The High Content of Quercetin and Catechin in Airen Grape Juice Supports Its Application in Functional Food Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Grape Juice Samples and Polyphenol Extraction
2.3. Estimation of Total Polyphenols
2.4. DPPH Radical Scavenging Assay
2.5. LC-MS/MS Analysis
2.6. Statistical Analysis
3. Results
3.1. Total Phenolic Content and Scavenging Activity of Extracts
3.2. Identification and Quantification of Polyphenols by LC-MS/MS Analysis
3.2.1. Polyphenols in Grape Juice Extracts
3.2.2. Effect of the Industrial Concentration Process on the Polyphenol Content of the Airen Grape Juice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ali, K.; Maltese, F.; Choi, Y.H.; Verpoorte, R. Metabolic constituents of grapevine and grape-derived products. Phytochem. Rev. 2010, 9, 357–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreyra, S.G.; Antoniolli, A.; Bottini, R.; Fontana, A. Bioactive compounds and total antioxidant capacity of cane residues from different grape varieties. J. Sci. Food Agric. 2019, 100, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Dey, S.; Marbaniang, D.; Pal, P.; Ray, S.; Mazumder, B. Grape seed extract: Having a potential health benefits. J. Food Sci. Technol. 2020, 57, 1205–1215. [Google Scholar] [CrossRef]
- Sobhani, M.; Farzaei, M.H.; Kiani, S.; Khodarahmi, R. Immunomodulatory; Anti-inflammatory/antioxidant Effects of Polyphenols: A Comparative Review on the Parental Compounds and Their Metabolites. Food Rev. Int. 2020, 1–53. [Google Scholar] [CrossRef]
- Li, Y.-R.; Li, S.; Lin, C.-C. Effect of resveratrol and pterostilbene on aging and longevity. BioFactors 2018, 44, 69–82. [Google Scholar] [CrossRef]
- Rasines-Perea, Z.; Teissedre, P.-L. Grape Polyphenols’ Effects in Human Cardiovascular Diseases and Diabetes. Molecules 2017, 22, 68. [Google Scholar] [CrossRef]
- Khalid, M.; Rahman, S.-U.; Bilal, M.; Huang, D.-F. Role of flavonoids in plant interactions with the environment and against human pathogens—A review. J. Integr. Agric. 2019, 18, 211–230. [Google Scholar] [CrossRef]
- Rico, C. Informe Anual del MAGRAMA. 2019. Available online: https://www.mapa.gob.es/es/ministerio/servicios/analisis-y-prospectiva/indicadores_semestre.aspx (accessed on 16 November 2020).
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong-Ping, X.; Ya, L.; Xiao, M.; Tong, Z.; Yue, Z.; Jie, Z.; Jiao-Jiao, Z.; Hua-Bin, L. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18, 777–780. [Google Scholar]
- Kumar, K.; Yadav, A.N.; Kumar, V.; Vyas, P.; Dhaliwal, H.S. Food waste: A potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour. Bioprocess. 2017, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Averilla, J.N.; Oh, J.; Kim, H.J.; Kim, J.S.; Kim, J.S. Potential health benefits of phenolic compounds in grape processing by-products. Food Sci. Biotechnol. 2019, 28, 1607–1615. [Google Scholar] [CrossRef]
- Hassan, Y.I.; Kosir, V.; Yin, X.; Ross, K.; Diarra, M.S. Grape Pomace as a Promising Antimicrobial Alternative in Feed: A Critical Review. J. Agric. Food Chem. 2019, 67, 9705–9718. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, N.N.; Khomich, L.M.; Perova, I.B.; Eller, K. [Grape juice nutritional profile]. Vopr. Pitan. 2018, 87, 95–105. [Google Scholar]
- Patricia Carreño, O.; Torija, E.; Zapata, M.A. Contribución al conocimiento del mosto o zumos de uva comerciales. OFFARM 2001, 20, 1–7. [Google Scholar]
- Lupoli, R.; Ciciola, P.; Costabile, G.; Giacco, R.; Di Minno, M.N.D.; Capaldo, B. Impact of Grape Products on Lipid Profile: A Meta-Analysis of Randomized Controlled Studies. J. Clin. Med. 2020, 9, 313. [Google Scholar] [CrossRef] [Green Version]
- Potì, F.; Santi, D.; Spaggiari, G.; Zimetti, F.; Zanotti, I. Polyphenol Health Effects on Cardiovascular and Neurodegenerative Disorders: A Review and Meta-Analysis. Int. J. Mol. Sci. 2019, 20, 351. [Google Scholar] [CrossRef] [Green Version]
- García-Martínez, D.J.; Funes, J.C.; Saborido, C.M.; Santos, C. Grape Polyphenols to Arrest in Vitro Proliferation of Human Leukemia Cells: A Systematic Review and Meta-analysis. Food Rev. Int. 2020, 1–18. [Google Scholar] [CrossRef]
- Grosso, G.; Godos, J.; Lamuela-Raventos, R.; Ray, S.; Micek, A.; Pajak, A.; Sciacca, S.; D’Orazio, N.; Del Rio, D.; Galvano, F. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations. Mol. Nutr. Food Res. 2016, 61, 1–20. [Google Scholar] [CrossRef]
- Olaku, O.O.; Ojukwu, M.O.; Zia, F.Z.; White, J.D. The Role of Grape Seed Extract in the Treatment of Chemo/Radiotherapy Induced Toxicity: A Systematic Review of Preclinical Studies. Nutr. Cancer 2015, 67, 730–740. [Google Scholar] [CrossRef]
- Marx, W.; Kelly, J.; Marshall, S.; Nakos, S.; Campbell, K.; Itsiopoulos, C. The Effect of Polyphenol-Rich Interventions on Cardiovascular Risk Factors in Haemodialysis: A Systematic Review and Meta-Analysis. Nutrients 2017, 9, 1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, J.F.; Monteiro, V.V.S.; Gomes, R.D.S.; Carmo, M.M.D.; Da Costa, G.V.; Ribera, P.C.; Monteiro, M.C. Action mechanism and cardiovascular effect of anthocyanins: A systematic review of animal and human studies. J. Transl. Med. 2016, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Saiko, P.; Szakmary, A.; Jaeger, W.; Szekeres, T. Review: Resveratrol and its analogs: Defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat. Res. 2008, 658, 68–94. [Google Scholar] [CrossRef] [PubMed]
- Penumathsa, S.V.V.; Maulik, N. Resveratrol: A promising agent in promoting cardioprotection against coronary heart disease. Can. J. Physiol. Pharmacol. 2009, 87, 275–286. [Google Scholar] [CrossRef]
- Carullo, G.; Cappello, A.R.; Frattaruolo, L.; Badolato, M.; Armentano, B.; Aiello, F. Quercetin and derivatives: Useful tools in inflammation and pain management. Future Med. Chem. 2017, 9, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Ju-Suk, N.; Sharma, A.R.; Lich Thi, N.; Chakraborty, C.; Sharma, G.; Sang-Soo, L. Application of Bioactive Quercetin in Oncotherapy: From Nutrition to Nanomedicine. Molecules 2016, 21, 108–121. [Google Scholar]
- Xiang-An, Z.; Shuangxi, Z.; Qing, Y.; Jing, Z. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway. Pharmacogn. Mag. 2015, 11, 404–409. [Google Scholar]
- Xia, L.; Xu, C.; Huang, K.; Lu, J.; Zhang, Y. Evaluation of phenolic compounds, antioxidant and antiproliferative activities of 31 grape cultivars with different genotypes. J. Food Biochem. 2019, 43, e12626. [Google Scholar] [CrossRef]
- Lima, M.D.S.; Dutra, M.D.C.P.; Toaldo, I.M.; Corrêa, L.C.; Pereira, G.E.; Oliveira, D.; Bordignon-Luiz, M.T.; Ninow, J.L. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration. Food Chem. 2015, 188, 384–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Navarro, J.; Cazals, G.; Enjalbal, C.; Izquierdo-Cañas, P.M.; Gómez-Alonso, S.; Saucier, C. Flavanol Glycoside Content of Grape Seeds and Skins of Vitis vinifera Varieties Grown in Castilla-La Mancha, Spain. Molecules 2019, 24, 4001. [Google Scholar] [CrossRef] [Green Version]
- Nash, V.; Ranadheera, C.S.; Georgousopoulou, E.N.; Mellor, D.D.; Panagiotakos, D.B.; McKune, A.; Kellett, J.; Naumovski, N. The effects of grape and red wine polyphenols on gut microbiota—A systematic review. Food Res. Int. 2018, 113, 277–287. [Google Scholar] [CrossRef]
- Giovinazzo, G.; Carluccio, M.A.; Grieco, F. Wine Polyphenols and Health. In Bioactive Molecules in Food; Mérillon, J.M., Ramawat, K., Eds.; Spinger: Cham, Switerland, 2018; pp. 1135–1155. [Google Scholar]
- Fernandes, I.; Pérez-Gregorio, R.; Soares, S.; Mateus, N.; de Freitas, V. Wine Flavonoids in Health and Disease Prevention. Molecules 2017, 22, 292. [Google Scholar] [CrossRef]
- Giovinazzo, G.; Grieco, F. Functional Properties of Grape and Wine Polyphenols. Plant Foods Hum. Nutr. 2015, 70, 454–462. [Google Scholar] [CrossRef]
- Rodriguez-Bernaldo de Quiros, A.; Lage Yuste, M.A.; López-Hernandez, J. HPLC-analysis of polyphenolic compounds in Spanish white wines and determination of their antioxidant activity by radical scavenging assay. Food Res. Int. 2009, 42, 1018–1022. [Google Scholar] [CrossRef]
- Barbalho, S.M.; Ottoboni, A.M.M.B.; Fiorini, A.M.R.; Élen, L.G.; Nicolau, C.C.T.; Goulart, R.D.A.; Flato, U.A.P. Grape juice or wine: Which is the best option? Crit. Rev. Food Sci. Nutr. 2020, 60, 3876–3889. [Google Scholar] [CrossRef] [PubMed]
- Copetti, C.; Franco, F.W.; Machado, E.D.R.; Soquetta, M.B.; Quatrin, A.; Ramos, V.D.M.; Moreira, J.C.F.; Emanuelli, T.; Sautter, C.K.; Penna, N.G. Acute Consumption of Bordo Grape Juice and Wine Improves Serum Antioxidant Status in Healthy Individuals and Inhibits Reactive Oxygen Species Production in Human Neuron-Like Cells. J. Nutr. Metab. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zuanazzi, C.; Maccari, P.A.; Beninca, S.C.; Branco, C.S.; Theodoro, H.; Vanderlinde, R.; Siviero, J.; Salvador, M. White grape juice increases high-density lipoprotein cholesterol levels and reduces body mass index and abdominal and waist circumference in women. Nutrition 2019, 57, 109–114. [Google Scholar] [CrossRef]
- Neto, M.M.; da Silva, T.F.; de Lima, F.F.; Siqueira, T.M.Q.; Toscano, L.T.; de Moura, S.K.M.S.F.; Silva, A.S. Whole Red Grape Juice Reduces Blood Pressure at Rest and Increases Post-exercise Hypotension. J. Am. Coll. Nutr. 2017, 36, 533–540. [Google Scholar] [CrossRef]
- Corredor, Z.; Rodríguez-Ribera, L.; Coll, E.; Montañés, R.; Diaz, J.M.; Ballarin, J.; Marcos, R.; Pastor, S. Unfermented grape juice reduce genomic damage on patients undergoing hemodialysis. Food Chem. Toxicol. 2016, 92, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Toaldo, I.M.; Cruz, F.A.; Alves, T.D.L.; de Gois, J.S.; Borges, D.L.G.; Cunha, H.P.; da Silva, E.L.; Bordignon-Luiz, M.T. Bioactive potential of Vitis labrusca L. grape juices from the Southern Region of Brazil: Phenolic and elemental composition and effect on lipid peroxidation in healthy subjects. Food Chem. 2015, 173, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Blair, C.K.; Kelly, A.S.; Steinberger, J.; Eberly, L.; Napurski, C.; Robien, K.; Neglia, J.; Mulrooney, D.A.; Ross, J.A. Feasibility and preliminary efficacy of the effects of flavanoid-rich purple grape juice on the vascular health of childhood cancer survivors: A randomized, controlled crossover trial. Pediatr. Blood Cancer 2014, 61, 2290–2296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siasos, G.; Tousoulis, D.; Kokkou, E.; Oikonomou, E.; Kollia, M.-E.; Verveniotis, A.; Gouliopoulos, N.; Zisimos, K.; Plastiras, A.; Maniatis, K.; et al. Favorable Effects of Concord Grape Juice on Endothelial Function and Arterial Stiffness in Healthy Smokers. Am. J. Hypertens. 2013, 27, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Khadem-Ansari, M.H.; Rasmi, Y.; Ramezani, F. Effects of Red Grape Juice Consumption on High Density Lipoprotein-Cholesterol, Apolipoprotein AI, Apolipoprotein B and Homocysteine in Healthy Human Volunteers. Open Biochem. J. 2010, 4, 96–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callaghan, C.M.; Leggett, R.E.; Levin, R.M. A Comparison of the Antioxidants and Carbohydrates in Common Wines and Grape Juices. Free Radic. Antioxid. 2016, 7, 86–89. [Google Scholar] [CrossRef]
- Garrido, J.; Borges, F. Wine and grape polyphenols—A chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef] [Green Version]
- Altemimi, A.B.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Guija-Poma, E.; Inocente-Camones, M.; Angel, M.; Ponce-Pardo, J.; Zarzosa-Norabuena, E. Evaluación de la técnica 2,2-Difenil-Picrihidrazilo (DPPH) para determinar la capacidad antioxidante. Horiz. Med. 2015, 15, 57–60. [Google Scholar] [CrossRef] [Green Version]
- IBM Corp. IBM SPSS Statistics for Windows, Version 25.0; IBM Corp: Armonk, NY, USA, 2017. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012. [Google Scholar]
- Wu, H.; Chen, Y.; Li, Z.; Liu, X. Untargeted metabolomics profiles delineate metabolic alterations in mouse plasma during lung carcinoma development using UPLC-QTOF/MS in MS E mode. R. Soc. Open Sci. 2018, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seraglio, S.K.T.; Valese, A.C.; Daguer, H.; Bergamo, G.; Azevedo, M.S.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Development and validation of a LC-ESI-MS/MS method for the determination of phenolic compounds in honeydew honeys with the diluted-and-shoot approach. Food Res. Int. 2016, 87, 60–67. [Google Scholar] [CrossRef]
- Yang, C.-J.; Wang, Z.-B.; Mi, Y.-Y.; Gao, M.-J.; Lv, J.-N.; Meng, Y.-H.; Yang, B.-Y.; Kuang, H.-X. UHPLC-MS/MS Determination, Pharmacokinetic, and Bioavailability Study of Taxifolin in Rat Plasma after Oral Administration of its Nanodispersion. Molecules 2016, 21, 494. [Google Scholar] [CrossRef]
- Engström, M.T.; Pälijärvi, M.; Salminen, J.-P. Rapid Fingerprint Analysis of Plant Extracts for Ellagitannins, Gallic Acid, and Quinic Acid Derivatives and Quercetin-, Kaempferol- and Myricetin-Based Flavonol Glycosides by UPLC-QqQ-MS/MS. J. Agric. Food Chem. 2015, 63, 4068–4079. [Google Scholar] [CrossRef]
- Jiamboonsri, P.; Pithayanukul, P.; Bavovada, R.; Gao, S.; Hu, M. A validated liquid chromatography–tandem mass spectrometry method for the determination of methyl gallate and pentagalloyl glucopyranose: Application to pharmacokinetic studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 986–987, 12–17. [Google Scholar] [CrossRef]
- Lambert, M.; Meudec, E.; Verbaere, A.; Mazerolles, G.; Wirth, J.; Masson, G.; Cheynier, V.; Sommerer, N. A high-throughput UHPLC-QqQ-MS method for polyphenol profiling in rosé wines. Molecules 2015, 20, 7890–7914. [Google Scholar] [CrossRef]
- DK, V.; Verma, P.R.; Singh, S.K.; Viswanathan, S. LC-ESI-MS/MS analysis of quercetin in rat plasma after oral administration of biodegradable nanoparticles. Biomed. Chromatogr. 2015, 29, 1731–1736. [Google Scholar] [CrossRef]
- Liu, Q.; Liao, X.; Xu, J.; Zhao, J.; Luo, J.; Kong, L. Development and validation of a sensitive and selective LC–MS/MS method for the determination of trans δ-veniferin, a resveratrol dehydrodimer, in rat plasma and its application to pharmacokinetics and bioavailability studies. J. Chromatogr. B 2014, 958, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Yin, P.; Ma, C.; Liu, Y. Method Development and Validation for Pharmacokinetic and Tissue Distributions of Ellagic Acid Using Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). Molecules 2014, 19, 18923–18935. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yuan, J.; Wang, Y.; Wang, Y.; An, R.; Wang, X. LC-MS/MS determination and pharmacokinetics study of puerarin and daidzein in rat plasma after oral administration of Gegenqinlian decoction and Radix Puerariae extract. Pharmacogn. Mag. 2014, 10, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Krieger, S.; Hayen, H.; Schmitz, O.J. Quantification of coumarin in cinnamon and woodruff beverages using DIP-APCI-MS and LC-MS. Anal. Bioanal. Chem. 2013, 405, 8337–8345. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Y.; Song, Y.-Y.; Liu, C.-H.; Huang, X.-T.; Zheng, X.; Li, N.; Xu, M.-L.; Mi, S.-Q.; Wang, N.-S. Simultaneous determination of esculin and its metabolite esculetin in rat plasma by LC–ESI-MS/MS and its application in pharmacokinetic study. J. Chromatogr. B 2012, 907, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Chng, H.T.; New, L.S.; Neo, A.H.; Goh, C.W.; Browne, E.R.; Chan, E.C. A sensitive LC/MS/MS bioanalysis assay of orally administered lipoic acid in rat blood and brain tissue. J. Pharm. Biomed. Anal. 2010, 51, 754–757. [Google Scholar] [CrossRef]
- Gao, S.; Zhan, Q.; Li, J.; Yang, Q.; Li, X.; Chen, W.; Sun, L. LC-MS/MS method for the simultaneous determination of ethyl gallate and its major metabolite in rat plasma. Biomed. Chromatogr. 2010, 24, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Chen, X.; Badmaev, V.; Ho, C.-T.; Sang, S. Structural identification of mouse urinary metabolites of pterostilbene using liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 1770–1778. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Bai, N.; He, K.; Ho, C.-T.; Yang, C.S.; Sang, S. Apple Polyphenols, Phloretin and Phloridzin: New Trapping Agents of Reactive Dicarbonyl Species. Chem. Res. Toxicol. 2008, 21, 2042–2050. [Google Scholar] [CrossRef]
- Zhang, A.; Wan, L.; Wu, C.; Fang, Y.; Han, G.; Li, H.; Zhang, Z.; Wang, H. Simultaneous determination of 14 phenolic compounds in grape canes by HPLC-DAD-UV using wavelength switching detection. Molecules 2013, 18, 14241–14257. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.P.; Izquierdo-Cañas, P.M.; Mena-Morales, A.; Martínez-Gascueña, J.; Chacón, J.L.; García-Romero, E.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S. Phenolic compounds profile of different berry parts from novel Vitis vinifera L. red grape genotypes and Tempranillo using HPLC-DAD-ESI-MS/MS: A varietal differentiation tool. Food Chem. 2019, 295, 350–360. [Google Scholar] [CrossRef]
- Del-Castillo-Alonso, M.Á.; Monforte, L.; Tomás-Las-Heras, R.; Martínez-Abaigar, J.; Núñez-Olivera, E. Phenolic characteristics acquired by berry skins of Vitis vinifera cv. Tempranillo in response to close-to-ambient solar ultraviolet radiation are mostly reflected in the resulting wines. J. Sci. Food Agric. 2020, 100, 401–409. [Google Scholar] [CrossRef]
- Ibáñez, J.; Muñoz-Organero, G.; Zinelabidine, L.H.; de Andrés, M.T.; Cabello, F.; Martínez-Zapater, J.M. Genetic Origin of the Grapevine Cultivar Tempranillo. Am. J. Enol. Vitic. 2012, 63, 549–553. [Google Scholar] [CrossRef]
- Chedea, V.S.; Palade, L.M.; Pelmus, R.S.; Dragomir, C.; Taranu, I. Red Grape Pomace Rich in Polyphenols Diet Increases the Antioxidant Status in Key Organs—Kidneys, Liver, and Spleen of Piglets. Animals 2019, 9, 149. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Chen, Q.-S.; Xu, P.-P.; Qian, Y.; Wang, A.-H.; Xiao, D.; Zhao, Y.; Sheng, Y.; Wen, X.-Q.; Zhao, W.-L. Catechins induced acute promyelocytic leukemia cell apoptosis and triggered PML-RARalpha oncoprotein degradation. J. Hematol. Oncol. 2014, 7, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Zambonin, L.; Caliceti, C.; Sega, F.V.D.; Fiorentini, D.; Hrelia, S.; Landi, L.; Prata, C. Dietary Phenolic Acids Act as Effective Antioxidants in Membrane Models and in Cultured Cells, Exhibiting Proapoptotic Effects in Leukaemia Cells. Oxid. Med. Cell. Longev. 2012, 2012, 1–12. [Google Scholar] [CrossRef]
- Spagnuolo, C.; Russo, M.; Bilotto, S.; Tedesco, I.; Laratta, B.; Russo, G.L. Dietary polyphenols in cancer prevention: The example of the flavonoid quercetin in leukemia. Ann. N. Y. Acad. Sci. 2012, 1259, 95–103. [Google Scholar] [CrossRef]
- Ferry-Dumazet, H.; Garnier, O.; Mamani-Matsuda, M.; Vercauteren, J.; Belloc, F.; Billiard, C.; Dupouy, M.; Thiolat, D.; Kolb, J.P.; Marit, G.; et al. Resveratrol inhibits the growth and induces the apoptosis of both normal and leukemic hematopoietic cells. Carcinogenesis 2002, 23, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Khan, H.; Ullah, H.; Hassan, S.T.; Šmejkal, K.; Efferth, T.; Mahomoodally, M.F.; Xu, S.; Habtemariam, S.; Filosa, R.; et al. MicroRNA targeting by quercetin in cancer treatment and chemoprotection. Pharmacol. Res. 2019, 147. [Google Scholar] [CrossRef]
- Sayeed, A.; Bracci, M.; Lazzarini, R.; Tomasetti, M.; Amati, M.; Lucarini, G.; Di Primio, R.; Santarelli, L. Use of potential dietary phytochemicals to target miRNA: Promising option for breast cancer prevention and treatment? J. Funct. Foods 2017, 28, 177–193. [Google Scholar] [CrossRef]
- Sayeed, M.A.; Bracci, M.; Lucarini, G.; Lazzarini, R.; Di Primio, R.; Santarelli, L. Review: Regulation of microRNA using promising dietary phytochemicals: Possible preventive and treatment option of malignant mesothelioma. Biomed. Pharmacother. 2017, 94, 1197–1224. [Google Scholar] [CrossRef]
- Lu, X.-L.; Zhao, C.-H.; Yao, X.-L.; Zhang, H. Original article: Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway. Biomed. Pharmacother. 2017, 85, 658–671. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, G.F.; Ognibene, D.T.; da Costa, C.A.; Teixeira, M.T.; da Silva Cristino Cordeiro, V.; de Bem, G.F.; Moura, A.S.; de Castro Resende, A.; de Moura, R.S. Vitis vinifera L. Grape Skin Extract Prevents Development of Hypertension and Altered Lipid Profile in Spontaneously Hypertensive Rats: Role of Oxidative Stress. Prev. Nutr. Food Sci. 2020, 25, 25–31. [Google Scholar] [CrossRef]
- Odai, T.; Terauchi, M.; Kato, K.; Hirose, A.; Miyasaka, N. Effects of Grape Seed Proanthocyanidin Extract on Vascular Endothelial Function in Participants with Prehypertension: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2019, 11, 2844. [Google Scholar] [CrossRef] [Green Version]
- Lingua, M.S.; Theumer, M.G.; Kruzynski, P.; Wunderlin, D.A.; Baroni, M.V. Bioaccessibility of polyphenols and anti-oxidant properties of the white grape by simulated digestion and Caco-2 cell assays: Comparative study with its winemaking product. Food Res. Int. 2019, 122, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Palermo, M.; Pellegrini, N.; Fogliano, V. The effect of cooking on the phytochemical content of vegetables. J. Sci. Food Agric. 2014, 94, 1057–1070. [Google Scholar] [CrossRef] [PubMed]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef] [PubMed]
- Crozier, A.; Del Rio, D.; Clifford, M.N. Bioavailability of dietary flavonoids and phenolic compounds. Mol. Asp. Med. 2010, 31, 446–467. [Google Scholar] [CrossRef] [PubMed]
- Olmo-Cunillera, A.; Escobar-Avello, D.; Pérez, A.J.; Marhuenda-Muñoz, M.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A. Is Eating Raisins Healthy? Nutrients 2019, 12, 54. [Google Scholar] [CrossRef]
- Castello, F.; Costabile, G.; Bresciani, L.; Tassotti, M.; Naviglio, D.; Luongo, D.; Ciciola, P.; Vitale, M.; Vetrani, C.; Galaverna, G.; et al. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans. Arch. Biochem. Biophys. 2018, 646, 1–9. [Google Scholar] [CrossRef]
- Averilla, J.N.; Oh, J.; Wu, Z.; Liu, K.; Jang, C.H.; Kim, H.J.; Kim, J.; Kim, J.S. Improved extraction of resveratrol and antioxidants from grape peel using heat and enzymatic treatments. J. Sci. Food Agric. 2019, 99, 4043–4053. [Google Scholar] [CrossRef] [PubMed]
Fold of Change | [0.85–1); (1–1.15] | [0.4–0.7]; [1.3–1.6] | [0.4–0.7]; [1.3–1.6] | <0.4; >1.6 |
---|---|---|---|---|
Functional relevance levels | 1 | 2 | 3 | 4 |
TPC (mg/L GAE) | IC50 (mg/L) | |||
---|---|---|---|---|
Vitis vinifera Varieties | Fresh Juice | Polyphenol Extracts | Fresh Juice | Polyphenol Extracts |
Airen | 752 ± 47 | 639 ± 63 | 57 ± 5 | 67 ± 5 |
Gewürztraminer | 1129 ± 6 | 910 ± 5 | 43 ± 6 | 49 ± 5 |
Sauvignon blanc | 785 ± 66 (a) | 590 ± 35 | 57 ± 4 (b) | 64 ± 4 (c) |
Verdejo | 491 ± 23 | 454 ± 11 | 67 ± 5 | 76 ± 5 |
Tempranillo | 1639 ± 23 | 1094 ± 9 | 34 ± 4 | 46 ± 4 |
Airen | Gewürztraminer | Sauvignon Blanc | Verdejo | Tempranillo | |||
---|---|---|---|---|---|---|---|
Hydroxycinnamic acids | Caffeic acid | Concentration (mg/L) | 2.544 ± 0.002 | 2.5067 ± 0.0003 | nd | 2.4965 ± 0.0002 | 2.559 ± 0.002 |
Relevance | 1 | -- | 1 | 1 | |||
Chlorogenic acid | Concentration (mg/L) | 2.791 ± 0.002 | 2.805 ± 0.003 | 2.765 ± 0.001 | 2.786 ± 0.002 | 2.94 ± 0.02 | |
Relevance | nsd (p = 0.0126) | 1 | nsd (p = 0.7823) | 1 | |||
Coumaric acid | Concentration (mg/L) | 2.854 ± 0.001 | nd | nd | 2.927 ± 0.009 | nd | |
Relevance | -- | -- | 1 | -- | |||
Hydroxybenzoic acids | Dihydroxybenzoic acid | Concentration (mg/L) | 3.422 ± 0.004 | 3.480 ± 0.002 | 3.404 ± 0.001 | 3.4114 ± 0.0003 | 3.423 ± 0.002 |
Relevance | 1 | 1 | 1 | nsd (p = 0.624) | |||
Gallic acid | Concentration (mg/L) | 2.81 ± 0.01 | 3.05 ± 0.04 | 2.559 ± 0.002 | 3.065 ± 0.009 | 2.81 ± 0.03 | |
Relevance | 1 | 1 | 1 | nsd (p = 0.998) | |||
Protocatechuic acid | Concentration (mg/L) | 3.337 ± 0.002 | 3.338 ± 0.003 | 3.324 ± 0.001 | 3.333 ± 0.002 | 3.333 ± 0.003 | |
Relevance | 1 | 1 | 1 | 1 | |||
Salicylic acid | Concentration (mg/L) | 2.5414 ± 0.0001 | 2.5621 ± 0.0003 | 2.5502 ± 0.0001 | 2.5412 ± 0.0001 | 2.5397 ± 0.0001 | |
Relevance | 1 | 1 | nsd (p = 0.0781) | 1 | |||
Vanillic acid | Concentration (mg/L) | 4.024 ± 0.003 | 3.951 ± 0.005 | 3.9222 ± 0.0008 | 3.9323 ± 0.0005 | 3.943 ± 0.004 | |
Relevance | 1 | 1 | 1 | 1 | |||
Estilbenes | Polydatin | Concentration (mg/L) | 3.135 ± 0.003 | 3.0849 ± 0.0002 | 3.06735 ± 0.00002 | 3.0837 ± 0.0002 | 3.0989 ± 0.0007 |
Relevance | 1 | 1 | 1 | 1 | |||
Resveratrol | Concentration (mg/L) | 3.536 ± 0.002 | 3.512 ± 0.001 | nd | 3.511 ± 0.002 | 3.509 ± 0.0003 | |
Relevance | 1 | -- | 1 | 1 | |||
Flavonoids | Catechin | Concentration (mg/L) | 6.3 ± 0.1 | 4.2 ± 0.4 | 1.910 ± 0.003 | 3.05 ± 0.02 | 3.6 ± 0.2 |
Relevance | 3 | 4 | 3 | 3 | |||
Epicatechin | Concentration (mg/L) | 2.772 ± 0.004 | 3.33 ± 0.02 | 2.02796 ± 0.00003 | 2.197 ± 0.005 | 2.48 ± 0.04 | |
Relevance | 2 | 2 | 2 | 1 | |||
Isorhamnetin | Concentration (mg/L) | 2.6054 ± 0.0003 | 2.6137 ± 0.0006 | nd | 2.6029 ± 0.0002 | 2.6042 ± 0.0007 | |
Relevance | 1 | -- | 1 | 1 | |||
Quercetin | Concentration (mg/L) | 5.8 ± 0.2 | 6.00 ± 0.05 | 3.51 ± 0.01 | 4.37 ± 0.02 | 3.60 ± 0.01 | |
Relevance | nsd (p = 0.0264) | 3 | 2 | 3 | |||
Phenylpropanoids | Esculetin | Concentration (mg/L) | 2.171 ± 0.001 | 2.200 ± 0.001 | 2.196 ± 0.004 | 2.169 ± 0.001 | 2.164 ± 0.003 |
Relevance | 1 | 1 | 1 | 1 |
TPC (mg/L GAE) | IC50 (mg/L) | |||
---|---|---|---|---|
Airen Industrial Samples | Juice Samples | Polyphenol Extracts | Juice Samples | Polyphenol Extracts |
NCJ19 | 477 ± 13 | 435 ± 15 | 73 ± 6 | 78 ± 7 |
NCJ30 | 649 ± 10 | 629 ± 51 | 62 ± 7 | 71 ± 7 |
NCJ65 | 927 ± 38 | 874 ± 14 | 64 ± 8 | 83 ± 7 |
DCJ19 | 490 ± 2 | 348 ± 31 | 50 ± 7 | 61 ± 8 |
DCJ30 | 643 ± 2 | 423 ± 12 | 52 ± 6 | 62 ± 8 |
DCJ65 | 769 ± 2 | 516 ± 13 | 31 ± 6 | 35 ± 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Martínez, D.J.; Arroyo-Hernández, M.; Posada-Ayala, M.; Santos, C. The High Content of Quercetin and Catechin in Airen Grape Juice Supports Its Application in Functional Food Production. Foods 2021, 10, 1532. https://doi.org/10.3390/foods10071532
García-Martínez DJ, Arroyo-Hernández M, Posada-Ayala M, Santos C. The High Content of Quercetin and Catechin in Airen Grape Juice Supports Its Application in Functional Food Production. Foods. 2021; 10(7):1532. https://doi.org/10.3390/foods10071532
Chicago/Turabian StyleGarcía-Martínez, Daniel J., María Arroyo-Hernández, María Posada-Ayala, and Cruz Santos. 2021. "The High Content of Quercetin and Catechin in Airen Grape Juice Supports Its Application in Functional Food Production" Foods 10, no. 7: 1532. https://doi.org/10.3390/foods10071532
APA StyleGarcía-Martínez, D. J., Arroyo-Hernández, M., Posada-Ayala, M., & Santos, C. (2021). The High Content of Quercetin and Catechin in Airen Grape Juice Supports Its Application in Functional Food Production. Foods, 10(7), 1532. https://doi.org/10.3390/foods10071532