Potential Functional Snacks: Date Fruit Bars Supplemented by Different Species of Lactobacillus spp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inoculum and LDB Preparation
2.2. Enumeration of Probiotic Microorganisms
2.3. LDB Polyphenolic Extraction
2.4. HPLC-DAD Analysis
2.5. Total Phenol Content (TPC)
2.6. DPPH Assay
2.7. Statistics
3. Results
3.1. Microbial Analysis
3.2. Total Polyphenols and Antioxidant Activity
3.3. Polyphenolic Composition of LDB
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amir, J.; Kumari, A.; Khan, M.N.; Medam, S.K. Evaluation of the combinational antimicrobial effect of Annona squamosa and Phoenix dactylifera seeds methanolic extract on standard microbial strains. Int. J. Biol. Sci. 2013, 2, 68–73. [Google Scholar]
- Ammar, N.M.; Lamia, T.; Abou, E.; Nabil, H.S.; Lalita, M.C.; Tom, J.M. Flavonoid constituents and antimicrobial activity of date (Phoenix dactylifera L.) seeds growing in Egypt. MedAromPl Sci. Biotech. 2009, 3, 1–5. [Google Scholar]
- Baliga, M.S.; Baliga, B.R.V.; Kandathil, S.M.; Bhat, H.P.; Vayalil, P.K. A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res. 2010, 44, 1812–1822. [Google Scholar] [CrossRef]
- Taleb, H.; Maddocks, S.E.; Morris, R.K.; Kanekanian, A.D. Chemical characterisation and the anti-inflammatory, anti-angiogenic and antibacterial properties of date fruit (Phoenix dactylifera L.). J. Ethnopharmacol. 2016, 194, 457–468. [Google Scholar] [CrossRef]
- Al-Shahib, W.; Marshall, R.J. The fruit of the date palm: Its possible use as the best food for the future? Int. J. Food Sci. Nutr. 2009, 54, 247–259. [Google Scholar] [CrossRef]
- Chaira, N.; Mrabet, A.; Ferchichi, A. Evaluation of antioxidant activity, phenolics, sugar and mineral contents in date palm fruits. J. Food Biochem. 2009, 33, 390–403. [Google Scholar] [CrossRef]
- Al-Aswad, M.B. The amino acids content of some Iraqi dates. J. Food Sci. 1971, 36, 1019–1020. [Google Scholar] [CrossRef]
- Auda, H.; Al-Wandawi, H.; Al-Adhami, L. Protein and amino acid composition of three varieties of Iraqi dates at different stages of development. J. Agric. Food Chem. 1976, 24, 365–367. [Google Scholar] [CrossRef]
- Auda, H.; Al-Wandawi, H. Effect of gamma irradiation and storage conditions on amino acid composition of some Iraqi dates. J. Agric. Food Chem. 1980, 28, 516–518. [Google Scholar] [CrossRef]
- Motarjemi, Y. Impact of small scale fermentation technology on food safety in developing countries. Int. J. Food Microbiol. 2002, 75, 213–229. [Google Scholar] [CrossRef]
- Ray, R.C.; Ward, O.P. Microbial Biotechnology in Horticulture; CRC Press: Plymouth, UK, 2006; Volume 1. [Google Scholar]
- Sabater, C.; Ruiz, L.; Delgado, S.; Ruas-Madiedo, P.; Margolles, A. Valorization of Vegetable Food Waste and By-Products Through Fermentation Processes. Front. Microbiol. 2020, 11, 2604. [Google Scholar] [CrossRef]
- Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res. 2017, 104, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Hur, S.J.; Lee, S.Y.; Kim, Y.C.; Choi, I.; Kim, G.B. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Fessard, A.; Kapoor, A.; Patche, J.; Assemat, S.; Hoarau, M.; Bourdon, E.; Bahorun, T.; Remize, F. Lactic Fermentation as an Efficient Tool to Enhance the Antioxidant Activity of Tropical Fruit Juices and Teas. Microorganisms 2017, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Curiel, J.A.; Pinto, D.; Marzani, B.; Filannino, P.; Farris, G.A.; Gobbetti, M.; Rizzello, C.G. Lactic acid fermentation as a tool to enhance the antioxidant properties of Myrtuscommunis berries. Microb. Cell Fact. 2015, 14, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saubade, F.; Hemery, Y.M.; Guyot, J.P.; Humblot, C. Lactic Acid fermentation as a tool for increasing the folate content of foods. Crit. Rev. Food Sci. Nutr. 2017, 57, 3894–3910. [Google Scholar] [CrossRef] [PubMed]
- Padayachee, A.; Netzel, G.; Netzel, M.; Day, L.; Zabaras, D.; Mikkelsen, D.; Gidley, M.J. Binding of polyphenols to plant cell wall analogues—Part 1: Anthocyanins. Food Chem. 2012, 134, 155–161. [Google Scholar] [CrossRef]
- Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Daliu, P.; Narciso, V.; Tenore, G.C.; Novellino, E. Colon Bioaccessibility and Antioxidant Activity of White, Green and Black Tea Polyphenols Extract after In Vitro Simulated Gastrointestinal Digestion. Nutrients 2018, 10, 1711. [Google Scholar] [CrossRef] [Green Version]
- Nazzaro, F.; Fratiannia, F.; Coppola, R.; Sada, S.; Orlando, P. Synbiotic potential of carrot juice supplemented with Lactobacillus spp. and inulin or fructooligosaccharides. J. Sci. Food Agric. 2008, 88, 2271–2276. [Google Scholar] [CrossRef]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotech. 2017, 44, 94–102. [Google Scholar] [CrossRef]
- Harima-Mizusawa, N.; Kamachi, K.; Kano, M.; Nozaki, D.; Uetake, T.; Yokomizo, Y.; Nagino, T.; Tanaka, A.; Miyazaki, K.; Nakamura, S. Beneficial effects of citrus juice fermented with Lactobacillus plantarum YIT 0132 on atopic dermatitis: Results of daily intake by adult patients in two open trials. Biosci. Microbiota Food Health 2015, 35, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H. Lactic acid fermented foods and their benefits in Asia. Food control 1997, 8, 259–269. [Google Scholar] [CrossRef]
- Nielsen, E.S.; Garnås, E.; Jensen, K.J.; Hansen, L.H.; Olsen, P.S.; Nielsen, D.S. Lacto-fermented sauerkraut improves symptoms in IBS patients independent of product pasteurization—A pilot study. Food Funct. 2018, 9, 5323–5335. [Google Scholar] [CrossRef] [PubMed]
- Bartkiene, E.; Bartkevics, V.; Starkute, V.; Zadeike, D.; Juodeikiene, G. The Nutritional and Safety Challenges Associated with Lupin Lacto-Fermentation. Front. Plant Sci. 2016, 7, 951. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.P. Functional foods from probiotics and prebiotics. Food Technol. 2001, 55, 46–53. [Google Scholar]
- Granito, M.; Frias, J.; Doblado, R.; Guerra, M.; Champ, M.; Vidal-Valverde, C. Nutritional improvement of beans (Phaseolus vulgaris) by natural fermentation. Eur. Food Res. Technol. 2002, 214, 226–231. [Google Scholar] [CrossRef]
- Martin-Cabrejas, M.A.; Sanfiz, B.; Vidal, A.; Molla, E.; Esteban, R.; Lopez-Andreu, F.J. Effect of fermentation and autoclaving on dietary fiber fractions and anti-nutritional factors of beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2004, 52, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Siebenhandl, S.; Lestario, L.N.; Trimmel, D.; Berghofer, E. Studies on tape ketan-an Indonesian fermented rice food. Int. J. Food Sci. Nutr. 2001, 52, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.A.; Borges, F.; Guimarães, C.; Lima, J.L.; Matos, C.; Reis, S. Phenolic acids and derivatives: Studies on the relationship among structure, radical scavenging activity, and physicochemical parameters. J. Agric. Food. Chem. 2000, 48, 2122–2126. [Google Scholar] [CrossRef]
- Olthof, M.R.; Hollman, P.C.; Katan, M.B. Chlorogenic acid and caffeic acid are absorbed in humans. J. Nutr. 2001, 131, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenolsand the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Vaquero, I.; Marcobal, Á.; Muñoz, R.; Marcobal, A.; Muñoz, R. Tannaseactivityby lactic acid bacteria isolated from grape must and wine. J. Food Microbiol. 2004, 96, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Francesca, N.; Barbera, M.; Martorana, A.; Saiano, F.; Gaglio, R.; Aponte, A.; Moschetti, G.C.; Settanni, L. Optimised method for the analysis of phenolic compounds from caper(Capparisspinosa, L.) berries and monitoring of their changes during fermentation. Food Chem. 2016, 196, 1172–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.; Zhu, Q.; Wen, L.; Yang, B.; Jiang, G.; Gao, H.; Chen, F.; Jiang, Y. Production ofquercetin, kaempferol and their glycosidic derivatives from the aqueousorganic extracted residue of litchi pericarp with Aspergillus awamori. Food Chem. 2014, 145, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Shah, N.P. Changes in antioxidant capacity, isoflavone profile, phenolic and vitamin contents in soymilk during extended fermentation. LWT-Food Sci. Technol. 2014, 58, 454–462. [Google Scholar] [CrossRef]
- Leite, G.S.; Resende, A.M.S.; West, N.P.; Lancha, J.A. Probiotics and sports: A new magic bullet. Nutrition 2018, 60, 152–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.C.; Wei, C.C.; Huang, C.C.; Chen, W.L.; Huang, H.Y. The Beneficial Effects of Lactobacillus plantarum PS128 on High-Intensity, Exercise-Induced Oxidative Stress, Inflammation, and Performance in Triathletes. Nutrients 2019, 11, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, N.S.; Muhamad, A.S.; Ooi, F.K.; Meor-Osman, J.; Chen, C.K. The effects of combined probiotic ingestion and circuit training on muscular strength and power and cytokine responses in young males. Appl. Physiol. Nutr. Metab. 2017, 43, 180–186. [Google Scholar] [CrossRef] [PubMed]
Time | Surviving Cells (CFU/g) | |||
---|---|---|---|---|
L. acidophilus | L. bulgaricus | L. plantarum | L. rhamnosus | |
0 | 1.4 ± 0.2 × 106 | 1.2 ± 0.3 × 106 | 1.6 ± 0.4 × 106 | 1.3 ± 0.2 × 106 |
48 h | 4.2 ± 0.3 × 109 | 3.1± 0.4 × 109 | 4.4 ± 0.2 × 109 | 4.9 ± 0.3 × 109 |
4 weeks | 2.8 ± 0.2 × 109 | 1.9 ± 0.2 × 109 | 2.1 ± 0.3 × 109 | 2.8 ± 0.2 × 109 |
pH | ||||
L. acidophilus | L. bulgaricus | L. plantarum | L. rhamnosus | |
0 | 4.90 ± 0.01 | 4.97 ± 0.2 | 4.82 ± 0.20 | 4.84 ± 0.08 |
48 h | 3.20 ± 0.09 | 3.53 ± 0.30 | 3.47 ± 0.07 | 3.21 ± 0.09 |
4 weeks | 3.17 ± 0.02 | 3.22 ± 0.36 | 3.23 ± 0.12 | 3.14 ± 0.09 |
mg GAE/Date Bars | ||||
---|---|---|---|---|
Probiotic Strains | 48 h of Fermentation | 4 Weeks at 4 °C | % Increase in Free Polyphenols after 48 h of Incubation | % Increase in Free Polyphenols after 4 Weeks at 4 °C |
L. acidophilus | 71.34 ± 0.08 * | 63.13 ± 0.32 * | 59.03 | 45.82 |
L. bulgaricus | 63.29 ± 0.16 * | 59. 67 ± 0.20 * | 41.19 | 36.12 |
L. plantarum | 47.27 ± 0.04 ** | 49.94 ± 0.05 ** | 4.91 | 7.02 |
L. rhamnosus | 77.56 ± 0.15 * | 71.34 ± 0.61 * | 71.58 | 61.54 |
Control | 44.87 ± 0.07 | 43.88 ± 0.10 |
mg TE/Date Bars | ||||
---|---|---|---|---|
Probiotic Strains | 48 h of Fermentation | 4 Weeks at 4 °C | % Increase in Antioxidant Activity 48 h of Incubation | % Increase in Antioxidant Activity after 4 Weeks at 4 °C |
L. acidophilus | 140.64 ± 0.31 * | 111.78 ± 0.79 * | 30.91 | 21.74 |
L. bulgaricus | 133.53 ± 0.91 * | 128.83 ± 0.15 * | 23.61 | 40.00 |
L. plantarum | 111.05 ± 0.13 ** | 108.33 ± 0.58 ** | 2.80 | 17.73 |
L. rhamnosus | 150.13 ± 0.15 * | 141.26 ± 0.43 * | 39.97 | 53.50 |
Control | 108.03 ± 0.16 | 92.02 ± 0.17 |
Phenolic Compound | L. acidophilus LDB | L. bulgaricus LDB | L. plantarum LDB | L. rhamnosus LDB | Control |
---|---|---|---|---|---|
Gallic acid | 1.87 ± 0.07 * | 1.74 ± 0.09 * | 1.39 ± 0.07 ** | 8.05 ± 0.03 * | 1.40 ± 0.03 |
Syringic acid | 3.97 ± 0.02 * | 3.77 ± 0.03 * | 3.53 ± 0.03 ** | 4.15 ± 0.02 * | 2.46 ± 0.03 |
Caffeic acid | 3.97 ± 0.03 * | 3.73 ± 0.02 * | 3.41 ± 0.03 ** | 4.42 ± 0.03 * | 3.32 ± 0.03 |
Ferulic acid | 5.17 ± 0.04 * | 4.88 ± 0.02 * | 4.73 ± 0.03 ** | 5.46 ± 0.03 * | 4.26 ± 0.04 |
Chlorogenic acid | 2.82 ± 0.03 * | 3.01 ± 0.02 * | 3.93 ± 0.03 ** | 2.64 ± 0.03 * | 4.73 ± 0.05 |
Cathechin | 1.56 ± 0.03 * | 1.55 ± 0.05 * | 1.43 ± 0.03 ** | 1.78 ± 0.03 * | 1.34 ± 0.02 |
Rutin | 0.56 ± 0.04 * | 0.48 ± 0.01 * | 0.56 ± 0.06 ** | 0.42 ± 0.03 * | 0.91 ± 0.02 |
Quercitrin (Quercetin 3-O-rhamnoside) | 0.23 ± 0.02 * | 0.26 ± 0.02 * | 0.21 ± 0.03 ** | 0.29 ± 0.02 * | 0.78 ± 0.02 |
Isoquercetin | 0.28 ± 0.02 * | 0.26 ± 0.03 * | 0.23 ± 0.03 ** | 0.1 ± 0.03 * | 0.76 ± 0.03 |
Quercetin | 0.21 ± 0.01 * | 0.29 ± 0.01 * | 0.25 ± 0.03 ** | 0.32 ± 0.01 * | 0.11 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maisto, M.; Annunziata, G.; Schiano, E.; Piccolo, V.; Iannuzzo, F.; Santangelo, R.; Ciampaglia, R.; Tenore, G.C.; Novellino, E.; Grieco, P. Potential Functional Snacks: Date Fruit Bars Supplemented by Different Species of Lactobacillus spp. Foods 2021, 10, 1760. https://doi.org/10.3390/foods10081760
Maisto M, Annunziata G, Schiano E, Piccolo V, Iannuzzo F, Santangelo R, Ciampaglia R, Tenore GC, Novellino E, Grieco P. Potential Functional Snacks: Date Fruit Bars Supplemented by Different Species of Lactobacillus spp. Foods. 2021; 10(8):1760. https://doi.org/10.3390/foods10081760
Chicago/Turabian StyleMaisto, Maria, Giuseppe Annunziata, Elisabetta Schiano, Vincenzo Piccolo, Fortuna Iannuzzo, Rosaria Santangelo, Roberto Ciampaglia, Gian Carlo Tenore, Ettore Novellino, and Paolo Grieco. 2021. "Potential Functional Snacks: Date Fruit Bars Supplemented by Different Species of Lactobacillus spp." Foods 10, no. 8: 1760. https://doi.org/10.3390/foods10081760
APA StyleMaisto, M., Annunziata, G., Schiano, E., Piccolo, V., Iannuzzo, F., Santangelo, R., Ciampaglia, R., Tenore, G. C., Novellino, E., & Grieco, P. (2021). Potential Functional Snacks: Date Fruit Bars Supplemented by Different Species of Lactobacillus spp. Foods, 10(8), 1760. https://doi.org/10.3390/foods10081760