Food Safety of Consuming Black Soldier Fly (Hermetia illucens) Larvae: Microbial, Heavy Metal and Cross-Reactive Allergen Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Rearing and Sample Preparation
2.3. Microbiological Tests
2.4. Heavy Metals
2.5. Allergen Detection
Protein Extraction and Preparation
2.6. ELISA
2.7. Statistical Analysis
3. Results
3.1. Microbiological Analysis
3.2. Heavy Metals
3.3. Allergen Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Component Name | Sum of Peaks | |
Feed 1 Blanched | Tropomyosin.FLAEEADKy3 | 2478 |
Arginine Kinase.LEEGYAKy3 | 12,300.6 | |
Tropomyosin.ALQNAESEVAALNRy4 | 103,009 | |
Tropomyosin.SLEVSEEK.y4 | 566,441 | |
Tropomyosin.SLEVSEEKy3 | 21,440 | |
Myosin.ALESQLAELKy4 | 719.2 | |
Arginine Kinase.LEEGYAKy4 | 1036.7 | |
Arginine Kinase.VSSTLSGLEGELKy4 | 12,976.2 | |
Tropomyosin.FLAEEADKy3 | 2102 | |
Tropomyosin.ALQNAESEVAALNRy4 | 104,538 | |
Tropomyosin.LEDDLVLEKy4 | 652.9 | |
Tropomyosin.SLEVSEEK.y4 | 583,612 | |
Tropomyosin.SLEVSEEKy3 | 21,614 | |
Feed 1 Frozen | Myosin.ALESQLAELKy4 | 589.9 |
Myosin.ALESQLAELKy4 | 1592 | |
Arginine Kinase.LEEGYAKy4 | 9136 | |
Arginine Kinase.VSSTLSGLEGELKy4 | 1804 | |
Tropomyosin.FLAEEADKy3 | 3817 | |
Tropomyosin.ALQNAESEVAALNRy4 | 16,776 | |
Tropomyosin.LEDDLVLEKy4 | 6878 | |
Tropomyosin.SLEVSEEK.y4 | 578,595 | |
Tropomyosin.SLEVSEEKy3 | 22,069.7 | |
Arginine Kinase.LEEGYAKy4 | 8642 | |
Arginine Kinase.VSSTLSGLEGELKy4 | 1125 | |
Tropomyosin.FLAEEADKy3 | 4197.8 | |
Tropomyosin.ALQNAESEVAALNRy4 | 17,089 | |
Tropomyosin.LEDDLVLEKy4 | 6695.4 | |
Tropomyosin.SLEVSEEK.y4 | 571,687 | |
Tropomyosin.SLEVSEEKy3 | 23,102.6 | |
Feed 2 Blanched | Arginine Kinase.LEEGYAKy4 | 773.5 |
Arginine Kinase.VSSTLSGLEGELKy4 | 6243 | |
Tropomyosin.FLAEEADKy3 | 554.3 | |
Tropomyosin.ALQNAESEVAALNRy4 | 33,908 | |
Tropomyosin.SLEVSEEK.y4 | 120,925.3 | |
Tropomyosin.SLEVSEEKy3 | 4455 | |
Myosin.ALESQLAELKy4 | 520.3 | |
Arginine Kinase.LEEGYAKy4 | 454.4 | |
Arginine Kinase.VSSTLSGLEGELKy4 | 8471.8 | |
Tropomyosin.FLAEEADKy3 | 543.1 | |
Tropomyosin.ALQNAESEVAALNRy4 | 5808 | |
Tropomyosin.SLEVSEEK.y4 | 116,240.1 | |
Tropomyosin.SLEVSEEKy3 | 4257 | |
Feed 2 Frozen | Arginine Kinase.LEEGYAKy4 | 4498.2 |
Arginine Kinase.VSSTLSGLEGELKy4 | 2123 | |
Tropomyosin.FLAEEADKy3 | 4914.5 | |
Tropomyosin.ALQNAESEVAALNRy4 | 16,397 | |
Tropomyosin.LEDDLVLEKy4 | 7620.7 | |
Tropomyosin.SLEVSEEK.y4 | 788,592 | |
Tropomyosin.SLEVSEEKy3 | 27,783.7 | |
Arginine Kinase.LEEGYAKy4 | 4653.4 | |
Arginine Kinase.VSSTLSGLEGELKy4 | 2069 | |
Tropomyosin.FLAEEADKy3 | 5162 | |
Tropomyosin.ALQNAESEVAALNRy4 | 17,179 | |
Tropomyosin.LEDDLVLEKy4 | 8624.8 | |
Tropomyosin.SLEVSEEK.y4 | 785,594 | |
Tropomyosin.SLEVSEEKy3 | 27,579 | |
Feed 3 Blanched | Arginine Kinase.LEEGYAKy4 | 1155.8 |
Arginine Kinase.VSSTLSGLEGELKy4 | 22,693 | |
Tropomyosin.FLAEEADKy3 | 1302 | |
Tropomyosin.ALQNAESEVAALNRy4 | 60,192 | |
Tropomyosin.LEDDLVLEKy4 | 902.3 | |
Tropomyosin.SLEVSEEK.y4 | 386,547 | |
Tropomyosin.SLEVSEEKy3 | 13,167.1 | |
Arginine Kinase.LEEGYAKy4 | 859.7 | |
Arginine Kinase.VSSTLSGLEGELKy4 | 18,880.9 | |
Tropomyosin.FLAEEADKy3 | 2045.8 | |
Tropomyosin.ALQNAESEVAALNRy4 | 10,642 | |
Tropomyosin.LEDDLVLEKy4 | 839 | |
Tropomyosin.SLEVSEEK.y4 | 393,257 | |
Tropomyosin.SLEVSEEKy3 | 15,912.3 | |
Feed 3 Frozen | Myosin.ALESQLAELKy4 | 710.1 |
Arginine Kinase.LEEGYAKy4 | 5035 | |
Arginine Kinase.VSSTLSGLEGELKy4 | 478.9 | |
Tropomyosin.FLAEEADKy3 | 481.1 | |
Tropomyosin.ALQNAESEVAALNRy4 | 9495 | |
Tropomyosin.LEDDLVLEKy4 | 2755.2 | |
Tropomyosin.SLEVSEEK.y4 | 264,799.3 | |
Tropomyosin.SLEVSEEKy3 | 9668.8 | |
Arginine Kinase.LEEGYAKy4 | 4867.9 | |
Arginine Kinase.VSSTLSGLEGELKy4 | 553.2 | |
Tropomyosin.FLAEEADKy3 | 2249 | |
Tropomyosin.ALQNAESEVAALNRy4 | 8680 | |
Tropomyosin.LEDDLVLEKy4 | 4034 | |
Tropomyosin.SLEVSEEK.y4 | 266,701.5 | |
Tropomyosin.SLEVSEEKy3 | 11,924 |
References
- Bessa, L.W.; Pieterse, E.; Marais, J.; Hoffman, L.C. Why for feed and not for human consumption? The black soldier fly larvae. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2747–2763. [Google Scholar] [CrossRef]
- Higa, J.E.; Ruby, M.B.; Rozin, P. Americans’ acceptance of black soldier fly larvae as food for themselves, their dogs, and farmed animals. Food Qual. Prefer. 2021, 90, 104119. [Google Scholar] [CrossRef]
- Liu, Q.; Tomberlin, J.K.; Brady, J.A.; Sanford, M.R.; Yu, Z. Black soldier fly (Diptera: Stratiomyidae) larvae reduce Escherichia coli in dairy manure. Environ. Èntomol. 2008, 37, 1525–1530. [Google Scholar] [CrossRef] [PubMed]
- Lalander, C.H.; Fidjeland, J.; Diener, S.; Eriksson, S.; Vinneras, B. High waste-to-biomass conversion and efficient Salmonella spp. reduction using black soldier fly for waste recycling. Agron. Sustain. Dev. 2014, 35, 261–271. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Shelomi, M. Review of Black soldier fly (Hermetia illucens) as animal feed and human food. Foods 2017, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Gold, M.; Tomberlin, J.K.; Diener, S.; Zurbrügg, C.; Mathys, A. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review. Waste Manag. 2018, 82, 302–318. [Google Scholar] [CrossRef]
- Wynants, E.; Frooninckx, L.; Crauwels, S.; Verreth, C.; De Smet, J.; Sandrock, C.; Wohlfahrt, J.; Van Schelt, J.; Depraetere, S.; Lievens, B.; et al. Assessing the microbiota of black soldier fly larvae (Hermetia illucens) reared on organic waste streams on four different locations at laboratory and large scale. Microb. Ecol. 2018, 77, 913–930. [Google Scholar] [CrossRef] [PubMed]
- Proc, K.; Bulak, P.; Wiącek, D.; Bieganowski, A. Hermetia illucens exhibits bioaccumulative potential for 15 different elements—Implications for feed and food production. Sci. Total Environ. 2020, 723, 138125. [Google Scholar] [CrossRef]
- Truzzi, C.; Giorgini, E.; Annibaldi, A.; Antonucci, M.; Illuminati, S.; Scarponi, G.; Riolo, P.; Isidoro, N.; Conti, C.; Zarantoniello, M.; et al. Fatty acids profile of black soldier fly (Hermetia illucens): Influence of feeding substrate based on coffee-waste silverskin enriched with microalgae. Anim. Feed. Sci. Technol. 2020, 259, 114309. [Google Scholar] [CrossRef]
- Garofalo, C.; Milanović, V.; Cardinali, F.; Aquilanti, L.; Clementi, F.; Osimani, A. Current knowledge on the microbiota of edible insects intended for human consumption: A state-of-the-art review. Food Res. Int. 2019, 125, 108527. [Google Scholar] [CrossRef]
- Banjo, A.; Lawal, O.; Adeyemi, A. The microbial fauna associated with the larvae of Oryctes monocerus. J. Appl. Sci. Res. 2006, 2, 837–843. [Google Scholar]
- Klunder, H.; Wolkers-Rooijackers, J.; Korpela, J.; Nout, M. Microbiological aspects of processing and storage of edible insects. Food Control 2012, 26, 628–631. [Google Scholar] [CrossRef]
- Larouche, J.; Deschamps, M.-H.; Saucier, L.; Lebeuf, Y.; Doyen, A.; Vandenberg, G.W. Effects of killing methods on lipid oxidation, colour and microbial load of Black soldier fly (Hermetia illucens) larvae. Animals 2019, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Erickson, M.C.; Islam, M.; Sheppard, C.; Liao, J.; Doyle, M.P. Reduction of Escherichia coli O157:H7 and Salmonella enterica Serovar Enteritidis in chicken manure by larvae of the Black soldier fly. J. Food Prot. 2004, 67, 685–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalander, C.; Diener, S.; Magri, M.E.; Zurbrügg, C.; Lindström, A.; Vinneras, B. Faecal sludge management with the larvae of the black soldier fly (Hermetia illucens)—From a hygiene aspect. Sci. Total Environ. 2013, 458-460, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Diener, S.E.; Zurbrugg, C.; Tockner, K. Bioaccumulation of heavy metals in the black soldier fly, Hermetia illucens and effects on its life cycle. J. Insects Food Feed. 2015, 1, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, E.; Belghit, I.; Johansen, J.; Leushuis, R.; Lock, E.-J.; Melsen, D.; Shanmugam, R.K.R.; Van Loon, J.; Paul, A. Growth and safety assessment of feed streams for Black soldier fly larvae: A case study with aquaculture sludge. Animals 2019, 9, 189. [Google Scholar] [CrossRef] [Green Version]
- Truzzi, C.; Annibaldi, A.; Girolametti, F.; Giovannini, L.; Riolo, P.; Ruschioni, S.; Olivotto, I.; Illuminati, S. A chemically safe way to produce insect biomass for possible application in feed and food production. Int. J. Environ. Res. Public Health 2020, 17, 2121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Fels-Klerx, H.J.; Meijer, N.; Nijkamp, M.M.; Schmitt, E.; van Loon, J.J.A. Chemical food safety of using former foodstuffs for rearing black soldier fly larvae (Hermetia illucens) for feed and food use. J. Insects Food Feed 2020, 6, 475–488. [Google Scholar] [CrossRef]
- Van der Fels-Klerx, H.J.; Camenzuli, L.; Van Der Lee, M.K.; Oonincx, D.G.A.B. Uptake of cadmium, lead and arsenic by Tenebrio molitor and Hermetia illucens from contaminated substrates. PLoS ONE 2016, 11, e0166186. [Google Scholar] [CrossRef]
- Wu, N.; Wang, X.; Xu, X.; Cai, R.; Xie, S. Effects of heavy metals on the bioaccumulation, excretion and gut microbiome of black soldier fly larvae (Hermetia illucens). Ecotoxicol. Environ. Saf. 2020, 192, 110323. [Google Scholar] [CrossRef]
- Phillips, J.; Burkholder, W. Allergies related to food insect production and consumption. Food Insects Newslett. 1995, 8, 1–2. [Google Scholar]
- Srinroch, C.; Srisomsap, C.; Chokchaichamnankit, D.; Punyarit, P.; Phiriyangkul, P. Identification of novel allergen in edible insect, Gryllus bimaculatus and its cross-reactivity with Macrobrachium spp. allergens. Food Chem. 2015, 184, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Leni, G.; Tedeschi, T.; Faccini, A.; Pratesi, F.; Folli, C.; Puxeddu, I.; Migliorini, P.; Gianotten, N.; Jacobs, J.; Depraetere, S.; et al. Shotgun proteomics, in-silico evaluation and immunoblotting assays for allergenicity assessment of lesser mealworm, black soldier fly and their protein hydrolysates. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Reese, G.; Ayuso, R.; Lehrer, S.B. Tropomyosin: An invertebrate pan-allergen. Int. Arch. Allergy Immunol. 1999, 119, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, X.; Wang, H.; Yang, Q.; Rehman, K.U.; Li, W.; Cai, M.; Li, Q.; Mazza, L.; Zhang, J.; et al. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE 2017, 12, e0182601. [Google Scholar] [CrossRef] [Green Version]
- Broekman, H.C.H.P.; Knulst, A.C.; De Jong, G.; Gaspari, M.; Jager, C.F.D.H.; Houben, G.F.; Verhoeckx, K.C.M. Is mealworm or shrimp allergy indicative for food allergy to insects? Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef]
- Bernton, H.; Brown, H. Insects as potential sources of ingestant allergens. Annals Allergy 1967, 25, 381–387. [Google Scholar]
- Besler, M.; Steinhart, H.; Paschke, A. Stability of food allergens and allergenicity of processed foods. J. Chromatogr. B Biomed. Sci. Appl. 2001, 756, 207–228. [Google Scholar] [CrossRef]
- Kamath, S.; Rahman, A.A.; Voskamp, A.; Komoda, T.; Rolland, J.M.; O’Hehir, R.; Lopata, A.L. Effect of heat processing on antibody reactivity to allergen variants and fragments of black tiger prawn: A comprehensive allergenomic approach. Mol. Nutr. Food Res. 2014, 58, 1144–1155. [Google Scholar] [CrossRef] [PubMed]
- Van Broekhoven, S.; Bastiaan-Net, S.; de Jong, N.W.; Wichers, H.J. Influence of processing and in vitro digestion on the allergic cross-reactivity of three mealworm species. Food Chem. 2016, 196, 1075–1083. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition; Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No. 2073/2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2005, 338, 1–26. [Google Scholar]
- NVWA (Netherlands Food and Consumer Product Safety Authority). Advisory Report on the Risks Associated with the Consumption of Mass-Reared Insects 2014. Available online: https://www.nvwa.nl/documenten-nvwa/risicobeoordelingen-voedselveiligheid/bestand/2207475/gekweekte-insecten-ter-consumptie (accessed on 30 July 2021).
- Fraqueza, M.J.; Patarata, L. Constraints of HACCP application on edible insect for food and feed. In Future Foods; InTech: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- van Huis, A.; Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects. Future Prospects for Food and Feed Security; FAO: Rome, Italy, 2013. [Google Scholar]
- Schrögel, P.; Wätjen, W. Insects for food and feed-safety aspects related to mycotoxins and metals. Foods 2019, 8, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods, M.; Goosen, N.; Hoffman, L.; Pieterse, E. A simple and rapid protocol for measuring the chitin content of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae. J. Insects Food Feed 2020, 6, 285–290. [Google Scholar] [CrossRef]
- Da Silva, N.; Taniwaki, M.H.; Junqueira, V.C.A.; de Arruda Silveira, N.F.; Okazaki, M.M.; Gomes, R.A.R. Microbiological Examination Methods of Food and Water: A Laboratory Manual; CRC Press: London, UK, 2012. [Google Scholar]
- SANS. Method 4833. Second Edition. Microbiology: General Guidelines for the Enumeration of Microorganisms-Colony Count Technique at 30 °C; Standards South Africa Printers: Pretoria, South Africa, 2012. [Google Scholar]
- International Organisation of Standardisation (ISO). Microbiology of food and animal feeding stuffs: Horizontal method for the determination of low numbers of presumptive Bacillus cereus; Most Probable Number Technique and Detection Method (ISO standard 21871:2006). 2006. Available online: https://www.iso.org/standard/36015.html (accessed on 30 July 2021).
- International Organisation of Standardisation (ISO). Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique (ISO Standard 21528:2017). 2017. Available online: https://www.iso.org/standard/63504.html (accessed on 30 July 2021).
- International Organisation of Standardisation (ISO). Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes and of Listeria spp. Part 2: Enumeration Method (ISO Standard 11290-2:2017). 2017. Available online: https://www.iso.org/standard/60314.html (accessed on 30 April 2021).
- International Organisation of Standardisation (ISO). Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella Part 1: Detection of Salmonella spp. (ISO Standard 6579-1:2017). 2017. Available online: https://www.iso.org/standard/56712.html (accessed on 30 July 2021).
- Jay, J.M.; Loessner, M.J.; Golden, D.A. Indicators of food microbial quality and safety. Modern Food Microbiol. 2005, 473–495. [Google Scholar] [CrossRef]
- Stoops, J.; Crauwels, S.; Waud, M.; Claes, J.; Lievens, B.; Van Campenhout, L. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption. Food Microbiol. 2016, 53, 122–127. [Google Scholar] [CrossRef]
- Vandeweyer, D.; Lenaerts, S.; Callens, A.; Van Campenhout, L. Effect of blanching followed by refrigerated storage or industrial microwave drying on the microbial load of yellow mealworm larvae (Tenebrio molitor). Food Control. 2017, 71, 311–314. [Google Scholar] [CrossRef]
- Campbell, M.; Ortuño, J.; Stratakos, A.C.; Linton, M.; Corcionivoschi, N.; Elliott, T.; Koidis, A.; Theodoridou, K. Impact of thermal and high-pressure treatments on the microbiological quality and in vitro digestibility of Black soldier fly (Hermetia illucens) Larvae. Animals 2020, 10, 682. [Google Scholar] [CrossRef] [Green Version]
- Osimani, A.; Aquilanti, L. Spore-forming bacteria in insect-based foods. Curr. Opin. Food Sci. 2021, 37, 112–117. [Google Scholar] [CrossRef]
- Jeon, H.; Park, S.; Choi, J.; Jeong, G.; Lee, S.-B.; Choi, Y.; Lee, S.-J. The intestinal bacterial community in the food waste-reducing larvae of Hermetia illucens. Curr. Microbiol. 2011, 62, 1390–1399. [Google Scholar] [CrossRef]
- Osimani, A.; Ferrocino, I.; Corvaglia, M.R.; Roncolini, A.; Milanović, V.; Garofalo, C.; Aquilanti, L.; Riolo, P.; Ruschioni, S.; Jamshidi, E.; et al. Microbial dynamics in rearing trials of Hermetia illucens larvae fed coffee silverskin and microalgae. Food Res. Int. 2021, 140, 110028. [Google Scholar] [CrossRef]
- Osimani, A.; Milanović, V.; Roncolini, A.; Riolo, P.; Ruschioni, S.; Isidoro, N.; Loreto, N.; Franciosi, E.; Tuohy, K.; Olivotto, I.; et al. Hermetia illucens in diets for zebrafish (Danio rerio): A study of bacterial diversity by using PCR-DGGE and metagenomic sequencing. PLoS ONE 2019, 14, e0225956. [Google Scholar] [CrossRef]
- Boccazzi, I.V.; Ottoboni, M.; Martin, E.; Comandatore, F.; Vallone, L.; Spranghers, T.; Eeckhout, M.; Mereghetti, V.; Pinotti, L.; Epis, S. A survey of the mycobiota associated with larvae of the black soldier fly (Hermetia illucens) reared for feed production. PLoS ONE 2017, 12, e0182533. [Google Scholar] [CrossRef] [Green Version]
- Kashiri, M.; Marin, C.; Garzón, R.; Rosell, C.M.; Rodrigo, D.; Martinez, A. Use of high hydrostatic pressure to inactivate natural contaminating microorganisms and inoculated E. coli O157:H7 on Hermetia illucens larvae. PLoS ONE 2018, 13, e0194477. [Google Scholar] [CrossRef] [Green Version]
- Bolumar, T.; Georget, E.; Mathys, A. High pressure processing (HPP) of foods and its combination with electron beam processing. In Electron Beam Pasteurization and Complementary Food Processing Technologies; Woodhead Publishing: Cambridge, UK, 2015; pp. 127–155. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Häkkinen, S.T.; Aarni, M.; Suortti, T.; Lampi, A.-M.; Eurola, M.; Piironen, V.; Nuutila, A.M.; Oksman-Caldentey, K.-M. Blanching and long-term freezing affect various bioactive compounds of vegetables in different ways. J. Sci. Food Agric. 2003, 83, 1389–1402. [Google Scholar] [CrossRef]
- Kawashima, L.M.; Soares, L.M.V. Effect of blanching time on selective mineral elements extraction from the spinach substitute (Tetragonia expansa) commonly used in Brazil. Food Sci. Technol. 2005, 25, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Koeberl, M.; Clarke, D.; Lopata, A.L. Next generation of food allergen quantification using mass spectrometric systems. J. Proteome Res. 2014, 13, 3499–3509. [Google Scholar] [CrossRef]
- Hall, F.; Johnson, P.E.; Liceaga, A. Effect of enzymatic hydrolysis on bioactive properties and allergenicity of cricket (Gryllodes sigillatus) protein. Food Chem. 2018, 262, 39–47. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Truzzi, C.; Illuminati, S.; Girolametti, F.; Antonucci, M.; Scarponi, G.; Ruschioni, S.; Riolo, P.; Annibaldi, A. Influence of feeding substrates on the presence of toxic metals (Cd, Pb, Ni, As, Hg) in larvae of Tenebrio molitor: Risk Assessment for human consumption. Int. J. Environ. Res. Public Health 2019, 16, 4815. [Google Scholar] [CrossRef] [Green Version]
- European Commission. No. 1881/2006 on setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, L364, 5–24. [Google Scholar]
- Codex Alimentarius Commission (CAC). Working Document for Information and use in Discussions Related to Contaminants and Toxins in the GSCTFF; CODEX: Rome, Italy, 2011. [Google Scholar]
- Valenzuela, C.; De Romaña, D.L.; Olivares, M.; Morales, M.S.; Pizarro, F. Total iron and heme iron content and their distribution in beef meat and viscera. Biol. Trace Element Res. 2009, 132, 103–111. [Google Scholar] [CrossRef]
- Watson, M.E. The Handbook of Trace Elements. J. Environ. Qual. 1998, 27, 986. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, X.; Wang, W.; Lei, C.; Zhu, F. Influences of chromium and cadmium on the development of black soldier fly larvae. Environ. Sci. Pollut. Res. 2017, 24, 8637–8644. [Google Scholar] [CrossRef] [PubMed]
- Purschke, B.; Scheibelberger, R.; Axmann, S.; Adler, A.; Jäger, H. Impact of substrate contamination with mycotoxins, heavy metals and pesticides on the growth performance and composition of black soldier fly larvae (Hermetia illucens) for use in the feed and food value chain. Food Addit. Contam. Part A 2017, 34, 1410–1420. [Google Scholar] [CrossRef] [PubMed]
F1 Broiler-Based Diet | F2 Brewers’ Grain (By-Product) | F3 Cereal Grains (By-Product) |
---|---|---|
5.5 kg wheat bran | 9 kg brewers’ grain | 3 kg maize |
5.5 kg broiler pellets | 1 kg brewers’ yeast | 3 kg soya |
0.06 kg micropack | 1 kg wheat bran | 3 kg wheat bran |
21 kg water | 0.06 kg micropack | 2 kg oat bran |
21 kg water | 0.06 kg micropack | |
21 kg water |
Feed | Killing Method | Feed X Killing Method | |
---|---|---|---|
Total viable count | 0.531 | 0.000 | 0.531 |
Bacillus cereus | 0.001 | 0.123 | 0.011 |
Escherichia coli | 0.771 | 0.000 | 0.771 |
Al | 0.005 | <0.001 | <0.001 |
Cr | 0.004 | 0.002 | 0.002 |
As | 0.003 | 0.178 | 0.019 |
Cd | 0.004 | <0.001 | 0.002 |
Hg | 0.170 | 0.097 | 0.170 |
Pb | <0.001 | <0.001 | <0.001 |
Fe | 0.983 | <0.001 | <0.001 |
Mn | 0.940 | 0.631 | 0.019 |
Sn | 0.792 | 0.156 | 0.526 |
Zn | <0.001 | <0.001 | <0.001 |
F1 | F2 | F3 | BSFL F1 B | BSFL F1 F | BSFL F2 B | BSFL F2 F | BSFL F3 B | BSFL F3 F | |
---|---|---|---|---|---|---|---|---|---|
Total viable count | TNTC | TNTC | TNTC | 2.1 b ± 0.3 | 5.5 a ± 0.4 | 2.2 b ± 0.00 | 5.5 a ± 0.9 | 2.2 b ± 0.1 | 5.5 a ± 0.8 |
Bacillus cereus | 5.5 ± 0.5 | 5.5 ± 0.6 | 5.5 ± 0.5 | 1.7 c ± 0.0 | 2.0 b ± 0.01 | 2.0 b ± 0.2 | 2.2 c ± 0.0 | 2.0 b ±0.2 | 2.0 b ± 0.2 |
Escherichia coli | 4.5 ± 0.00 | 4.5 ± 0.1 | 4.5 ± 0.00 | 1.5 b ± 0.8 | 4.5 a ± 0.5 | 1.5 b ± 0.00 | 4.5 a ± 0.5 | 1.3 b ± 0.8 | 4.5 a ± 0.00 |
Salmonella spp. | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Listeria spp. | ND | ND | ND | ND | ND | ND | ND | ND | ND |
F1 | F2 | F3 | BSFL F1 B | BSFL F1 F | BSFL F2 B | BSFL F2 F | BSFL F3 B | BSFL F3 F | |
---|---|---|---|---|---|---|---|---|---|
Al | 65.24 ± 0.02 | 60.75 ± 0.03 | 59.97 ± 0.04 | 17.59 c ± 0.81 | 52.00 a ± 0.06 | 20.25 c ± 1.2 | 28.16 b ± 1.17 | 27.96 b ± 1.09 | 32.16 b ± 0.08 |
Cr | 0.65 ± 0.12 | 0.37 ± 0.92 | 2.99 ± 0.32 | 0.22 c ± 0.04 | 0.52 a ± 0.02 | 0.46 a ± 0.03 | 0.47 a ± 0.05 | 0.31 b ± 0.04 | 0.33 b ± 0.03 |
As | 0.05 ± 0.25 | 0.05 ±0.02 | 0.00 ±0.01 | 0.15 b ± 0.01 | 0.12 a ± 0.01 | 0.02 c ± 0.01 | 0.06 c ± 0.01 | 0.03 b ± 0.01 | 0.03 b ± 0.01 |
Cd | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.12 | 0.11 b ± 0.01 | 0.17 a ± 0.01 | 0.12 b ± 0.01 | 0.12 b ± 0.01 | 0.11 a ± 0.01 | 0.17 b ± 0.01 |
Hg | <DL | <DL | <DL | <DL | <DL | <DL | <DL | <DL | <DL |
Pb | 0.14 ± 0.01 | 0.08 ± 0.01 | 0.12 ± 0.01 | 0.13 e ± 0.01 | 0.18 c ± 0.01 | 0.23 b ± 0.01 | 0.26 a ± 0.01 | 0.16 d ± 0.01 | 0.14 e ± 0.01 |
Fe | 244.0 ± 0.7 | 146.0 ± 0.8 | 258.0 ± 0.5 | 144.7 d ± 0.4 | 252.7 a ± 0.1 | 185.4 c ± 0.2 | 210.6 b± 0.6 | 201.2 bc ± 0.9 | 197.3 bc ± 0.3 |
Mn | 165.0 ± 0.3 | 99.0 ± 0.7 | 107.0 ± 0.6 | 525.7 a ± 0.1 | 454.2 c ± 0.7 | 490.0 abc ± 0.1 | 493.9 abc ± 0.3 | 470.8 bc ± 0.9 | 519.7 ab ± 0.8 |
Sn | 0.14 ± 0.01 | 0.01 ± 0.01 | 0.24 ± 0.01 | 0.01 ± 0.02 | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.04 ± 0.01 | 0.02 ± 0.01 |
Zn | 112.0 ± 0.65 | 90.0 ± 0.22 | 108.0 ± 0.13 | 129.8 d ± 0.35 | 220.6 a ± 0.23 | 134.0 d ± 0.15 | 139.7 cd ± 0.93 | 146.6 c ± 0.71 | 166.8 b ± 0.10 |
BSFL F1 B | BSFL F1 F | BSFL F2 B | BSFL F2 F | BSFL F3 B | BSFL F3 F | |
---|---|---|---|---|---|---|
Al | 0.2 ± 0.46 | 0.8 ± 0.00 | 0.3 ± 0.56 | 0.4 ± 0.15 | 0.4 ±0.13 | 0.5 ± 0.19 |
Cr | 0.3 ± 0.29 | 0.8 ± 0.00 | 1.2 ± 0.01 | 1.2 ± 0.00 | 0.1 ± 0.01 | 0.1 ± 0.00 |
Co | 0.4 ± 0.24 | 0.5 ± 0.00 | 0.5 ± 0.00 | 0.5 ± 0.00 | 0.5 ± 0.00 | 0.3 ± 0.00 |
As | 3.0 ± 0.45 | 2.4 ± 0.24 | 0.3 ± 0.38 | 1.1 ± 0.76 | 0.1 ± 0.24 | 0.1 ± 0.31 |
Cd | 4.6 ± 0.08 | 7.0 ± 0.25 | 6.7 ± 0.53 | 6.9 ± 0.35 | 8.2 ± 0.26 | 12.2 ± 0.03 |
Pb | 0.8 ± 0.12 | 1.2 ± 0.48 | 2.8 ± 0.09 | 3.2 ± 0.04 | 1.2 ± 0.01 | 1.1 ± 0.02 |
Fe | 0.5 ± 0.02 | 1.0 ± 0.36 | 1.2 ± 0.14 | 1.4 ± 0.02 | 0.7 ± 0.01 | 0.7 ± 0.01 |
Mn | 3.1 ± 0.04 | 2.7 ± 0.03 | 4.9 ± 0.45 | 5.0 ± 0.16 | 4.4 ± 0.03 | 4.8 ± 0.49 |
Sn | 0.1 ± 0.01 | 0.2 ± 0.69 | 2.1 ± 0.09 | 2.3 ± 0.92 | 0.1 ± 0.18 | 0.1 ± 0.06 |
Zn | 1.1 ± 0.040 | 1.9 ± 0.3 | 1.4 ± 0.09 | 1.5 ± 0.01 | 1.3 ± 0.02 | 1.5 ± 0.13 |
Protein | Accession Number | Peptide Sequence | Position |
---|---|---|---|
Myosin | Q98323 | ALESQLAELK | 1620 to 1629 |
Arginine Kinase | P48610 | VSSTLSGLEGELK | 152 to 164 |
Arginine Kinase | P48610 | LEEGYAK | 10 to 16 |
Tropomyosin | P06754 | FLAEEADK | 207 to 214 |
Tropomyosin | P49455 | ALQNAESEVAALNR | 77 to 90 |
Tropomyosin | P06754 | LEDDLVLEK | 310 to 318 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bessa, L.W.; Pieterse, E.; Marais, J.; Dhanani, K.; Hoffman, L.C. Food Safety of Consuming Black Soldier Fly (Hermetia illucens) Larvae: Microbial, Heavy Metal and Cross-Reactive Allergen Risks. Foods 2021, 10, 1934. https://doi.org/10.3390/foods10081934
Bessa LW, Pieterse E, Marais J, Dhanani K, Hoffman LC. Food Safety of Consuming Black Soldier Fly (Hermetia illucens) Larvae: Microbial, Heavy Metal and Cross-Reactive Allergen Risks. Foods. 2021; 10(8):1934. https://doi.org/10.3390/foods10081934
Chicago/Turabian StyleBessa, Leah W., Elsje Pieterse, Jeannine Marais, Karim Dhanani, and Louwrens C. Hoffman. 2021. "Food Safety of Consuming Black Soldier Fly (Hermetia illucens) Larvae: Microbial, Heavy Metal and Cross-Reactive Allergen Risks" Foods 10, no. 8: 1934. https://doi.org/10.3390/foods10081934
APA StyleBessa, L. W., Pieterse, E., Marais, J., Dhanani, K., & Hoffman, L. C. (2021). Food Safety of Consuming Black Soldier Fly (Hermetia illucens) Larvae: Microbial, Heavy Metal and Cross-Reactive Allergen Risks. Foods, 10(8), 1934. https://doi.org/10.3390/foods10081934