51 | 15.93 ± 0.51 | b | 1335.39 ± 32.59 | a | |||||||
Lettuce,12 | 6.24 ± 0.19 | e | 1.87 ± 0.16 | d | n.d. | n.d. | 1066.65 ± 26.1 | b | 1074.77 ± 26.16 | a | n.d. | 17.13 ± 0.71 | 17.13 ± 0.71 | b | 1288.34 ± 22.52 | ab | |||||||
Mustard,0 | 90.0 ± 2 | d | 63.75 ± 0.89 | a | 22.74 ± 0.42 | c | 50.53 ± 3.11 | 0.39 ± 0.03 | d | 227.41 ± 4.03 | f | 34.78 ± 3.77 | 68.17 ± 1.19 | 102.95 ± 4.96 | a | 680.04 ± 8.94 | e | ||||||
Mustard,6 | 97.7 ± 2.84 | d | 56.87 ± 1.79 | b | 22.66 ± 0.67 | c | 51.42 ± 1.8 | 0.45 ± 0.03 | d | 229.1 ± 4.26 | f | 27.34 ± 3.13 | 63.18 ± 15.26 | 90.51 ± 16.67 | a | 740.51 ± 14.47 | e | ||||||
Mustard,12 | 102.9 ± 2.96 | d | 45.13 ± 1.53 | c | 24.72 ± 0.24 | c | 51.07 ± 1.71 | 0.61 ± 0.01 | d | 224.43 ± 3.28 | f | 30.78 ± 2.5 | 66.26 ± 7.81 | 97.04 ± 6.29 | a | 725.95 ± 11.04 | e | ||||||
Rocket,0 | 662.97 ± 17.56 | a | 2.75 ± 0.15 | d | 54.27 ± 2.79 | a | 77.28 ± 1.03 | 0.67 ± 0.03 | d | 797.94 ± 20.9 | c | 1.93 ± 0.03 | n.d. | 1.93 ± 0.03 | b | 1208.32 ± 20.66 | b | ||||||
Rocket,6 | 558.13 ± 5.98 | b | 2.45 ± 0.19 | d | 44.93 ± 1.97 | b | 71.57 ± 2.55 | 1.29 ± 0.09 | d | 678.37 ± 9.58 | d | 2.03 ± 0.04 | n.d. | 2.03 ± 0.04 | b | 1084.25 ± 9.16 | c | ||||||
Rocket,12 | 452.42 ± 14.93 | c | 2.18 ± 0.14 | d | 30.34 ± 2.86 | c | 78 ± 4.08 | 3.09 ± 0.21 | d | 566.03 ± 21.35 | e | 2.99 ± 0.09 | n.d. | 2.99 ± 0.09 | b | 866.48 ± 24.81 | d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriacou, M.C.; El-Nakhel, C.; Soteriou, G.A.; Graziani, G.; Kyratzis, A.; Antoniou, C.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Preharvest Nutrient Deprivation Reconfigures Nitrate, Mineral, and Phytochemical Content of Microgreens. Foods 2021, 10, 1333. https://doi.org/10.3390/foods10061333
Kyriacou MC, El-Nakhel C, Soteriou GA, Graziani G, Kyratzis A, Antoniou C, Ritieni A, De Pascale S, Rouphael Y. Preharvest Nutrient Deprivation Reconfigures Nitrate, Mineral, and Phytochemical Content of Microgreens. Foods. 2021; 10(6):1333. https://doi.org/10.3390/foods10061333
Chicago/Turabian StyleKyriacou, Marios C., Christophe El-Nakhel, Georgios A. Soteriou, Giulia Graziani, Angelos Kyratzis, Chrystalla Antoniou, Alberto Ritieni, Stefania De Pascale, and Youssef Rouphael. 2021. "Preharvest Nutrient Deprivation Reconfigures Nitrate, Mineral, and Phytochemical Content of Microgreens" Foods 10, no. 6: 1333. https://doi.org/10.3390/foods10061333
APA StyleKyriacou, M. C., El-Nakhel, C., Soteriou, G. A., Graziani, G., Kyratzis, A., Antoniou, C., Ritieni, A., De Pascale, S., & Rouphael, Y. (2021). Preharvest Nutrient Deprivation Reconfigures Nitrate, Mineral, and Phytochemical Content of Microgreens. Foods, 10(6), 1333. https://doi.org/10.3390/foods10061333