A Methodological Approach to Assess the Effect of Organic, Biodynamic, and Conventional Production Processes on the Intrinsic and Perceived Quality of a Typical Wine: The Case Study of Chianti DOCG
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Samples
2.2. Vineyard and Winemaking Procedures Survey
2.3. Intrinsic Quality: Chemical Characteristics for Measuring Eligibility, Identity, and Style Wine Properties
2.4. Intrinsic Quality: Sensory Attributes Measuring Eligibility, Identity, and Style Wine Properties
2.5. Perceived Quality: Napping® Test and Wine Rating of Typicality
“Imagine that you want to explain to someone what a Chianti DOCG wine is. To explain, you can suggest to this person to taste a wine. For each wine presented, you must answer the following question: Do you think that this wine is a good example or a bad example of what a Chianti DOCG wine is?”
2.6. Statistical Analyses
3. Results and Discussion
3.1. Vineyard and Winemaking Procedures and Carbon Emission Estimation
3.2. Evaluation of the Chemical and Sensory Intrinsic Quality of 2016 Chianti Wines
3.2.1. Chemical Analysis
3.2.2. Sensory Analysis
3.2.3. Chianti DOCG Wines Classification according to Estate Management Models
3.3. Evaluation of the Sensory Perceived Quality of 2016 Chianti Wines: Napping and Typicality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parpinello, G.P.; Ricci, A.; Rombolà, A.D.; Nigro, G.; Versari, A. Comparison of Sangiovese wines obtained from stabilized organic and biodynamic vineyard management systems. Food Chem. 2019, 83, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Castellini, A.; Mauracher, C.; Procidano, I.; Sacchi, G. Italian market of organic wine: A survey on production system characteristics and marketing strategies. Wine Econ. Policy 2014, 3, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Forbes, S.L.; Cohen, D.A.; Cullen, R.; Wratten, S.D.; Fountain, J. Consumer attitudes regarding environmentally sustainable wine: An exploratory study of the New Zealand marketplace. J. Clean. Prod. 2009, 17, 1195–1199. [Google Scholar] [CrossRef] [Green Version]
- Vidal, J.; Kelly, A. Bhutan set to plough lone furrow as world’s first wholly organic country. Guard. Poverty Matter Blog. 2013, 2, 11. [Google Scholar]
- Reeve, J.R.; Carpenter-Boggs, L.; Reganold, J.P.; York, A.L.; McGourty, G.; McCloskey, L.P. Soil and winegrape quality in biodynamically and organically managed vineyards. Am. J. Enol. Vitic. 2005, 56, 367–376. [Google Scholar]
- Picone, G.; Trimigno, A.; Tessarin, P.; Donnini, S.; Rombolà, A.D.; Capozzi, F. 1H NMR foodomics reveals that the biodynamic and the organic cultivation managements produce different grape berries (Vitis vinifera L. cv. Sangiovese). Food Chem. 2016, 213, 187–195. [Google Scholar] [CrossRef]
- Picchi, M.; Canuti, V.; Bertuccioli, M.; Zanoni, B. The Influence of Conventional and Biodynamic Winemaking Processes on the Quality of Sangiovese Wine. Int. J. Wine Res. 2020, 12, 1–16. [Google Scholar] [CrossRef] [Green Version]
- McCullough, M.; Qenani, E.; MacDougall, N. Biodynamic practices, eco-label wines and Millennial consumers. J. Agric. Sci. Technol. 2012, 2, 1364. [Google Scholar]
- Delmas, M.A.; Grant, L.E. Eco-labeling strategies and price-premium: The wine industry puzzle. Bus. Soc. 2014, 53, 6–44. [Google Scholar] [CrossRef]
- Ross, C.F.; Weller, K.M.; Blue, R.B.; Reganold, J.P. Difference testing of Merlot produced from biodynamically and organically grown wine grapes. J. Wine Res. 2009, 20, 85–94. [Google Scholar] [CrossRef]
- Reilly, J.K. Moonshine, Part 2: A Blind Sampling of 20 Wines Shows That Biodynamics Works; But How? Fortune 2004, 150, 1–2. [Google Scholar]
- Parpinello, G.P.; Rombolà, A.D.; Simoni, M.; Versari, A. Chemical and sensory characterisation of Sangiovese red wines: Comparison between biodynamic and organic management. Food Chem. 2015, 167, 145–152. [Google Scholar] [CrossRef]
- Lecat, B.; Chapuis, C. Food and Wine Pairing in Burgundy: The Case of Grands Crus. Beverages 2017, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Maitre, I.; Symoneaux, R.; Jourjon, F.; Mehinagic, E. Sensory typicality of wines: How scientists have recently dealt with this subject. Food Qual. Prefer. 2010, 21, 726–731. [Google Scholar] [CrossRef]
- Gonzaga, L.S.; Capone, D.L.; Bastian, S.E.; Danner, L.; Jeffery, D.W. Sensory typicity of regional Australian Cabernet Sauvignon wines according to expert evaluations and descriptive analysis. Food Res. Int. 2020, 138, 109760. [Google Scholar] [CrossRef]
- Casabianca, F.; Sylvander, B.; Noel, Y.; Béranger, C.; Coulon, J.B.; Giraud, G.; Flutet, G.; Roncin, F.; Vincent, E. Terroir et Typicité: Propositions de définitions pour deux notions essentielles à l’appréhension des Indications Géographiques et du développement durable. In VIe Congrès International Sur Les Terroirs Viticoles; Bordeaux-Montpellier: Corte, France, 2006. [Google Scholar]
- Bertuccioli, M.; Rosi, I.; Canuti, V.; Giovani, G.; Picchi, M. La tipicità dei vini: Il Sangiovese. Ind. Delle Bevande 2011, 40, 7–14. [Google Scholar]
- Canuti, V.; Picchi, M.; Zanoni, B.; Fia, G.; Bertuccioli, M. A Multivariate Methodological Approach to Relate Wine to Characteristics of Grape Composition: The Case of Typicality. Am. J. Enol. Vitic. 2017, 68, 49–59. [Google Scholar] [CrossRef]
- Parr, W.V.; Green, J.A.; White, K.G.; Sherlock, R.R. The distinctive flavour of New Zealand Sauvignon blanc: Sensory characterization by wine professionals. Food Qual. Prefer. 2007, 18, 849–861. [Google Scholar] [CrossRef]
- Casabianca, F.; Sylvander, B.; Béranger, C.; Coulon, J.B.; Roncin, F. Terroir et typicité: Deux concepts-clés des appelations d’Origine contrôlée—Essai de définitions scienti-fiques et opérationnelles. In Proceedings of the Territoires et Enjeux Du Développement Régional, Lyon, France, 9–11 March 2005; pp. 1–18. [Google Scholar]
- Delmas, M.A.; Gergaud, O.; Lim, J. Does organic wine taste better? An analysis of experts’ ratings. J. Wine Econ. 2016, 190, 329–354. [Google Scholar]
- Vecchio, R. Determinants of willingness-to-pay for sustainable wine: Evidence from experimental auctions. Wine Econ. Policy 2013, 2, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Svinartchuk, T.; Hunziker, P.; Novello, V.; Tonni, M.; Corbet-Milward, J.; de la Fuente, M.; Costa, D. Methodological Recommendations for Accounting for GHG Balance in the Vitivinicultural Sector. OIV Collective Expertise. 2017. Available online: https://www.oiv.int/public/medias/5519/methodological-ghg-balance.pdf (accessed on 31 January 2021).
- Vázquez-Rowe, I.; Rugani, B.; Benetto, E. Tapping carbon footprint variations in the European wine sector. J. Clean. Prod. 2013, 43, 146–155. [Google Scholar] [CrossRef]
- Zanoni, B.; Siliani, S.; Canuti, V.; Rosi, I.; Bertuccioli, M. A kinetic study on extraction and transformation phenomena of phenolic compounds during red wine fermentation. Int. J. Food Sci. Technol. 2010, 45, 2080–2088. [Google Scholar] [CrossRef]
- Peng, Z.; Iland, P.G.; Oberholster, A.; Sefton, M.A.; Waters, E.J. Analysis of pigmented polymers in red wine by reverse phase HPLC. Aust. J. Grape Wine Res. 2002, 8, 70–75. [Google Scholar] [CrossRef]
- Glories, Y. La couleur des vins rouges II, Connaissance de la vigne et du vin. Vigne Vin 1984, 18, 253–271. [Google Scholar]
- Ribereau-Gayon, P. Le dosage des composés phénoliques totaux dans les vins rouges. Chim. Anal. 1970, 52, 627–631. [Google Scholar]
- Mirabel, M. Caracteristiques chimiques et organoleptiques des tanins des raisins de Vitis vinifera var. Merlot et Cabernet Sauvignon issus de differents terroirs Bordelais. Ph.D. Thesis, Université Victor Segalen Bordeaux, Bordeaux, France, 2000. [Google Scholar]
- Bertuccioli, M. Direct gas chromatographic determination of some volatile compounds in wine. Vini Ital. 1982, 138, 149–156. [Google Scholar]
- Canuti, V.; Conversano, M.; Li Calzi, M.; Heymann, H.; Matthews, M.A.; Ebeler, S.E. Headspace solid-phase microextraction-gaschromatography-mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon grapes and wines. J. Chromatogr. 2009, 1216, 3012–3022. [Google Scholar] [CrossRef]
- Pagès, J. Recueil direct de distances sensorielles: Application à l’évaluation de dix vins blancs du Val-de-Loire. Scinces Aliment 2003, 23, 679–688. [Google Scholar] [CrossRef]
- Risvik, E.; McEwan, J.A.; Colwill, J.S.; Rogers, R.; Lyon, D.H. Projective mapping: A tool for sensory analysis and consumer research. Food Qual. Prefer. 1994, 5, 263–269. [Google Scholar] [CrossRef]
- Ballester, J.; Dacremont, C.; Le Fur, Y.; Etiévant, P. The role of olfaction in the elaboration and use of the Chardonnay wine concept. Food Qual. Prefer. 2005, 16, 351–359. [Google Scholar] [CrossRef]
- Tassoni, A.; Tango, N.; Ferri, M. Comparison of biogenic amine and polyphenol profiles of grape berries and wines obtained following conventional, organic and biodynamic agricultural and oenological practices. Food Chem. 2013, 139, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Pagliarini, E.; Laureati, M.; Gaeta, D. Sensory descriptors, hedonic perception and consumer’s attitudes to Sangiovese red wine deriving from organically and conventionally grown grapes. Front. Psychol. 2013, 4, 896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Winery Code | Management of Vineyard and Winery | Geographical Coordinates |
---|---|---|
A_BD | biodynamic | 43°24′33.6″ N 11°08′41.9″ E |
B_BD | biodynamic | 43°46′30.0″ N 10°53′25.4″ E |
C_BD | biodynamic | 43°40′56.3″ N 10°53′23.2″ E |
D_BD | biodynamic | 43°36′29.1″ N 11°09′57.4″ E |
E_OR | organic | 43°43′26.9″ N 11°03′09.6″ E |
F_OR | organic | 43°38′41.4″ N 11°02′34.7″ E |
G_OR | organic | 43°42′26.8″ N 11°10′57.9″ E |
H_OR | organic | 43°32′24.9″ N 11°08′58.9″ E |
I_OR | organic | 43°45′16.6″ N 11°02′37.9″ E |
L_CV | conventional | 43°34′12.2″ N 11°10′53.4″ E |
M_CV | conventional | 43°31′24.0″ N 11°08′47.5″ E |
N_CV | conventional | 43°39′43.2″ N 11°03′26.9″ E |
O_CV | conventional | 43°37′54.1″ N 11°07′15.4″ E |
P_CV | conventional | 43°38′33.0″ N 11°02′13.0″ E |
Category | Attribute | Reference Standard |
---|---|---|
FRUITY Smell and flavor in mouth | Blackberry Jam | 1 g blackberry jam in 1 mL of base red wine |
Prune | 1 mL prune syrup juice in 1 mL of base red wine | |
Cherry | 0.5 mL prune cherry juice in 1 mL of base red wine | |
FLORAL Smell and flavor in mouth | Floral | 1 mL stock solution 1 + 1 mL stock solution 2 * in 2 mL of base red wine |
VEGETAL Smell and flavor in mouth | Cooked Vegetal | 0.5 mL canned asparagus juice in 1 mL of base red wine |
WOOD Smell and flavor in mouth | Wood | 1 mL stock solution 4 ** in 1 mL of base red wine |
Spicy | 1 mL stock solution 5, 6, and 7 *** in, respectively, 1 mL of base red wine | |
TASTE | Acid | 0.04 g citric acid in 100 mL of base red wine = intensity 9 |
Sweet | 0.8 g of glucose in 100 mL of base red wine = intensity 9 | |
TACTILE SENSATIONS | Astringency | 0.3 g potassium alum in 100 mL of base red wine = intensity 9 |
Estate Code | A_BD | B_BD | C_BD | D_BD | E_OR | F_OR | G_OR | H_OR | I_OR | L_CV | M_CV | N_CV | O_CV | P_CV |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vineyard | ||||||||||||||
Kg/Plant | n.a. 5 | 1.70 | 1.4 | 1.2 | 2.57 | 2.18 | 1.57 | 1.2 | 1.2 | 1.57 | 2 | 1.83 | n.a. 5 | 1.6 |
Harvest | n.a. 5 | manual | manual | manual | manual | manual | manual | manual | mechanic | manual | manual | mechanic | n.a. 5 | mechanic |
Fertilization compounds | n.a. 5 | green manure | green manure | green manure | n.a. 5 | green manure, organic | green manure, mineral NPK | green manure | n.a. 5 | organic, mineral NPK | mineral NPK | organic, mineral NPK | n.a. 5 | mineral NPK |
Pest control compounds | n.a. 5 | Cu 6 S 7 Bt 1 | Cu 6 S 7 Bt 1 | Cu 6 S 7 Bt 1 | Cu 6 S 7 | Cu 6 S 7 Sp 2 | Cu 6 S 7 | Cu 6 S 7 | n.a. 5 | n.a. 5 | Cu 6 S 7 Sint 8 | Cu 6 S 7 Sint 8 | n.a. 5 | Cu 6 S 7 Sint 8 |
Cellar | ||||||||||||||
Tank material | n.a. 5 | SS 4 | CR 3 | SS 4 | CR 3 | SS 4 | SS 4 | SS 4 | SS 4 CR 3 | CR 3 | SS 4 | CR 3 | SS 4 | SS 4 |
Tank volume (hL) | n.a.5 | 65 | 120 | 80 | 30 | 150 | 100 | 50 | 100 | 150 | 100 | 120 | 1500 | 150 |
Temperature Control | n.a. 5 | n.a. 5 | - | - | n.a. 5 | n.a. 5 | √ | n.a. 5 | n.a. 5 | - | n.a. 5 | √ | √ | n.a. 5 |
SO2 at pressing 9 | n.a. 5 | 4 | - | 4 | 4 | 5 | √ | 6 | √ | 3 | n.a.5 | 5 | 8 | 10 |
Selected Yeast 9 | n.a. 5 | - | - | - | - | 15 | - | - | - | 15 | 15 | 15 | 15 | 20 |
Blend | n.a. 5 | √ | √ | √ | - | - | - | √ | √ | √ | √ | √ | √ | √ |
Tannins 9 | n.a. 5 | - | - | - | - | 10 | - | - | - | 10 | √ | 5 | 15 | 10 |
NH4 salts 9 | n.a. 5 | - | - | - | - | 100 | - | - | √ | 20 | √ | 30 | 10 | 25 |
Yeast extract 9 | n.a. 5 | - | - | - | - | 20 | - | - | √ | - | - | 30 | 10 | - |
Albumin 9 | n.a. 5 | - | - | - | - | - | - | √ | - | - | - | - | - | - |
Enzimes 9 | n.a. 5 | - | - | - | - | 3 | - | - | - | 3 | - | - | - | 2 |
SO2 9 | n.a. 5 | 4 | - | - | - | 5 | - | - | - | - | - | - | - | √ |
Filtration (µm) | n.a. 5 | - | 5 | - | - | 0.65 | √ | 5 | - | 1 | √ | 0.45, 1 | √ | 1 |
SO2 at bottling 9 | n.a. 5 | √ | - | 2 | - | 5 | - | 50 | - | - | √ | 1.5 | √ | √ |
Arabic gum 9 | n.a. 5 | - | - | - | - | - | - | √ | - | - | √ | - | √ | √ |
Tartaric acid 9 | n.a. 5 | √ | - | - | - | √ | - | - | - | - | √ | - | √ | √ |
Eligibility Profile Variables | Biodynamic | Conventional | Organic | F-Value |
---|---|---|---|---|
Alcohol (% v/v) | 13.93 ± 0.01 b | 13.52± 0.01 a | 14.05± 0.01 b | 9.27 *** |
pH | 3.56 ± 0.00 b | 3.56 ± 0.01 b | 3.31 ± 0.01 a | 8.12 ** |
Total SO2 3 | 23.58 ± 0.58 a | 56.07 ± 0.58 c | 37.42 ± 0.46 b | 20.59 *** |
Total Phenol Index | 50.66 ± 0.27 a | 50.11 ± 0.12 a | 59.52 ± 0.14 b | 10.22 *** |
Color Intensity | 7.83 ± 0.01 a | 6.62 ± 0.01 a | 8.00 ± 0.01 b | 13.85 *** |
L* | 78.22 ± 0.06 b | 81.46 ± 0.03 b | 77.96 ± 0.07 a | 13.73 *** |
a* | 21.19 ± 0.07 a | 18.25 ± 0.03 a | 21.57 ± 0.03 b | 7.01 ** |
Gelatin Index | 49.57 ± 0.93 b | 45.23 ± 0.37 a | 48.94 ± 0.58 b | 3.91 * |
Gallic acid 3 | 53.18 ± 1.22 a | 63.83 ± 4.68 ab | 71.59 ± 5.41 b | 3.56 * |
Procyanidin B1 3 | 35.02 ± 6.62 a | 40.77 ± 4.68 a | 52.28 ± 5.41 b | 8.92 *** |
Quercetin-3-O-glucoside 3 | 57.27 ± 9.42 a | 59.54 ± 13.09 a | 86.64 ± 10.64 b | 4.29 * |
Cis-caftaric acid 3 | 4.00 ± 0.29 ab | 3.20 ± 0.11 a | 4.42 ± 0.11 b | 3.87 * |
Trans-caftaric acid 3 | 14.12 ± 0.59 a | 34.29 ± 1.49 b | 40.78 ± 0.48 b | 25.50 *** |
Caffeic acid 3 | 12.63 ± 0.90 b | 7.54 ± 0.39 a | 7.90 0.32 a | 5.12 * |
Petunidin-3-O-glucoside 1 | 2.26 ± 0.12 a | 4.75 ± 0.32 b | 3.98 ± 0.41 ab | 3.33 * |
Peonidin-3-O-glucoside 1 | 1.07 ± 0.21 a | 2.6 ± 0.30 b | 2.44 ± 0.14 b | 5.00 * |
Polymeric pigments 1 | 43.73 ± 0.06 b | 31.17 ± 0.09 a | 38.99 ± 0.09 b | 10.28 *** |
Tannins 2 | 991.56 ± 46.28 b | 639.65 ± 56.22 a | 909.30 ± 44.39 b | 11.29 *** |
Identity Profile Variables 3 | Biodynamic | Conventional | Organic | F-Value |
Acetaldehyde | 4.37 ± 0.31 a | 9.81 ± 0.57 b | 4.16 ± 0.37 a | 5.16 * |
2-Octanone | 0.02 ± 0.01 a | 0.02 ± 0.00 b | 0.03 ± 0.00 b | 6.08 * |
Ethyl undecanoate | 0.14 ± 0.14 b | 0.07 ± 0.01 b | 0.10 ± 0.02 a | 11.52 *** |
Ethyl acetate | 115.28 ± 0.60 c | 76.48 ± 0.73 a | 103.91 ± 1.26 b | 21.27 *** |
Isoamyl acetate | 0.86 ± 0.10 b | 0.62 ± 0.05 a | 0.78 ± 0.09 b | 7.72 ** |
Diethyl succinate | 3.12 ± 0.39 b | 2.81 ± 0.16 ab | 2.34 ± 0.18 b | 4.03 * |
Octanoic acid | 0.33 ± 0.05 b | 0.32 ± 0.06 b | 0.19 ± 0.03 a | 5.10 * |
SIMCA Models | Chemical Classification | Sensory Classification | |||||
---|---|---|---|---|---|---|---|
Eligibility | Identity | All Variables | Eligibility | Identity | All Variables | ||
Conventional wines model | A_BD | • | • | • | • | − | • |
B_BD | • | • | • | • | − | • | |
C_BD | • | − | • | − | − | • | |
D_BD | • | • | − | • | − | • | |
E_OR | − | • | • | − | • | • | |
F_OR | • | • | • | − | − | − | |
H_OR | • | • | • | − | • | • | |
I_OR | • | • | • | • | − | − | |
Organic wines model | A_BD | • | • | • | • | • | • |
B_BD | • | • | • | • | • | • | |
C_BD | • | − | • | − | • | • | |
D_BD | • | • | • | • | • | • | |
L_CV | • | • | • | • | • | • | |
M_CV | • | • | • | • | • | • | |
N_CV | • | • | • | • | − | − | |
O_CV | • | • | • | • | • | • | |
P_CV | • | • | • | • | • | • | |
Biodynamic wines model | E_OR | • | • | • | • | • | • |
F_OR | • | • | • | • | • | • | |
H_OR | • | • | • | • | • | • | |
I_OR | • | • | • | • | • | • | |
L_CV | • | • | • | • | • | • | |
M_CV | • | • | • | • | • | • | |
N_CV | • | • | • | • | • | • | |
O_CV | • | • | • | • | • | • | |
P_CV | • | • | • | • | • | • |
Wine | Typicality Scores |
---|---|
A_BD | 3.20 ± 1.69 a |
B_BD | 3.71 ± 2.43 ab |
C_BD | 5.73 ± 2.63 f |
D_BD | 4.42 ± 2.28 bcd |
E_OR | 5.29 ± 2.56 ef |
F_OR | 4.16 ± 2.30 bc |
H_OR | 4.67 ± 2.46 cde |
I_OR | 5.04 ± 1.85 def |
L_CV | 4.89 ± 2.44 cdef |
M_CV | 4.98 ± 2.13 cdef |
N_CV | 5.44 ± 2.73 ef |
O_CV | 4.64 ± 2.34 cde |
P_CV | 5.58 ± 2.34 f |
F-Value | 5.69 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maioli, F.; Picchi, M.; Millarini, V.; Domizio, P.; Scozzafava, G.; Zanoni, B.; Canuti, V. A Methodological Approach to Assess the Effect of Organic, Biodynamic, and Conventional Production Processes on the Intrinsic and Perceived Quality of a Typical Wine: The Case Study of Chianti DOCG. Foods 2021, 10, 1894. https://doi.org/10.3390/foods10081894
Maioli F, Picchi M, Millarini V, Domizio P, Scozzafava G, Zanoni B, Canuti V. A Methodological Approach to Assess the Effect of Organic, Biodynamic, and Conventional Production Processes on the Intrinsic and Perceived Quality of a Typical Wine: The Case Study of Chianti DOCG. Foods. 2021; 10(8):1894. https://doi.org/10.3390/foods10081894
Chicago/Turabian StyleMaioli, Francesco, Monica Picchi, Valentina Millarini, Paola Domizio, Gabriele Scozzafava, Bruno Zanoni, and Valentina Canuti. 2021. "A Methodological Approach to Assess the Effect of Organic, Biodynamic, and Conventional Production Processes on the Intrinsic and Perceived Quality of a Typical Wine: The Case Study of Chianti DOCG" Foods 10, no. 8: 1894. https://doi.org/10.3390/foods10081894
APA StyleMaioli, F., Picchi, M., Millarini, V., Domizio, P., Scozzafava, G., Zanoni, B., & Canuti, V. (2021). A Methodological Approach to Assess the Effect of Organic, Biodynamic, and Conventional Production Processes on the Intrinsic and Perceived Quality of a Typical Wine: The Case Study of Chianti DOCG. Foods, 10(8), 1894. https://doi.org/10.3390/foods10081894