Ontogenetic Variation in the Mineral, Phytochemical and Yield Attributes of Brassicaceous Microgreens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microgreen Genotypes and Growth Chamber Conditions
2.2. Canopy Colorimetric Measurements, Phenological Harvest Stage and Sampling
2.3. Chlorophyll, Total Ascorbic Acid and Hydrophilic Antioxidant Capacity
2.4. Analysis of Macro- and Micro-Minerals by ICP-OES
2.5. Analysis of Carotenoids by HPLC-DAD
2.6. Analysis of Anthocyanins and Polyphenols by UHPLC-Q-Orbitrap HRMS
2.7. Analysis of Volatile Organic Compounds by SPME-GC/MS
2.8. Statistical Analysis
3. Results
3.1. Yield, Dry Matter and Colorimetric Components
3.2. Mineral Composition
3.3. Antioxidant Capacity, Ascorbic Acid, Chlorophyll, Lutein and β-Carotene
3.4. Volatile Aromatic Compounds
3.5. Anthocyanins
3.6. Polyphenols
4. Discussion
4.1. Yield Characteristics
4.2. Mineral Composition
4.3. Antioxidant Capacity
4.4. Volatile Organic Compounds (VOCs)
4.5. Anthocyanins
4.6. Polyphenols
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Xiao, Z.; Codling, E.E.; Luo, Y.; Nou, X.; Lester, G.E.; Wang, Q. Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. J. Food Compos. Anal. 2016, 49, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Kyriacou, M.C.; El-Nakhel, C.; Graziani, G.; Pannico, A.; Soteriou, G.A.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem. 2019, 277, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef] [PubMed]
- Brazaitytė, A.; Sakalauskiené, S.; Samuoliené, G.; Jankauskienė, J.; Viršilė, A.; Novičkovas, A.; Sirtautas, R.; Miliauskienė, J.; Vaštakaitė, V.; Dabašinskas, L. The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. Food Chem. 2015, 173, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, M.C.; Niklas, A.; Toscano, S.; Picchi, V.; Romano, D.; Lo Scalzo, R.; Branca, F. Morphometric characteristics, polyphenols and ascorbic acid variation in Brassica oleracea L. novel foods: Sprouts, microgreens and baby leaves. Agronomy 2020, 10, 782. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; El-Nakhel, C.; Pannico, A.; Graziani, G.; Soteriou, G.A.; Giordano, M.; Palladino, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Phenolic Constitution, Phytochemical and Macronutrient Content in Three Species of Microgreens as Modulated by Natural Fiber and Synthetic Substrates. Antioxidants 2020, 9, 252. [Google Scholar] [CrossRef] [Green Version]
- Di Gioia, F.; Santamaria, P. Microgreens: Novel Fresh and Functional Food to Explore All the Value of Biodiversity; ECO-logica: Bari, Italy, 2015. [Google Scholar]
- Sun, J.; Kou, L.; Geng, P.; Huang, H.; Yang, T.; Luo, Y.; Chen, P. Metabolomic assessment reveals an elevated level of glucosinolate content in CaCl2 treated broccoli microgreens. J. Agric. Food Chem. 2015, 63, 1863–1868. [Google Scholar] [CrossRef] [PubMed]
- Kopsell, D.A.; Sams, C.E. Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to shortduration blue light from light emitting diodes. J. Am. Soc. Hortic. Sci. 2013, 138, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Marchioni, I.; Martinelli, M.; Ascrizzi, R.; Gabbrielli, C.; Flamini, G.; Pistelli, L.; Pistelli, L. Small Functional Foods: Comparative Phytochemical and Nutritional Analyses of Five Microgreens of the Brassicaceae Family. Foods 2021, 10, 427. [Google Scholar] [CrossRef] [PubMed]
- Di Gioia, F.; De Bellis, P.; Mininni, C.; Santamaria, P.; Serio, F. Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. J. Sci. Food Agric. 2017, 97, 1212–1219. [Google Scholar] [CrossRef]
- Hu, L.; Yu, J.; Liao, W.; Zhang, G.; Xie, J.; Lv, J.; Xiao, X.; Yang, B.; Zhou, R.; Bu, R. Moderate ammonium: Nitrate alleviates low light intensity stress in mini Chinese cabbage seedling by regulating root architecture and photosynthesis. Sci. Hortic. 2015, 186, 143–153. [Google Scholar] [CrossRef]
- Murphy, C.J.; Llort, K.F.; Pill, W.G. Factors affecting the growth of microgreen table beet. Int. J. Veg. Sci. 2010, 16, 253–266. [Google Scholar] [CrossRef]
- Przybysz, A.; Wrochna, M.; Małecka-Przybysz, M.; Gawronska, H.; Gawronski, S.W. The effects of Mg enrichment of vegetable sprouts on Mg concentration, yield and ROS generation. J. Sci. Food Agric. 2015, 96, 3469–3476. [Google Scholar] [CrossRef]
- Przybysz, A.; Wrochna, M.; Małecka-Przybysz, M.; Gawronska, H.; Gawronski, S.W. Vegetable sprouts enriched with iron: Effects on yield, ROS generation and antioxidative system. Sci. Hortic. 2016, 203, 110–117. [Google Scholar] [CrossRef]
- Renna, M.; Di Gioia, F.; Leoni, B.; Santamaria, P. Due Espressioni Dell’agrobiodiversità in Orticoltura: Germogli e Micro Ortaggi. Italus Hortus 2016, 23, 31–44. Available online: https://www.soihs.it/ItalusHortus/Review/Review%2028/03%20Renna.pdf (accessed on 15 January 2020).
- Alrifai, O.; Hao, X.; Marcone, M.F.; Tsao, R. Current review of the modulatory effects of LED lights on photosynthesis of secondary metabolites and future perspectives of microgreen vegetables. J. Agric. Food Chem. 2019, 67, 6075–6090. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Soteriou, G.A.; Colla, G.; Rouphael, Y. The occurrence of nitrate and nitrite in Mediterranean fresh salad vegetables and its modulation by preharvest practices and postharvest conditions. Food Chem. 2019, 285, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Brazaitytė, A.; Miliauskienė, J.; Vaštakaitė-Kairienė, V.; Sutulienė, R.; Laužikė, K.; Duchovskis, P.; Małek, S. Effect of Different Ratios of Blue and Red LED Light on Brassicaceae Microgreens under a Controlled Environment. Plants 2021, 10, 801. [Google Scholar] [CrossRef]
- Pinto, E.; Almeida, A.A.; Aguiar, A.A.; Ferreira, I.M.P.L.V.O. Comparison between the mineral profile and nitrate content of microgreens and mature lettuces. J. Food Comp. Anal. 2015, 37, 38–43. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Pannico, A.; Graziani, G.; Kyriacou, M.C.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Variation in macronutrient content, phytochemical constitution and in vitro antioxidant capacity of green and red butterhead lettuce dictated by different developmental stages of harvest maturity. Antioxidants 2020, 9, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klopsch, R.; Baldermann, S.; Hanschen, F.S.; Voss, A.; Rohn, S.; Schreiner, M.; Neugart, S. Brassica-enriched wheat bread: Unraveling the impact of ontogeny and breadmaking on bioactive secondary plant metabolites of pak choi and kale. Food Chem. 2019, 295, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Waterland, N.L.; Moon, Y.; Tou, J.C.; Kim, M.J.; Pena-Yewtukhiw, E.M.; Park, S. Mineral content differs among microgreen, baby leaf, and adult stages in three cultivars of Kale. HortScience 2017, 52, 566–571. [Google Scholar] [CrossRef] [Green Version]
- de la Fuente, B.; López-García, G.; Máñez, V.; Alegría, A.; Barberá, R.; Cilla, A. Evaluation of the bioaccessibility of antioxidant bioactive compounds and minerals of four genotypes of Brassicaceae microgreens. Foods 2019, 8, 250. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Luo, Y.; Lester, G.E.; Kou, L.; Yang, T.; Wang, Q. Postharvest quality and shelf life of radish microgreens as impacted by storage temperature, packaging film, and chlorine wash treatment. Food Sci. Technol. 2014, 5, 551–558. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y. Towards a new definition of quality for fresh fruits and vegetables. Sci. Hortic. 2018, 234, 463–469. [Google Scholar] [CrossRef]
- Pannico, A.; Graziani, G.; El-Nakhel, C.; Giordano, M.; Ritieni, A.; Kyriacou, M.C.; Rouphael, Y. Nutritional stress suppresses nitrate content and positively impacts ascorbic acid concentration and phenolic acids profile of lettuce microgreens. Italus Hortus 2020, 27, 41–52. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Kampfenkel, K.; Van Montagu, M.; Inzé, D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 1995, 225, 165–167. [Google Scholar] [CrossRef]
- Fogliano, V.; Verde, V.; Randazzo, G.; Ritieni, A. Methods for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem. 1999, 47, 1035–1040. [Google Scholar] [CrossRef]
- Volpe, M.G.; Nazzaro, M.; Di Stasio, M.; Siano, F.; Coppola, R.; De Marco, A. Content of micronutrients, mineral and trace elements in some Mediterranean spontaneous edible herbs. Chem. Cent. J. 2015, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Nakhel, C.; Pannico, A.; Graziani, G.; Kyriacou, M.C.; Gaspari, A.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Nutrient supplementation configures the bioactive profile and production characteristics of three Brassica L. Microgreens species grown in peat-based media. Agronomy 2021, 11, 346. [Google Scholar] [CrossRef]
- Huang, B.; Lei, Y.; Tang, Y.; Zhang, J.; Qin, L.; Liu, J. Comparison of HS-SPME with hydrodistillation and SFE for the analysis of the volatile compounds of Zisu and Baisu, two varietal species of Perilla frutescens of Chinese origin. Food Chem. 2011, 125, 268–275. [Google Scholar] [CrossRef]
- Klimankova, E.; Holadová, K.; Hajšlová, J.; Čajka, T.; Poustka, J.; Koudela, M. Aroma profiles of five basil (Ocimum basilicum L.) cultivars grown under conventional and organic conditions. Food Chem. 2008, 107, 464–472. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Jafari, S.M. The importance of minerals in human nutrition bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Levander, O.A. Fruit and vegetable contributions to dietary mineral intake in human health and disease. HortScience 1990, 25, 1486–1488. [Google Scholar] [CrossRef]
- Liang, J.; Han, B.Z.; Nout, M.R.; Hamer, R.J. Effect of soaking and phytase treatment on phytic acid, calcium, iron and zinc in rice fractions. Food Chem. 2009, 115, 789–794. [Google Scholar] [CrossRef]
- Choi, M.K.; Lee, W.Y.; Park, J.D. Relation among mineral (Ca, P, Fe, Na, K, Zn) intakes, blood pressure, and blood lipids in Korean adults. Korean J. Nutr. 2005, 8, 827–835. [Google Scholar]
- Nicolle, C.; Carnat, A.; Fraisse, D.; Lamaison, J.L.; Rock, E.; Michel, H.; Amoureux, P.; Remesy, C. Characterisation and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium). J. Sci. Food Agric. 2004, 84, 2061–2069. [Google Scholar] [CrossRef]
- Brazaityte, A.; Jankauskiene, J.; Novickovas, A. The effects of supplementary short-term red LEDs lighting on nutritional quality of Perilla frutescens L. microgreens. Rural Dev. 2013, 2013, 54. [Google Scholar]
- Young, A.J.; Lowe, G.M. Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys. 2001, 385, 20–27. [Google Scholar] [CrossRef]
- Kvansakul, J.; Rodriguez-Carmona, M.; Edgar, D.F.; Barker, F.M.; Kopcke, W.; Schalch, W.; Barbur, J.L. Supplementation with the carotenoids lutein or zeaxanthin improves human visual performance. Ophthalmic Physiol. Opt. 2006, 26, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Heinze, M.; Hanschen, F.S.; Wiesner-Reinhold, M.; Baldermann, S.; Gräfe, J.; Schreiner, M.; Neugart, S. Effects of developmental stages and reduced UVB and low UV conditions on plant secondary metabolite profiles in Pak Choi (Brassica rapa subsp. chinensis). J. Agric. Food Chem. 2018, 66, 1678–1692. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S. Significance of genetic, environmental, and pre-and postharvest factors affecting carotenoid contents in crops: A review. J. Agric. Food Chem. 2018, 66, 5310–5324. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.E.; Park, E.; Saftner, R.A.; Luo, Y.; Wang, Q. Evaluation and correlation of sensory attributes and chemical compositions of emerging fresh produce: Microgreens. Postharvest Biol. Technol. 2015, 110, 140–148. [Google Scholar] [CrossRef]
- Ebert, A.W.; Chang, C.H.; Yan, M.R.; Yang, R.Y. Nutritional composition of mungbean and soybean sprouts compared to their adult growth stage. Food Chem. 2017, 237, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N.; Wheeler, G.L. Ascorbic acid in plants: Biosynthesis and function. Crit. Rev. Biochem. Mol. Biol. 2000, 35, 291–314. [Google Scholar] [CrossRef] [PubMed]
- Chaves-Silva, S.; dos Santos, A.L.; Chalfun-Júnior, A.; Zhao, J.; Peres, L.E.P.; Benedito, V.A. Understanding the genetic regulation of anthocyanin biosynthesis in plants—Tools for breeding purple varieties of fruits and vegetables. Phytochemistry 2018, 153, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Di Gioia, F.; Tzortzakis, N.; Rouphael, Y.; Kyriacou, M.C.; Sampaio, S.L.; Ferreira, I.C.; Petropoulos, S.A. Grown to be blue—antioxidant properties and health effects of colored vegetables. Part II: Leafy, Fruit, and Other Vegetables. Antioxidants 2020, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Giusti, M.M. Anthocyanins: Natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef]
- Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Finglas, P. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Harbaum, B.; Hubbermann, E.M.; Wolff, C.; Herges, R.; Zhu, Z.; Schwarz, K. Identification of flavonoids and hydroxycinnamic acids in pak choi varieties (Brassica campestris L. ssp. chinensis var. communis) by HPLC-ESI-MSn and NMR and their quantification by HPLC-DAD. J. Agric. Food Chem. 2007, 55, 8251–8260. [Google Scholar] [CrossRef] [PubMed]
- Olsen, H.; Aaby, K.; Borge, G.I. Characterization and quantification of flavonoids and hydroxycinnamic acids in curly kale (Brassica oleracea L. convar. acephala var. sabellica) by HPLC-DADESI-MSn. J. Agric. Food Chem. 2009, 57, 2816–2825. [Google Scholar] [CrossRef]
- Sun, J.; Xiao, Z.; Lin, L.Z.; Lester, G.E.; Wang, Q.; Harnly, J.M.; Chen, P. Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMSn. J. Agric. Food Chem. 2013, 61, 10960–10970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duenas, M.; Hernandez, T.; Estrella, I.; Farnandez, D. Germination as process to increase the polyphenol content and antioxidant activity of lupin seeds. Food Chem. 2009, 117, 599–607. [Google Scholar] [CrossRef]
Source of Variance | Yield | Dry Weight | Dry Matter | Chroma |
---|---|---|---|---|
(kg FW m−2) | (g m−2) | (%) | ||
Genotype (M) | ||||
Komatsuna | 2.65 ± 0.14 a | 157 ± 14 a | 5.89 ± 0.21 b | 4.61 ± 0.33 c |
Mibuna | 2.63 ± 0.16 a | 165 ± 12 a | 6.27 ± 0.09 a | 23.58 ± 0.94 b |
Mizuna | 2.19 ± 0.28 c | 120 ± 20 c | 5.35 ± 0.24 c | 33.29 ± 1.05 a |
Pak Choi | 2.45 ± 0.16 b | 136 ± 11 b | 5.54 ± 0.12 c | 4.26 ± 0.79 c |
p-value | <0.001 | <0.001 | <0.001 | <0.001 |
Growth stage (S) | ||||
S1 | 2.07 ± 0.10 b | 113 ± 7.5 b | 5.43 ± 0.15 b | 14.74 ± 3.61 |
S2 | 2.89 ± 0.03 a | 176 ± 4.6 a | 6.09 ± 0.09 a | 18.13 ± 3.92 |
p-value | <0.001 | <0.001 | <0.001 | 0.051 |
M × S | ||||
Komatsuna × S1 | 2.34 ± 0.05 b | 127 ± 4.5 ef | 5.42 ± 0.08 cd | 3.96 ± 0.04 f |
Komatsuna × S2 | 2.95 ± 0.09 a | 188 ± 7.1 ab | 6.35 ± 0.06 a | 5.26 ± 0.33 e |
Mibuna × S1 | 2.27 ± 0.08 b | 140 ± 4.5 de | 6.17 ± 0.03 ab | 21.52 ± 0.16 d |
Mibuna × S2 | 2.99 ± 0.03 a | 190 ± 6.3 a | 6.37 ± 0.17 a | 25.65 ± 0.34 c |
Mizuna × S1 | 1.56 ± 0.08 c | 75.2 ± 4.6 g | 4.82 ± 0.06 e | 30.95 ± 0.15 b |
Mizuna × S2 | 2.81 ± 0.06 a | 165 ± 6.1 bc | 5.88 ± 0.10 b | 35.64 ± 0.17 a |
Pak Choi × S1 | 2.10 ± 0.04 b | 111 ± 3.0 f | 5.31 ± 0.11 d | 2.54 ± 0.19 g |
Pak Choi × S2 | 2.80 ± 0.03 a | 161 ± 1.4 cd | 5.77 ± 0.08 bc | 5.98 ± 0.29 e |
p-value | <0.001 | 0.005 | 0.002 | <0.001 |
Source of Variance | P | K | Ca | Mg | Na | Fe | Mn | Mo | Se | Zn |
---|---|---|---|---|---|---|---|---|---|---|
(mg g−1 DW) | (mg g−1 DW) | (mg g−1 DW) | (mg g−1 DW) | (mg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | |
Genotype (M) | ||||||||||
Komatsuna | 10.30 ± 0.2 a | 16.83 ± 0.6 a | 10.28 ± 0.4 c | 4.71 ± 0.1 ab | 2.75 ± 0.1 b | 134 ± 5.2 b | 189 ± 19.6 b | 8.05 ± 0.3 b | 2.32 ± 0.1 ab | 102 ± 1.8 bc |
Mibuna | 7.64 ± 0.2 b | 11.92 ± 0.4 b | 12.38 ± 0.4 a | 4.52 ± 0.2 b | 2.04 ± 0.1 c | 138 ± 6.7 b | 233 ± 29.3 a | 10.33 ± 0.4 a | 2.73 ± 0.1 a | 108 ± 3.0 b |
Mizuna | 7.16 ± 0.2 b | 12.80 ± 0.4 b | 11.79 ± 0.2 ab | 4.35 ± 0.1 b | 3.22 ± 0.2 a | 115 ± 2.5 c | 194 ± 23.6 b | 11.72 ± 0.8 a | 2.53 ± 0.1 ab | 96 ± 5.1 c |
Pak Choi | 10.58 ± 0.2 a | 17.08 ± 0.4 a | 11.28 ± 0.6 b | 5.05 ± 0.1 a | 2.78 ± 0.1 b | 180 ± 6.3 a | 210 ± 28.1 ab | 10.19 ± 0.6 a | 2.02 ± 0.3 b | 141 ± 2.9 a |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.014 | <0.001 |
Growth stage (S) | ||||||||||
S1 | 9.02 ± 0.4 | 15.23 ± 0.8 | 10.70 ± 0.3 b | 4.43 ± 0.1 b | 2.89 ± 0.2 | 142 ± 9.3 | 152 ± 4.0 b | 10.70 ± 0.6 | 2.54 ± 0.1 | 109 ± 6.7 |
S2 | 8.82 ± 0.5 | 14.09 ± 0.7 | 12.17 ± 0.3 a | 4.88 ± 0.1 a | 2.51 ± 0.1 | 142 ± 6.5 | 261 ± 9.6 a | 9.44 ± 0.4 | 2.26 ± 0.1 | 115 ± 4.5 |
p-value | 0.338 | 0.057 | 0.002 | 0.002 | 0.051 | 0.920 | <0.001 | 0.054 | 0.168 | 0.120 |
M × S | ||||||||||
Komatsuna × S1 | 10.51 ± 0.1 | 18.19 ± 0.1 a | 9.72 ± 0.4 d | 4.64 ± 0.1 bcd | 2.98 ± 0.0 | 143 ± 6.1 cd | 146 ± 5.9 | 8.16 ± 0.3 | 2.28 ± 0.1 ab | 100 ± 1.1 bc |
Komatsuna × S2 | 10.08 ± 0.3 | 15.48 ± 0.2 bc | 10.83 ± 0.5 cd | 4.78 ± 0.1 abc | 2.53 ± 0.1 | 125 ± 4.9 de | 232 ± 3.2 | 7.93 ± 0.6 | 2.36 ± 0.1 a | 103 ± 3.4 b |
Mibuna × S1 | 7.58 ± 0.3 | 12.08 ± 0.4 d | 11.58 ± 0.1 bc | 4.05 ± 0.1 d | 2.11 ± 0.1 | 123 ± 1.3 de | 172 ± 6.3 | 10.29 ± 0.7 | 2.86 ± 0.1 a | 106 ± 5.9 b |
Mibuna × S2 | 7.70 ± 0.2 | 11.75 ± 0.7 d | 13.19 ± 0.3 a | 4.98 ± 0.1 ab | 1.97 ± 0.1 | 153 ± 0.8 bc | 295 ± 21.6 | 10.38 ± 0.5 | 2.61 ± 0.1 a | 110 ± 2.6 b |
Mizuna × S1 | 7.53 ± 0.1 | 13.59 ± 0.4 cd | 11.56 ± 0.3 bc | 4.24 ± 0.1 cd | 3.55 ± 0.2 | 111 ± 1.5 e | 143 ± 4.1 | 13.15 ± 0.9 | 2.47 ± 0.1 a | 85 ± 3.4 c |
Mizuna × S2 | 6.79 ± 0.1 | 12.00 ± 0.4 d | 12.03 ± 0.2 abc | 4.47 ± 0.2 bcd | 2.89 ± 0.2 | 120 ± 2.8 de | 245 ± 13.9 | 10.29 ± 0.4 | 2.58 ± 0.1 a | 106 ± 2.3 b |
Pak Choi × S1 | 10.45 ± 0.2 | 17.05 ± 0.7 ab | 9.93 ± 0.2 d | 4.80 ± 0.2 abc | 2.91 ± 0.2 | 190 ± 8.4 a | 149 ± 3.0 | 11.22 ± 0.5 | 2.57 ± 0.4 a | 143 ± 4.1 a |
Pak Choi × S2 | 10.72 ± 0.2 | 17.11 ± 0.6 ab | 12.64 ± 0.2 ab | 5.30 ± 0.1 a | 2.65 ± 0.1 | 171 ± 6.1 ab | 272 ± 12.6 | 9.16 ± 0.5 | 1.47 ± 0.2 b | 139 ± 4.7 a |
p-value | 0.125 | 0.008 | 0.015 | 0.040 | 0.200 | <0.001 | 0.128 | 0.970 | 0.023 | 0.012 |
Source of Variance | HAC | Ascorbic Acid | Total Chlorophyll | Lutein | β-Carotene |
---|---|---|---|---|---|
(mmol Ascorbate eq. kg−1 DW) | (mg kg−1 FW) | (μg kg−1 FW) | (mg kg−1 DW) | (mg kg−1 DW) | |
Genotype (M) | |||||
Komatsuna | 26.07 ± 0.8 a | 106.2 ± 5.3 b | 953 ± 22.3 a | 195.8 ± 3.5 b | 461.0 ± 9.3 b |
Mibuna | 23.41 ± 0.2 b | 104.0 ± 1.7 b | 567 ± 43.8 b | 251.1 ± 19.6 a | 502.7 ± 15.0 a |
Mizuna | 21.07 ± 1.3 c | 119.3 ± 4.8 a | 551 ± 22.7 b | 124.6 ± 6.7 c | 308.9 ± 10.3 c |
Pak Choi | 26.41 ± 0.4 a | 73.8 ± 10.6 c | 960 ± 19.3 a | 203.1 ± 8.3 b | 339.5 ± 9.7 c |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Growth stage (S) | |||||
S1 | 25.07 ± 0.6 | 102.7 ± 1.9 | 799 ± 51.8 | 177.9 ± 10.8 | 388.8 ± 25.6 |
S2 | 23.40 ± 1.0 | 98.9 ± 9.2 | 717 ± 70.4 | 209.3 ± 18.0 | 417.2 ± 24.8 |
p-value | 0.070 | 0.662 | 0.052 | 0.065 | 0.055 |
M × S | |||||
Komatsuna ×S1 | 27.45 ± 1.0 a | 96.8 ± 1.4 c | 956 ± 28.0 a | 192.4 ± 6.2 b | 461.4 ± 19.7 |
Komatsuna × S2 | 24.69 ± 0.4 bc | 115.6 ± 7.2 ab | 949 ± 41.0 a | 199.1 ± 3.3 b | 460.5 ± 6.8 |
Mibuna × S1 | 23.21 ± 0.4 c | 107.6 ± 1.0 bc | 665 ± 2.4 b | 211.8 ± 5.4 b | 478.5 ± 17.0 |
Mibuna × S2 | 23.61 ± 0.2 c | 100.3 ± 0.6 bc | 470 ± 7.7 d | 290.3 ± 18.6 a | 526.9 ± 15.9 |
Mizuna × S1 | 23.74 ± 1.0 c | 109.3 ± 1.8 bc | 598 ± 7.7 bc | 120.9 ± 11.5 c | 293.9 ± 17.1 |
Mizuna × S2 | 18.39 ± 0.9 d | 129.3 ± 3.3 a | 503 ± 15.9 cd | 128.2 ± 9.0 c | 323.8 ± 4.2 |
Pak Choi × S1 | 25.89 ± 0.4 ab | 97.1 ± 2.7 c | 974 ± 36.6 a | 186.6 ± 4.7 b | 321.4 ± 8.1 |
Pak Choi × S2 | 26.93 ± 0.5 a | 50.6 ± 3.4 d | 946 ± 18.1 a | 219.5 ± 7.0 b | 357.5 ± 9.0 |
p-value | <0.001 | <0.001 | 0.009 | 0.007 | 0.269 |
Source of Variance | Trans-2-Hexenal | 3-Butenyl Isothiocyanate | Limonene | Allyl Isothiocyanate | Nonanal | Phenethyl Isothiocyanate |
---|---|---|---|---|---|---|
Relative Percentage Content (%) | ||||||
Genotype (M) | ||||||
Komatsuna | 1.26 ± 0.37 b | 78.17 ± 2.02 b | 5.03 ± 0.66 a | 10.83 ± 1.13 b | 1.48 ± 0.17 b | 0.89 ± 0.19 bc |
Mibuna | 0.11 ± 0.05 c | 88.45 ± 1.68 a | 2.18 ± 0.97 bc | 5.16 ± 0.44 d | 1.84 ± 0.56 b | 0.38 ± 0.13 c |
Mizuna | 0.53 ± 0.19 c | 68.22 ± 0.60 c | 0.70 ± 0.30 c | 26.18 ± 0.42 a | 1.12 ± 0.23 b | 1.64 ± 0.25 a |
Pak Choi | 2.81 ± 1.12 a | 76.38 ± 3.54 b | 2.69 ± 0.75 b | 7.29 ± 0.69 c | 3.36 ± 0.77 a | 1.42 ± 0.31 ab |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Growth stage (S) | ||||||
S1 | 0.25 ± 0.06 b | 81.84 ± 2.51 a | 1.45 ± 0.50 b | 11.49 ± 2.54 | 1.10 ± 0.14 b | 1.31 ± 0.25 |
S2 | 2.11 ± 0.59 a | 73.77 ± 2.15 b | 3.85 ± 0.62 a | 13.24 ± 2.49 | 2.80 ± 0.45 a | 0.85 ± 0.14 |
p-value | 0.005 | 0.023 | 0.006 | 0.626 | 0.002 | 0.123 |
M × S | ||||||
Komatsuna × S1 | 0.46 ± 0.08 c | 82.63 ± 0.12 b | 4.05 ± 0.76 a | 8.54 ± 0.61 c | 1.25 ± 0.19 c | 0.65 ± 0.12 b |
Komatsuna × S2 | 2.06 ± 0.15 b | 73.71 ± 0.67 c | 6.01 ± 0.81 a | 13.11 ± 0.86 b | 1.72 ± 0.24 bc | 1.13 ± 0.33 ab |
Mibuna × S1 | 0.01 ± 0.01 c | 91.77 ± 0.83 a | 0.19 ± 0.02 b | 5.39 ± 0.41 cd | 0.76 ± 0.15 c | 0.57 ± 0.22 b |
Mibuna × S2 | 0.21 ± 0.05 c | 85.13 ± 1.57 b | 4.17 ± 0.86 a | 4.94 ± 0.87 d | 2.92 ± 0.59 b | 0.18 ± 0.04 b |
Mizuna × S1 | 0.12 ± 0.03 c | 68.78 ± 0.59 d | 0.44 ± 0.33 b | 25.93 ± 0.23 a | 0.73 ± 0.16 c | 2.13 ± 0.26 a |
Mizuna × S2 | 0.94 ± 0.08 c | 67.65 ± 1.06 d | 0.96 ± 0.53 b | 26.44 ± 0.87 a | 1.51 ± 0.30 bc | 1.16 ± 0.08 ab |
Pak Choi × S1 | 0.39 ± 0.05 c | 84.17 ± 0.69 b | 1.11 ± 0.22 b | 6.08 ± 0.14 cd | 1.66 ± 0.24 bc | 1.91 ± 0.48 a |
Pak Choi × S2 | 5.23 ± 0.60 a | 68.58 ± 1.16 d | 4.27 ± 0.49 a | 8.49 ± 0.96 c | 5.06 ± 0.16 a | 0.93 ± 0.15 ab |
p-value | <0.001 | <0.001 | 0.048 | 0.006 | <0.001 | 0.015 |
Source of Variance | Cyanidin-3-(caffeoyl)(p-coumaroyl)dihexoside-5-hexoside | Cyanidin-3-(p-coumaroyl)(sinapoyl)dihexoside-5-hexoside | Cyanidin-3-(feruloyl)(sinapoyl)dihexoside-5-hexoside | ∑ Anthocyanins |
---|---|---|---|---|
(μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | |
Genotype (M) | ||||
Komatsuna | 0.43 ± 0.028 b | 1.98 ± 0.277 b | 8.00 ± 1.22 b | 10.41 ± 1.456 b |
Mibuna | 0.05 ± 0.003 c | 0.35 ± 0.024 c | 1.96 ± 0.07 c | 2.36 ± 0.056 c |
Mizuna | 0.09 ± 0.008 c | 0.07 ± 0.019 c | 0.76 ± 0.10 c | 0.93 ± 0.116 c |
Pak Choi | 0.56 ± 0.033 a | 4.86 ± 0.382 a | 12.79 ± 1.40 a | 18.21 ± 1.150 a |
p-value | <0.001 | <0.001 | <0.001 | <0.001 |
Growth stage (S) | ||||
S1 | 0.28 ± 0.065 | 1.47 ± 0.478 | 5.84 ± 1.79 | 7.59 ± 2.315 |
S2 | 0.28 ± 0.070 | 2.17 ± 0.677 | 5.92 ± 1.36 | 8.37 ± 2.031 |
p-value | 0.947 | 0.606 | 0.951 | 0.538 |
M × S | ||||
Komatsuna × S1 | 0.49 ± 0.004 b | 1.39 ± 0.137 d | 5.30 ± 0.08 c | 7.17 ± 0.152 c |
Komatsuna × S2 | 0.37 ± 0.012 c | 2.58 ± 0.074 c | 10.70 ± 0.31 b | 13.66 ± 0.241 b |
Mibuna × S1 | 0.04 ± 0.002 d | 0.39 ± 0.027 e | 1.90 ± 0.02 d | 2.33 ± 0.006 d |
Mibuna × S2 | 0.05 ± 0.001 d | 0.31 ± 0.014 e | 2.02 ± 0.13 d | 2.38 ± 0.122 d |
Mizuna × S1 | 0.09 ± 0.007 d | 0.03 ± 0.001 e | 0.55 ± 0.06 d | 0.67 ± 0.064 d |
Mizuna × S2 | 0.09 ± 0.016 d | 0.11 ± 0.004 e | 0.97 ± 0.03 d | 1.18 ± 0.014 d |
Pak Choi × S1 | 0.50 ± 0.026 b | 4.06 ± 0.208 b | 15.61 ± 0.75 a | 20.17 ± 0.956 a |
Pak Choi × S2 | 0.62 ± 0.035 a | 5.66 ± 0.207 a | 9.97 ± 1.13 b | 16.26 ± 1.365 b |
p-value | <0.001 | <0.001 | <0.001 | <0.001 |
Source of Variance | Quercetin-3-O-sophoroside-7-O-hexoside | Caffeic Acid | Kaempferol-3-O-sophoroside-7-O-hexoside | Quercetin-3-O-sophoroside | Caffeic Acid Hexoside Isomers | Kaempferol-3-O-(caffeoyl)-sophoroside-7-O-hexoside | Quercetin-3-O-(feruloyl)-sophoroside-7-O-hexoside | Kaempferol-3-O-(coumaroyl) -sophoroside-7-O-hexoside | Kaempferol-3-O-(synapoyl)-sophoroside-7-O-hexoside | Kaempferol-3-O-(feruloyl)-sophoroside-7-O-hexoside | Coumaroyl Quinic Acid Isomer 1 | Naringin | Feruloyl Quinic Acid Isomer | Apigenin-7-O-rutinoside | Ferulic acid | Quercetin-3-O-glucuronide | Luteolin-3-O-rutinoside | Feruloyl glycoside | KAEMPFEROL-3-O-rutinoside | Apigenin-7-rhamnoside-4-rutinoside | ∑ Phenolic Acids |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | (μg g−1 DW) | |
Genotype (M) | |||||||||||||||||||||
Komatsuna | 18.8 ± 2.2 a | 2.9 ± 0.5 ab | 5.3 ± 0.8 c | 5.4 ± 0.2 c | 39.0 ± 2.7 c | 15.7 ± 0.9 c | 28.1 ± 0.5 c | 5.1 ± 1.6 c | 98.8 ± 11.2 b | 17.0 ± 2.0 c | 15.2 ± 6.7 a | 1.3 ± 0.0 c | 7.0 ± 1.1 a | 2.4 ± 0.3 b | 20.5 ± 3.1 d | 252.0 ± 20 d | 1.6 ± 0.2 c | 79.7 ± 5.2 c | 2.1 ± 0.5 b | 11.9 ± 3.7 b | 630 ± 30 d |
Mibuna | 15.9 ± 1.3 ab | 4.1 ± 0.6 ab | 23.1 ± 4.0 b | 20.1 ± 0.8 a | 74.6 ± 6.8 b | 116.7 ± 12.9 b | 212.9 ± 9.2 a | 18.5 ± 0.8 b | 378.2 ± 27.4 a | 96.0 ± 8.8 b | 1.7 ± 0.7 b | 1.5 ± 0.1 c | 5.3 ± 0.3 b | 5.0 ± 1.2 a | 40.0 ± 2.5 c | 319.7 ± 13 c | 1.3 ± 0.1 c | 113.6 ± 4.8 b | 2.6 ± 0.5 b | 11.6 ± 2.9 b | 1462 ± 45 b |
Mizuna | 10.5 ± 0.4 c | 4.4 ± 0.7 a | 30.9 ± 2.5 a | 8.8 ± 1.0 b | 121.9 ± 5.6 a | 189.6 ± 10.8 a | 155.9 ± 14.7 b | 28.3 ± 1.9 a | 412.1 ± 27.8 a | 167.9 ± 13.5 a | 3.4 ± 1.4 b | 3.0 ± 0.1 a | 3.1 ± 0.2 c | 4.5 ± 0.2 a | 62.1 ± 4.9 a | 484.3 ± 21 b | 12.1 ± 1.5 a | 196.9 ± 20.5 a | 8.6 ± 2.2 a | 25.0 ± 3.5 a | 1933 ± 61 a |
Pak Choi | 12.8 ± 1.6 bc | 2.6 ± 0.6 b | 5 ± 0.4 c | 5.8 ± 0.3 c | 38.9 ± 2.0 c | 14.6 ± 0.6 c | 28.3 ± 3.1 c | 1.9 ± 0.1 d | 81.4 ± 18.8 b | 11.3 ± 2.0 c | 14.7 ± 6.2 a | 2.6 ± 0.2 b | 4.9 ± 1.0 b | 5.8 ± 0.2 a | 48.6 ± 5.0 b | 674.8 ± 30 a | 2.3 ± 0.2 b | 82.8 ± 5.0 c | 3.8 ± 0.3 b | 10.5 ± 3.3 b | 1053 ± 33 c |
p-value | 0.000 | 0.026 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Growth stage (S) | |||||||||||||||||||||
S1 | 14.1 ± 1.7 | 2.6 ± 0.4 b | 12.7 ± 2.8 b | 9.6 ± 1.9 | 64.8 ± 10.3 | 80 ± 23.0 | 97.7 ± 21.7 | 11.2 ± 3.0 b | 287.0 ± 50.3 a | 61.3 ± 15.6 b | 0.5 ± 0.1 b | 1.9 ± 0.2 b | 4.1 ± 0.5 b | 4.7 ± 0.7 | 34.4 ± 4.2 b | 389.4 ± 47 b | 3.3 ± 1.0 b | 99.6 ± 10.1 b | 5.3 ± 1.5 | 7.4 ± 1.8 b | 1191 ± 141 b |
S2 | 14.8 ± 1.1 | 4.4 ± 0.3 a | 19.4 ± 4.3 a | 10.5 ± 1.8 | 72.4 ± 11.0 | 88.4 ± 22.8 | 114.9 ± 27.7 | 15.7 ± 3.5 a | 198.3 ± 42.7 b | 84.8 ± 23.3 a | 17.0 ± 3.8 a | 2.3 ± 0.3 a | 6.1 ± 0.6 a | 4.2 ± 0.4 | 51.2 ± 5.1 a | 475.9 ± 52 a | 5.4 ± 1.8 a | 136.9 ± 18.8 a | 3.3 ± 0.4 | 22.1 ± 1.9 a | 1348 ± 152 a |
p-value | 0.695 | <0.001 | 0.010 | 0.272 | 0.147 | 0.377 | 0.093 | <0.001 | <0.001 | 0.015 | <0.001 | <0.001 | 0.018 | 0.504 | <0.001 | <0.001 | 0.024 | 0.002 | 0.183 | <0.001 | <0.001 |
M × S | |||||||||||||||||||||
Komatsuna × S1 | 22.9 ± 1.8 a | 2.4 ± 0.8 | 3.8 ± 0.6 | 5.2 ± 0.3 c | 42.4 ± 2.7 c | 17.1 ± 1.5 d | 29.02 ± 0.3 d | 1.5 ± 0.3 e | 120.8 ± 12.3 | 12.7 ± 0.9 e | 0.7 ± 0.1 b | 1.2 ± 0.1 c | 5.1 ± 1.6 bcd | 1.7 ± 0.3 c | 13.5 ± 0.3 f | 208.7 ± 7 | 1.3 ± 0.1 d | 68.5 ± 1.8 f | 1.5 ± 0.6 b | 3.7 ± 0.1 | 564 ± 7 |
Komatsuna × S2 | 14.7 ± 2.2 bc | 3.5 ± 0.4 | 6.9 ± 0.5 | 5.6 ± 0.2 c | 35.6 ± 4.4 c | 14.3 ± 0.4 d | 27.1 ± 0.6 d | 8.6 ± 0.1 d | 76.9 ± 1.0 | 21.2 ± 0.3 e | 29.7 ± 3.6 a | 1.4 ± 0.1 c | 8.8 ± 0.5 a | 3.1 ± 0.1 bc | 27.5 ± 0.9 e | 295.4 ± 6 | 1.9 ± 0.2 cd | 90.8 ± 2.7 de | 2.6 ± 0.9 b | 20.0 ± 0.3 | 696 ± 15 |
Mibuna × S1 | 13.3 ± 1.2 bc | 2.7 ± 0.1 | 16.4 ± 1.1 | 20.5 ± 0.6 a | 59.8 ± 1.6 c | 90.8 ± 7.2 c | 200.8 ± 11.7 ab | 17.2 ± 0.9 c | 431 ± 23.8 | 78.6 ± 2.5 d | 0.1 ± 0.1 b | 1.3 ± 0.1 c | 5.8 ± 0.2 abc | 6.9 ± 1.7 a | 34.7 ± 1.2 d | 293.3 ± 9 | 1.1 ± 0.1 d | 104.7 ± 4.7 cd | 2.6 ± 0.5 b | 5.3 ± 1.0 | 1387 ± 33 |
Mibuna × S2 | 18.4 ± 0.7 ab | 5.4 ± 0.1 | 29.7 ± 5.8 | 19.7 ± 1.6 a | 89.4 ± 2.8 b | 142.7 ± 10.4 b | 225.1 ± 11.6 a | 19.9 ± 0.7 c | 325.5 ± 20.3 | 113.5 ± 8.7 c | 3.3 ± 0.1 b | 1.6 ± 0.1 c | 4.8 ± 0.3 bcd | 3.0 ± 0.1 bc | 45.2 ± 1.3 c | 346.1 ± 9 | 1.5 ± 0.1 d | 122.4 ± 3.9 c | 2.6 ± 1.0 b | 18.0 ± 0.9 | 1538 ± 59 |
Mizuna × S1 | 9.9 ± 0.6 c | 3.8 ± 1.4 | 25.8 ± 2.6 | 6.7 ± 0.3 c | 120.2 ± 11.9 a | 197.3 ± 22.4 a | 126.8 ± 11.5 c | 24.4 ± 0.5 b | 472.9 ± 13.0 | 138.3 ± 5.7 b | 0.3 ± 0.1 b | 2.8 ± 0.1 a | 2.7 ± 0.1 cd | 4.2 ± 0.2 abc | 51.8 ± 3.3 c | 440.7 ± 12 | 8.8 ± 0.4 b | 151.8 ± 4.5 b | 13.5 ± 0.6 a | 17.5 ± 1.2 | 1820 ± 70 |
Mizuna × S2 | 11.1 ± 0.4 c | 5 ± 0.3 | 35.9 ± 0.2 | 11 ± 0.1 b | 123.6 ± 3.0 a | 182 ± 5.0 ab | 184.9 ± 10.3 b | 32.3 ± 1.2 a | 351.3 ± 2.6 | 197.6 ± 2.2 a | 6.4 ± 0.5 b | 3.2 ± 0.1 a | 3.5 ± 0.3 cd | 4.9 ± 0.1 ab | 72.4 ± 0.4 a | 527.9 ± 11 | 15.5 ± 0.1 a | 242.0 ± 7.3 a | 3.6 ± 0.5 b | 32.6 ± 1.1 | 2047 ± 31 |
Pak Choi × S1 | 10.4 ± 1.1 c | 1.5 ± 0.2 | 4.7 ± 0.5 | 6.1 ± 0.3 c | 36.6 ± 2.5 c | 14.7 ± 0.5 d | 34.1 ± 3.3 d | 1.7 ± 0.1 e | 123.3 ± 1.8 | 15.6 ± 1.0 e | 1.0 ± 0.1 b | 2.2 ± 0.1 b | 2.7 ± 0.2 d | 5.8 ± 0.2 ab | 37.5 ± 0.5 d | 615.1 ± 25 | 1.9 ± 0.1 cd | 73.3 ± 2.7 ef | 3.5 ± 0.5 b | 3.1 ± 0.1 | 995 ± 37 |
Pak Choi × S2 | 15.1 ± 2.3 bc | 3.7 ± 0.5 | 5.2 ± 0.7 | 5.6 ± 0.5 c | 41.2 ± 2.9 c | 14.6 ± 1.2 d | 22.5 ± 2.2 d | 2.0 ± 0.1 e | 39.5 ± 0.8 | 6.9 ± 0.7 e | 28.4 ± 1.5 a | 3.1 ± 0.1 a | 7.2 ± 0.1 ab | 5.7 ± 0.3 ab | 59.7 ± 0.8 b | 734.4 ± 15 | 2.7 ± 0.1 c | 92.3 ± 5.1 de | 4.2 ± 0.2 b | 17.9 ± 0.9 | 1112 ± 27 |
p-value | <0.001 | 0.423 | 0.073 | 0.005 | 0.012 | 0.005 | 0.002 | <0.001 | 0.059 | <0.001 | <0.001 | 0.005 | 0.002 | 0.004 | 0.005 | 0.155 | <0.001 | <0.001 | <0.001 | 0.211 | 0.511 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriacou, M.C.; El-Nakhel, C.; Pannico, A.; Graziani, G.; Zarrelli, A.; Soteriou, G.A.; Kyratzis, A.; Antoniou, C.; Pizzolongo, F.; Romano, R.; et al. Ontogenetic Variation in the Mineral, Phytochemical and Yield Attributes of Brassicaceous Microgreens. Foods 2021, 10, 1032. https://doi.org/10.3390/foods10051032
Kyriacou MC, El-Nakhel C, Pannico A, Graziani G, Zarrelli A, Soteriou GA, Kyratzis A, Antoniou C, Pizzolongo F, Romano R, et al. Ontogenetic Variation in the Mineral, Phytochemical and Yield Attributes of Brassicaceous Microgreens. Foods. 2021; 10(5):1032. https://doi.org/10.3390/foods10051032
Chicago/Turabian StyleKyriacou, Marios C., Christophe El-Nakhel, Antonio Pannico, Giulia Graziani, Armando Zarrelli, Georgios A. Soteriou, Angelos Kyratzis, Chrystalla Antoniou, Fabiana Pizzolongo, Raffaele Romano, and et al. 2021. "Ontogenetic Variation in the Mineral, Phytochemical and Yield Attributes of Brassicaceous Microgreens" Foods 10, no. 5: 1032. https://doi.org/10.3390/foods10051032
APA StyleKyriacou, M. C., El-Nakhel, C., Pannico, A., Graziani, G., Zarrelli, A., Soteriou, G. A., Kyratzis, A., Antoniou, C., Pizzolongo, F., Romano, R., Ritieni, A., De Pascale, S., & Rouphael, Y. (2021). Ontogenetic Variation in the Mineral, Phytochemical and Yield Attributes of Brassicaceous Microgreens. Foods, 10(5), 1032. https://doi.org/10.3390/foods10051032