The Influence of Hypericum perforatum L. Addition to Wheat Cookies on Their Antioxidant, Anti-Metabolic Syndrome, and Antimicrobial Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Procedure for Preparation of Cookies
2.3. Preparation of Extracts
2.4. Polyphenol Content Assay
2.4.1. Total Phenolic Content (TPC)
2.4.2. Flavonoid Content Assay (FCA)
2.4.3. Phenolic Acid Content Assay
2.5. Reducing Sugar Content
2.6. Peptide Content Assay
2.7. Functional Properties
2.7.1. Water Absorption Capacity (WAC)
2.7.2. Oil Absorption Capacity (OAC)
2.8. In Vitro Hydrolysis
Preparation of Fractions with Molecular Mass <3.0 kDa
2.9. Potential Bioaccessibility (PAC) and Bioavailability (PAV) of Bioactive Compounds Obtained from Cookies
- PAC = Cph/Cpb
- Cph—bioactive compound content in the hydrolyzate
- Cpb—bioactive compound content in the sample before hydrolysis
- PAV = Cpa/Cph
- Cpa—bioactive compound content after the absorption process
- Cph—bioactive compound content in the hydrolyzate
2.10. Antioxidant Activity
2.10.1. ABTS•+
2.10.2. DPPH•
2.10.3. Fe2+ Chelating Activity
2.11. Determination of Enzyme Inhibitory Activity
2.11.1. Angiotensin Converting Enzyme (ACE) Inhibitory Activity
2.11.2. Pancreatic Lipase Inhibitory Activity
2.11.3. Lipoxidase (LOX) Inhibitory Activity
2.11.4. α-Amylase Inhibitory Activity
2.12. Antimicrobial Properties
2.12.1. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Lethal Concentrations (MLC)
2.12.2. Biotoxicity Assay Using the Resazurin Reduction Method
2.13. Determination of Phenolic Compounds in Fractions with Molecular Mass <3.0 kDa by LC-MS/MS Method
2.14. Statistical Analysis
3. Results
3.1. Characteristics of Cookie Extracts
3.2. Peptide Content during Hydrolysis
3.3. Bioactive Compounds in Hydrolyzates and Fractions with Molecular Mass <3.0 kDa
3.4. PAC and PAV Indexes of Bioactive Compounds
3.5. Biological Activity of Hydrolyzates and Fractions with Molecular Mass <3.0 kDa
3.5.1. Antioxidant Activities
3.5.2. Assay of Inhibition of Enzymes Involved in Metabolic Syndrome Pathogenesis
3.6. Antimicrobial Effect
3.7. Phenolic Compounds in Fractions with Molecular Mass <3.0 kDa Identified with the LC-MS/MS Method
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guiné, R.P.F.; Florença, S.G.; Barroca, M.J.; Anjos, O. The link between the consumer and the innovations in food product development. Foods 2020, 9, 1317. [Google Scholar] [CrossRef]
- Bagheri, M.; Willett, W.; Townsend, M.K.; Kraft, P.; Ivey, K.L.; Rimm, E.B.; Wilson, K.M.; Costenbader, K.H.; Karlson, E.W.; Poole, E.M.; et al. A lipid-related metabolomic pattern of diet quality. Am. J. Clin. Nutr. 2020, 112, 1613–1630. [Google Scholar] [CrossRef]
- Barber, T.M.; Kyrou, I.; Randeva, H.S.; Weickert, M.O. Mechanisms of insulin resistance at the crossroad of obesity with associated metabolic abnormalities and cognitive dysfunction. Int. J. Mol. Sci. 2021, 22, 546. [Google Scholar] [CrossRef] [PubMed]
- Ravaut, G.; Légiot, A.; Bergeron, K.F.; Mounier, C. Monounsaturated fatty acids in obesity-related inflammation. Int. J. Mol. Sci. 2021, 22, 330. [Google Scholar]
- Dandona, P.; Aljada, A.; Chaudhuri, A. Metabolic Syndrome A Comprehensive Perspective Based on Interactions between Obesity, Diabetes, and Inflammation. Circulation 2005, 111, 1448–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novelli, M.; Masiello, P.; Beffy, P.; Menegazzi, M. Protective role of st. John’s wort and its components hyperforin and hypericin against diabetes through inhibition of inflammatory signaling: Evidence from in vitro and in vivo studies. Int. J. Mol. Sci. 2020, 21, 8108. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ryu, B.; Zhang, Y.; Liang, P.; Li, C.; Zhou, C.; Yang, P.; Hong, P.; Qian, Z. Comparison of an angiotensin-I-converting enzyme inhibitory peptide from tilapia (Oreochromis niloticus) with captopril: Inhibition kinetics, in vivo effect, simulated gastrointestinal digestion and a molecular docking study. J. Sci. Food Agric. 2020, 100, 315–324. [Google Scholar] [CrossRef]
- He, Z.; Tao, D.; Xiong, J.; Lou, F.; Zhang, J.; Chen, J.; Dai, W.; Sun, J.; Wang, Y. Phosphorylation of 5-LOX: The Potential Set-point of Inflammation. Neurochem. Res. 2020, 45, 2245–2257. [Google Scholar] [CrossRef] [PubMed]
- Lawvere, S.; Mahoney, M. St. John’s Wort. Am. Fam. Physician 2005, 72, 2249–2254. [Google Scholar]
- Petrescu, D.C.; Vermeir, I. Consumer Understanding of Food Quality, Healthiness, and Environmental Impact: A Cross-National Perspective. Int. J. Environ. Res. Public Health 2020, 17, 169. [Google Scholar] [CrossRef] [Green Version]
- Antonic, B.; Dordevic, D.; Jancikova, S.; Holeckova, D.; Tremlova, B.; Kulawik, P. Effect of Grape Seed Flour on the Antioxidant Profile, Textural and Sensory Properties of Waffles. Processes 2021, 9, 131. [Google Scholar] [CrossRef]
- Laster, J.; Frame, L.A. Beyond the Calories—Is the Problem in the Processing? Curr. Treat. Options Gastroenterol. 2019, 17, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Longoria-García, S.; Cruz-Hernández, M.A.; Flores-Verástegui, M.I.M.; Contreras-Esquivel, J.C.; Montañez-Sáenz, J.C.; Belmares-Cerda, R.E. Potential functional bakery products as delivery systems for prebiotics and probiotics health enhancers. J. Food Sci. Technol. 2018, 55, 833–845. [Google Scholar] [CrossRef]
- Lorenzo, C.D.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Li, Y.; He, D.; Li, B.; Lund, M.N.; Xing, Y.; Wang, Y.; Li, F.; Cao, X.; Liu, Y.; Chen, X.; et al. Polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods. Trends Food Sci. Technol. 2021, 110, 470–482. [Google Scholar] [CrossRef]
- Schepetkin, I.A.; Ozek, G.; Ozek, T.; Kirpotina, L.N.; Khlebnikov, A.I.; Quinn, M.T. Chemical composition and immunomodulatory activity of hypericum perforatum essential oils. Biomolecules 2020, 10, 916. [Google Scholar] [CrossRef]
- Galeotti, N. Hypericum perforatum (St John’s wort) beyond depression: A therapeutic perspective for pain conditions. J. Ethnopharmacol. 2017, 200, 136–146. [Google Scholar] [CrossRef]
- Alahmad, A.; Feldhoff, A.; Bigall, N.C.; Rusch, P.; Scheper, T.; Walter, J.G. Hypericum perforatum L.-mediated green synthesis of silver nanoparticles exhibiting antioxidant and anticancer activities. Nanomaterials 2021, 11, 487. [Google Scholar] [CrossRef] [PubMed]
- Złotek, U. Antioxidative, potentially anti-inflammatory, and antidiabetic properties, as well as oxidative stability and acceptability of cakes supplemented with elicited basil. Food Chem. 2018, 243, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, A.; Ćwiek, P.; Rybczyńska-Tkaczyk, K.; Gawlik-Dziki, U.; Złotek, U. The influence of millet flour on antioxidant, anti-ACE, and anti-microbial activities of wheat wafers. Foods 2020, 9, 220. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Oxidants and Antioxidants Part A; Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, ISBN 9780121822002. [Google Scholar]
- Lamaison, J.; Carnet, A. Teneurs en principaux flavonoids des fleurs de Crataegeus monogyna Jacq et de Crataegeus laevigata (Poiret D. C) en fonction de la vegetation. Pharm. Acta Helv. 1990, 65, 315–320. [Google Scholar]
- Witkowska-Banaszczak, E.; Radzikowska, D.; Ratajczak, K. Chemical profile and antioxidant activity of Trollius europaeus under the influence of feeding aphids. Open Life Sci. 2018, 13, 312–318. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Adler-Nissen, J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 2002, 27, 1256–1262. [Google Scholar] [CrossRef] [PubMed]
- Khattab, R.Y.; Arntfield, S.D. Functional properties of raw and processed canola meal. LWT Food Sci. Technol. 2009, 42, 1119–1124. [Google Scholar] [CrossRef]
- Durak, A.; Baraniak, B.; Jakubczyk, A.; Świeca, M. Biologically active peptides obtained by enzymatic hydrolysis of Adzuki bean seeds. Food Chem. 2013, 141, 2177–2183. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Dziki, D.; Świeca, M.; Sȩczyk, Ł.; Rózyło, R.; Szymanowska, U. Bread enriched with Chenopodium quinoa leaves powder—The procedures for assessing the fortification efficiency. LWT Food Sci. Technol. 2015, 62, 1226–1234. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved Abts Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm.-Wiss. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Decker, E.A.; Welch, B. Role of Ferritin as a Lipid Oxidation Catalyst in Muscle Food. J. Agric. Food Chem. 1990, 38, 674–677. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Karaś, M.; Złotek, U.; Szymanowska, U.; Baraniak, B.; Bochnak, J. Peptides obtained from fermented faba bean seeds (Vicia faba) as potential inhibitors of an enzyme involved in the pathogenesis of metabolic syndrome. LWT Food Sci. Technol. 2019, 105, 306–313. [Google Scholar] [CrossRef]
- Szymanowska, U.; Jakubczyk, A.; Baraniak, B.; Kur, A. Characterisation of lipoxygenase from pea seeds (Pisum sativum var. Telephone L.). Food Chem. 2009, 116, 906–910. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Świeca, M.; Gawlik-Dziki, U.; Dziki, D. Nutritional potential and inhibitory activity of bread fortified with green coffee beans against enzymes involved in metabolic syndrome pathogenesis. LWT Food Sci. Technol. 2018, 95, 78–84. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Kara, M.; Szychowski, K.A.; Binduga, U.E.; Dziedzic, M.; Zieli, E.; Rybczy, K. Characterisation of Biologically Active Hydrolysates and Peptide Fractions of Vacuum Packaging String. Foods 2020, 9, 842. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, A.; Złotek, U.; Szymanowska, U.; Krystyna, J.; Rybczy, K. In Vitro Antioxidant, Anti-inflammatory, Anti-metabolic Syndrome, Antimicrobial, and Anticancer Effect of Phenolic Acids Isolated from Fresh Lovage Leaves [Levisticum officinale Koch] Elicited with Jasmonic Acid and Yeast Extract. Antioxidants 2020, 9, 554. [Google Scholar] [CrossRef]
- Bystroma, L.; Lewisa, B.; Brown, D.; Rodriguez, E.; Obendorfd, R. Characterization of phenolics by LC-UV/vis, LC-MS/MS and sugars by GC in Melicoccus bijugatus Jacq. ‘Montgomery’ fruits. Food Chem. 2008, 111, 1017–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziki, D.; Cacak-Pietrzak, G.; Hassoon, W.; Gawlik-Dziki, U.; Sułek, A.; Różyło, R.; Sugier, D. The fruits of sumac (Rhus coriari a L.) as a functional additive and salt replacement to wheat bread. LWT Food Sci. Technol. 2021, 136, 110346. [Google Scholar] [CrossRef]
- Lachowicz, S.; Świeca, M.; Pejcz, E. Biological activity, phytochemical parameters, and potential bioaccessibility of wheat bread enriched with powder and microcapsules made from Saskatoon berry. Food Chem. 2021, 338, 128026. [Google Scholar] [CrossRef]
- Pycia, K.; Ivanišová, E. Physicochemical and Antioxidant Properties of Wheat Bread Enriched with Hazelnuts and Walnuts. Foods 2020, 9, 1081. [Google Scholar] [CrossRef]
- Biernacka, B.; Dziki, D.; Gawlik-Dziki, U.; Różyło, R. Common wheat pasta enriched with cereal coffee: Quality and physical and functional properties. LWT Food Sci. Technol. 2020, 139, 110516. [Google Scholar] [CrossRef]
- Teterycz, D.; Sobota, A. Legume flour as a natural colouring component in pasta production. J. Food Sci. Technol. 2020, 57, 301–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parizad, P.A.; Marengo, M.; Bonomi, F.; Scarafoni, A. Bio-Functional and Structural Properties of Pasta Enriched with a Debranning Fraction from. Foods 2020, 9, 163. [Google Scholar]
- Ranok, A.; Dissamal, P.; Kupradit, C.; Khongla, C.; Musika, S.; Mangkalanan, S. Physicochemical properties and antioxidant activity of gluten-free riceberry-cheese cracker under simulated gastrointestinal transit. J. Food Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Assiri, K.; Alyami, Y.; Uyanik, J.M.; Romero-Reyes, M. Hypericum perforatum (St. John’s Wort) as a possible therapeutic alternative for the management of trigeminal neuralgia (TN)—A case report. Complement. Ther. Med. 2017, 30, 36–39. [Google Scholar] [CrossRef]
- Karaś, M.; Jakubczyk, A.; Szymanowska, U.; Złotek, U.; Zielińska, E. Digestion and bioavailability of bioactive phytochemicals. Int. J. Food Sci. Technol. 2017, 52, 291–305. [Google Scholar] [CrossRef]
- Köhn, C.R.; Fontoura, A.M.; Kempka, A.P.; Demiate, I.M.; Kubota, E.H.; Prestes, R.C. Assessment of different methods for determining the capacity of water absorption of ingredients and additives used in the meat industry. Int. Food Res. J. 2015, 22, 356–362. [Google Scholar]
- Godswill, C.; Somtochukwu, V.; Kate, C. The Functional Properties of Foods and Flours. Int. J. Adv. Acad. Res. Sci. 2019, 5, 2488–9849. [Google Scholar]
- Akubor, P.I.; Owuse, A.U. Chemical Composition, functional and biscuit making properties of tomato peel flour. South Asian J. Food Technol. Environ. 2020, 6, 874–884. [Google Scholar] [CrossRef]
- Farré, R.; Fiorani, M.; Rahiman, S.A.; Matteoli, G. Intestinal permeability, inflammation and the role of nutrients. Nutrients 2020, 12, 1185. [Google Scholar] [CrossRef]
- Karaś, M.; Jakubczyk, A.; Szymanowska, U.; Krystyna, J.; Lewicki, S.; Złotek, U. Different temperature treatments of millet grains affect the biological activity of protein hydrolyzates. Nutrients 2019, 11, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubczyk, A.; Karaś, M.; Baraniak, B.; Pietrzak, M. The impact of fermentation and in vitro digestion on formation angiotensin converting enzyme (ACE) inhibitory peptides from pea proteins. Food Chem. 2013, 141, 3774–3780. [Google Scholar] [CrossRef]
- Świeca, M.; Gawlik-Dziki, U.; Dziki, D.; Baraniak, B. Wheat bread enriched with green coffee—In vitro bioaccessibility and bioavailability of phenolics and antioxidant activity. Food Chem. 2017, 221, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Świeca, M.; Sȩczyk, Ł.; Gawlik-Dziki, U.; Dziki, D. Bread enriched with quinoa leaves—The influence of protein-phenolics interactions on the nutritional and antioxidant quality. Food Chem. 2014, 162, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.H.; Chen, T.R.; Fang, H.B.; Jin, Q.; Zhang, S.J.; Hou, J.; Yu, Y.; Dou, T.Y.; Cao, Y.F.; Guo, W.Z.; et al. Natural constituents of St. John’s Wort inhibit the proteolytic activity of human thrombin. Int. J. Biol. Macromol. 2019, 134, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Béjaoui, A.; Salem, I.B.; Rokbeni, N.; M’rabet, Y.; Boussaid, M.; Boulila, A. Bioactive compounds from Hypericum humifusum and Hypericum perfoliatum: Inhibition potential of polyphenols with acetylcholinesterase and key enzymes linked to type-2 diabetes. Pharm. Biol. 2017, 55, 906–911. [Google Scholar] [CrossRef] [Green Version]
- Dekker, I.P.; Marijnissen, R.M.; Giltay, E.J.; Mast, R.C.V.D.; Oude, R.C.; Rhebergen, D.; Rius, N. The role of metabolic syndrome in late-life depression over 6 years: The NESDO study. J. Affect. Disord. 2019, 257, 735–740. [Google Scholar] [CrossRef]
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef]
- Avato, P.; Raffo, F.; Guglielmi, G.; Vitali, C.; Rosato, A. Extracts from St John’s Wort and their antiMicrobial Activity. Phyther. Res. 2004, 18, 230–232. [Google Scholar] [CrossRef]
- Heydarian, M.; Jooyandeh, H.; Nasehi, B.; Noshad, M. Characterization of Hypericum perforatum polysaccharides with antioxidant and antimicrobial activities: Optimization based statistical modeling. Int. J. Biol. Macromol. 2017, 104, 287–293. [Google Scholar] [CrossRef]
- Lyles, J.T.; Kim, A.; Nelson, K.; Bullard-Roberts, A.L.; Hajdari, A.; Mustafa, B.; Quave, C.L. The chemical and antibacterial evaluation of St. John’s Wort oil macerates used in Kosovar traditional medicine. Front. Microbiol. 2017, 8, 1639. [Google Scholar] [CrossRef] [Green Version]
- Süntar, I.; Oyardi, O.; Akkol, E.K.; Ozçelik, B. Antimicrobial effect of the extracts from Hypericum perforatum against oral bacteria and biofilm formation. Pharm. Biol. 2016, 54, 1065–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, B.A.; Malva, J.O.; Dias, A.C.P. St. John’s Wort (Hypericum perforatum) extracts and isolated phenolic compounds are effective antioxidants in several in vitro models of oxidative stress. Food Chem. 2008, 110, 611–619. [Google Scholar] [CrossRef]
Sample | Polyphenol Compound Content | Functional Properties | |||
---|---|---|---|---|---|
Total Phenolic Content (mg gDW) | Flavonoids (µg gDW) | Phenolic Acids (µg gDW) | WAC (%) | OAC (%) | |
Control | 1.97 ± 0.06 a | 2.11 ± 0.30 a | 7.65 ± 0.86 a | 91.45 ± 14.18 a | 162.76 ± 1.59 a |
0.5 SJW | 2.11 ± 0.18 b | 2.29 ± 0.27 a | 8.95 ± 1.08 a | 117.26 ± 10.64 a | 161.50 ± 4.86 a |
1.0 SJW | 2.32 ± 0.05 b | 4.93 ± 0.47 b | 12.35 ± 0.68 b | 101.70 ± 5.54 a | 161.26 ± 2.75 a |
Samples | Polyphenols (mg gDW) | Flavonoids (µg gDW) | Phenolic Acids (µg gDW) | Peptides (mg gDW) | Reducing Sugar (mg gDW) |
---|---|---|---|---|---|
Hydrolyzates | |||||
Control | 4.77 ± 0.10 aA | 25.38 ± 1.28 aA | 9.03 ± 1.43 aA | 8.91 ± 0.26 aA | 8.10 ± 0.30 aA |
0.5 SJW | 4.94 ± 0.17 aA | 26.29 ± 1.02 aA | 13.17 ± 1.27 bB | 10.41 ± 1.12 bB | 8.03 ± 0.43 aA |
1.0 SJW | 5.11 ± 0.18 aA | 29.06 ± 0.42 bB | 14.59 ± 0.46 bB | 11.26 ± 0.34 bB | 8.50 ± 0.44 aA |
Fractions with molecular mass <3.0 kDa | |||||
Control | 3.90 ± 0.19 aB | 3.09 ± 0.17 aC | 2.58 ± 0.07 aC | 6.48 ± 0.38 aC | 8.09 ± 0.57 aA |
0.5 SJW | 4.08 ± 0.28 aB | 3.32 ± 0.52 aC | 2.66 ± 0.36 aC | 6.94 ± 0.49 aC | 8.01 ± 1.07 aA |
1.0 SJW | 3.98 ± 0.28 aB | 3.76 ± 0.83 aC | 2.83 ± 0.52 aC | 7.04 ± 0.52 aC | 8.28 ± 0.87 aA |
Samples | Polyphenols | Flavonoids | Phenolic Acids | Peptides | Reducing Sugar |
---|---|---|---|---|---|
PAC | |||||
Control | 2.42 | 12.01 | 1.12 | 4.04 | 0.46 |
0.5 SJW | 3.34 | 11.50 | 1.47 | 4.00 | 0.46 |
1.0 SJW | 2.20 | 7.43 | 1.18 | 4.60 | 0.49 |
PAV | |||||
Control | 0.81 | 0.12 | 0.29 | 0.72 | 0.70 |
0.5 SJW | 0.83 | 0.13 | 0.20 | 0.65 | 0.99 |
1.0 SJW | 0.77 | 0.10 | 0.19 | 0.62 | 0.97 |
Samples | ABTS (EC50 mg mL−1) | DPPH (EC50 mg mL−1) | Fe2+ Chelation (%) |
---|---|---|---|
Hydrolyzates | |||
Control | 0.92 ± 0.07 aA | 1.37 ± 0.07 bD | 84.20 ± 2.18 abAB |
0.5 SJW | 5.32 ± 0.18 bC | 0.99 ± 0.04 aC | 82.96 ± 2.93 aA |
1.0 SJW | 4.38 ± 0.38 cB | 1.06 ± 0.1 aC | 86.98 ± 2.50 bB |
Fractions with molecular mass <3.0 kDa | |||
Control | 0.76 ± 0.02 bA | 0.60 ± 0.05 cB | 87.23 ± 0.67 aB |
0.5 SJW | 0.54 ± 0.05 aA | 0.51 ± 0.02 bB | 87.09 ± 1.67 aB |
1.0 SJW | 0.53 ± 0.01 aA | 0.12 ± 0.002 aA | 86.39 ± 1.32 aAB |
Enzyme | ACE | Lipase | LOX | α-Amylase | |
---|---|---|---|---|---|
Samples | |||||
Hydrolyzates | |||||
Control | 1.52 ± 0.29 aA | 0.57 ± 0.02 aA | 2.33 ± 0.22 bC | 3.77 ± 0.06 aC | |
0.5 SJW | 1.26 ± 0.09 aA | 1.48 ± 0.05 bB | 2.47 ± 0.56 bC | 1.72 ± 0.06 bB | |
1.0 SJW | 1.24 ± 0.03 aA | 1.90 ± 0.15 cB | 1.03 ± 0.02 aB | 0.05 ± 0.008 cA | |
Fractions with molecular mass <3.0 kDa | |||||
Control | 0.46 ± 0.03 aB | 0.12 ± 0.005 aA | 0.44 ± 0.4 aAB | 0.029 ± 0.006 bA | |
0.5 SJW | 0.33 ± 0.04 bB | 0.17 ± 0.005 abA | 0.24 ± 0.001 bA | 0.019 ± 0.006 abA | |
1.0 SJW | 0.58 ± 0.05 cB | 0.19 ± 0.04 bA | 0.076 ± 0.001 cA | 0.013 ± 0.003 aA |
Phenolic Compounds | Sample | ||
---|---|---|---|
Control | 0.5 SJW | 1.0 SJW | |
gallic acid | <0.5 | <0.5 | <0.5 |
chlorogenic acid | nd | nd | 1.08 |
3,4-dihydroxybenzoic acid | nd | 2.28 | 3.61 |
rutin | nd | 6.07 | 11.56 |
p-coumaric acid | 9.72 | 15.48 | 23.88 |
ferulic acid | 2.10 | 4.01 | 4.64 |
salicylic acid | <0.5 | <0.5 | <0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubczyk, A.; Kiersnowska, K.; Ömeroğlu, B.; Gawlik-Dziki, U.; Tutaj, K.; Rybczyńska-Tkaczyk, K.; Szydłowska-Tutaj, M.; Złotek, U.; Baraniak, B. The Influence of Hypericum perforatum L. Addition to Wheat Cookies on Their Antioxidant, Anti-Metabolic Syndrome, and Antimicrobial Properties. Foods 2021, 10, 1379. https://doi.org/10.3390/foods10061379
Jakubczyk A, Kiersnowska K, Ömeroğlu B, Gawlik-Dziki U, Tutaj K, Rybczyńska-Tkaczyk K, Szydłowska-Tutaj M, Złotek U, Baraniak B. The Influence of Hypericum perforatum L. Addition to Wheat Cookies on Their Antioxidant, Anti-Metabolic Syndrome, and Antimicrobial Properties. Foods. 2021; 10(6):1379. https://doi.org/10.3390/foods10061379
Chicago/Turabian StyleJakubczyk, Anna, Kaja Kiersnowska, Begümhan Ömeroğlu, Urszula Gawlik-Dziki, Krzysztof Tutaj, Kamila Rybczyńska-Tkaczyk, Magdalena Szydłowska-Tutaj, Urszula Złotek, and Barbara Baraniak. 2021. "The Influence of Hypericum perforatum L. Addition to Wheat Cookies on Their Antioxidant, Anti-Metabolic Syndrome, and Antimicrobial Properties" Foods 10, no. 6: 1379. https://doi.org/10.3390/foods10061379
APA StyleJakubczyk, A., Kiersnowska, K., Ömeroğlu, B., Gawlik-Dziki, U., Tutaj, K., Rybczyńska-Tkaczyk, K., Szydłowska-Tutaj, M., Złotek, U., & Baraniak, B. (2021). The Influence of Hypericum perforatum L. Addition to Wheat Cookies on Their Antioxidant, Anti-Metabolic Syndrome, and Antimicrobial Properties. Foods, 10(6), 1379. https://doi.org/10.3390/foods10061379