Application of Response Surface Methodology Based on a Box-Behnken Design to Determine Optimal Parameters to Produce Brined Cabbage Used in Kimchi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Experimental Design and Data Analysis
2.3. Measurement of Mass Transport
2.4. Measurement of Quality Characteristics
2.4.1. pH, Titratable Acidity, and Soluble Solid Contents
2.4.2. Salinity
2.5. Measurement of Free Sugars
2.6. Comparison between Observations and Model Fittings/Predictions
2.7. Measurement of Lactic Acid Bacteria
3. Results and Discussion
3.1. Statistical Analysis and Effect of Variables on Quality Characteristics
3.2. Response Surface Plots and Optimization of Brining Process Parameters in Kimchi Cabbage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Codex Alimentarius Commission. Codex Standard for Kimchi; Codex Standard CXS 223-2001; Codex Alimentarius Commission: Rome, Italy, 2017; pp. 1–4. [Google Scholar]
- Shi, J.; Ho, C.-T.; Shahidi, F. Asian Functional Foods; CRC Press: Boca Raton, FL, USA, 2005; pp. 341–380. ISBN 9781420028119. [Google Scholar]
- Kim, N.H.; Jang, S.H.; Kim, S.H.; Lee, H.J.; Kim, Y.; Ryu, J.H.; Rhee, M.S. Use of Phytic Acid and Hyper-Salting to Eliminate Escherichia coli O157:H7 from Napa Cabbage for Kimchi Production in a Commercial Plant. Int. J. Food Microbiol. 2015, 214, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Han, K.-Y.; Noh, B.-S. Characterization of Chinese Cabbage during Soaking in Sodium Chloride Solution. Korean J. Food Sci. Technol. 1996, 28, 707–713. [Google Scholar]
- Singracha, P.; Niamsiri, N.; Visessanguan, W.; Lertsiri, S.; Assavanig, A. Application of Lactic Acid Bacteria and Yeasts as Starter Cultures for Reduced-Salt Soy Sauce (Moromi) Fermentation. LWT 2017, 78, 181–188. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, H.; Wang, H.; Lin, M.; Chen, Y.; Fan, Z.; Hung, Y.C.; Lin, Y. Effects of Hydrogen Peroxide Treatment on Pulp Breakdown, Softening, and Cell Wall Polysaccharide Metabolism in Fresh Longan Fruit. Carbohydr. Polym. 2020, 242, 116427. [Google Scholar] [CrossRef]
- Bae, G.; Kim, J.; Kim, H.; Seok, J.H.; Lee, D.B.; Kim, K.H.; Chung, M.S. Inactivation of Norovirus Surrogates by Kimchi Fermentation in the Presence of Black Raspberry. Food Control 2018, 91, 390–396. [Google Scholar] [CrossRef]
- Jeong, S.H.; Lee, S.H.; Jung, J.Y.; Choi, E.J.; Jeon, C.O. Microbial Succession and Metabolite Changes during Long-Term Storage of Kimchi. J. Food Sci. 2013, 78, M763–M769. [Google Scholar] [CrossRef]
- Jung, M.Y.; Kim, T.W.; Lee, C.; Kim, J.Y.; Song, H.S.; Kim, Y.B.; Ahn, S.W.; Kim, J.S.; Roh, S.W.; Lee, S.H. Role of Jeotgal, a Korean Traditional Fermented Fish Sauce, in Microbial Dynamics and Metabolite Profiles during Kimchi Fermentation. Food Chem. 2018, 265, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Han, E.S.; Seok, M.S. Improvement of Salting Process of Chinese Cabbage in Kimchi Factory. Food Ind. Nutr. 1996, 1, 50–70. [Google Scholar]
- Park, S.S.; Sung, J.M.; Jeong, J.W.; Park, K.J.; Lim, J.H. Quality Changes of Salted Chinese Cabbages with Electrolyzed Water Washing and a Low Storage Temperature. J. Korean Soc. Food Sci. Nutr. 2013, 42, 615–620. [Google Scholar] [CrossRef]
- Jeong, J.-W.; Park, S.-S.; Lim, J.-H.; Park, K.-J.; Kim, B.-K.; Sung, J.-M. Quality Characteristics of Chinese Cabbage with Different Salting Conditions Using Electrolyzed Water. J. Korean Soc. Food Sci. Nutr. 2011, 40, 1743–1749. [Google Scholar] [CrossRef]
- Lee, K.-H. Effect of Ozone Treatment for Sanitation of Chinese Cabbage and Salted Chinese Cabbage. J. Korean Soc. Food Sci. Nutr. 2008, 37, 90–96. [Google Scholar] [CrossRef]
- Lee, M.-K.; Yang, H.-J.; Woo, H.-N.; Rhee, Y.-K.; Moon, S.-W. Changes in the Texture and Salt Content of Chinese Cabbage Using Different Salting Methods. J. Korean Soc. Food Sci. Nutr. 2011, 40, 1184–1188. [Google Scholar] [CrossRef]
- Ahn, H.-J.; Kim, J.-H.; Kim, J.-K.; Kim, D.-H.; Yook, H.-S.; Byun, M.-W. Combined Effects of Irradiation and Modified Atmosphere Packaging on Minimally Processed Chinese Cabbage (Brassica rapa L.). Food Chem. 2005, 89, 589–597. [Google Scholar] [CrossRef]
- Choi, G.-H.; Lee, G.-Y.; Bong, Y.-J.; Jeong, J.-K.; Moon, S.-H.; Park, K.-Y. Comparison of Quality Properties of Brined Baechu Cabbage Manufactured by Different Salting Methods and with Different Salts. J. Korean Soc. Food Sci. Nutr. 2014, 43, 1036–1041. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-H.; Lee, Y.-K.; Yang, J.-Y. Change of Harmful Microorganisms in Pickling Process of Salted Cabbage According to Salting and Washing Conditions. J. Food Hyg. Saf. 2011, 26, 417–423. [Google Scholar]
- Lee, M.H.; Lee, G.D.; Son, K.J.; Yoon, S.R.; Kim, J.S.; Kwon, J.H. Changes in Organoleptic and Rheological Properties of Chinese Cabbage with Salting Condition. J. Korean Soc. Food Sci. Nutr. 2002, 31, 417–422. [Google Scholar] [CrossRef]
- Lee, S.-W.; Cho, S.-R.; Han, S.-H.; Rhee, C. Effects of the Low Temperature and Low Salt Solution on the Quality Characteristics of Salted Chinese Cabbage. Korean J. Food Nutr. 2009, 22, 377–386. [Google Scholar]
- Kim, Y.-W.; Jung, J.-K.; Cho, Y.-J.; Lee, S.-J.; Kim, S.-H.; Park, K.-Y.; Kang, S.-A. Quality Changes in Brined Baechu Cabbage Using Different Types of Polyethylene Film, and Salt Content during Storage. Korean J. Food Preserv. 2009, 16, 605–611. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; AOAC International: Washington, DC, USA, 1998. [Google Scholar]
- Kim, M.J.; Song, H.Y.; Park, S.U.; Chun, H.H.; Han, E.S.; Chung, Y. Evaluation of Quality Index of Salted Korean Cabbage in the Short-Term Distribution System. Korean J. Food Preserv. 2017, 24, 36–43. [Google Scholar] [CrossRef]
- Jung, J.Y.; Lee, S.H.; Kim, J.M.; Park, M.S.; Bae, J.W.; Hahn, Y.; Madsen, E.L.; Jeon, C.O. Metagenomic Analysis of Kimchi, a Traditional Korean Fermented Food. Appl. Environ. Microbiol. 2011, 77, 2264–2274. [Google Scholar] [CrossRef] [Green Version]
- Feilizadeh, M.; Mul, G.; Vossoughi, M. E. coli Inactivation by Visible Light Irradiation Using a Fe–Cd/TiO 2 Photocatalyst: Statistical Analysis and Optimization of Operating Parameters. Appl. Catal. B 2015, 168–169, 441–447. [Google Scholar] [CrossRef]
- Ramya, H.G.; Kumar, S.; Kapoor, S. Optimization of osmotic dehydration process for Oyster mushrooms (Pleurotus sajor-caju) in sodium chloride solution using RSM. J. Appl. Nat. Sci. 2014, 6, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.A.; Verboven, P.; Scheerlinck, N.; Vandewalle, S.; Nicolaï, B.M. Estimation of Effective Diffusivity of Pear Tissue and Cuticle by Means of a Numerical Water Diffusion Model. J. Food Eng. 2006, 72, 63–72. [Google Scholar] [CrossRef]
- Barat, J.M.; Rodriguez-Barona, S.; Andres, A.; Fito, P. Influence of Increasing Brine Concentration in the Cod-Salting Process. J. Food Sci. 2002, 67, 1922–1925. [Google Scholar] [CrossRef]
- Birkeland, S.; Sivertsvik, M.; Nielsen, H.H.; Skåra, T. Effects of Brining Conditions on Weight Gain in Herring (Clupea harengus) Fillets. J. Food Sci. 2005, 70, e418–e424. [Google Scholar] [CrossRef]
- Mehta, B.K.; Jain, S.K.; Sharma, G.P.; Mudgal, V.D.; Verma, R.C.; Doshi, A.; Jain, H.K. Optimization of Osmotic Drying Parameters for Button Mushroom (Agaricus bisporus). Appl. Math. 2012, 3, 1298–1305. [Google Scholar] [CrossRef] [Green Version]
- Delgado, T.; Paim, B.; Pereira, J.A.; Casal, S.; Ramalhosa, E. Optimization of Osmotic Dehydration of Chestnut (Castanea sativa Mill.) Slices Using Response Surface Methodology. Int. J. Food Stud. 2018, 7, 52–68. [Google Scholar] [CrossRef]
- Jain, S.K.; Verma, R.C.; Murdia, L.K.; Jain, H.K.; Sharma, G.P. Optimization of Process Parameters for Osmotic Dehydration of Papaya Cubes. J. Food Sci. Technol. 2011, 48, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Jung, J. Policy Trends of Sodium Reduction. Food Sci. Ind. 2016, 49, 2–7. [Google Scholar]
- Cheon, S.-H.; Lee, S.-I.; Hwnag, I.-M.; Seo, H.-Y. Quality Characteristics of Commercial Kimchi Paste. Korean J. Food Cook. Sci. 2017, 33, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Ross, T. Indices for performance evaluation of predictive models in food microbiology. J. Appl. Microbiol. 1996, 81, 501–508. [Google Scholar] [CrossRef]
Factors | Symbol | Levels | ||
---|---|---|---|---|
Low (−1) | Intermediate (0) | High (+1) | ||
Brine concentration (%) | X1 | 10 | 12 | 14 |
Brine temperature (°C) | X2 | 15 | 20 | 25 |
Brine time (h) | X3 | 14 | 16 | 18 |
Run | Coded Values | Actual Values | Observed Quality Values | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | Con (1) | Tem (2) | Time | pH | TA (3) | SS (4) | Salinity | Salt Gain | Water Loss | Weight Reduction | Fructose | Glucose | LAB (5) | |
1 | 1 | 1 | 0 | 14 | 25 | 16 | 5.81 | 0.18 | 7.00 | 3.51 | 3.29 | 8.65 | 5.36 | 1.09 | 1.35 | 3.46 |
2 | 0 | −1 | −1 | 12 | 15 | 14 | 5.73 | 0.15 | 5.65 | 2.34 | 0.45 | 2.33 | 1.89 | 1.06 | 1.09 | 0.00 |
3 | 0 | 0 | 0 | 12 | 20 | 16 | 5.90 | 0.14 | 5.90 | 2.95 | 1.38 | 6.00 | 4.62 | 1.01 | 1.11 | 1.77 |
4 | −1 | 0 | −1 | 10 | 20 | 14 | 5.89 | 0.18 | 5.80 | 2.33 | 2.00 | 6.55 | 4.55 | 1.16 | 1.28 | 1.54 |
5 | −1 | 0 | 1 | 10 | 20 | 18 | 5.95 | 0.19 | 5.70 | 1.81 | 1.78 | 6.62 | 4.84 | 1.23 | 1.20 | 0.00 |
6 | 0 | 0 | 0 | 12 | 20 | 16 | 5.94 | 0.16 | 5.73 | 2.78 | 1.50 | 6.05 | 4.55 | 1.07 | 1.20 | 1.47 |
7 | 0 | 1 | −1 | 12 | 25 | 14 | 5.75 | 0.16 | 6.50 | 2.89 | 2.35 | 5.42 | 3.08 | 1.11 | 1.22 | 0.00 |
8 | 0 | −1 | 1 | 12 | 15 | 18 | 5.89 | 0.14 | 5.90 | 3.00 | 2.14 | 5.41 | 3.28 | 1.04 | 1.20 | 3.33 |
9 | 1 | 0 | −1 | 14 | 20 | 14 | 6.05 | 0.15 | 5.95 | 2.87 | 1.49 | 4.72 | 3.23 | 1.09 | 1.21 | 2.65 |
10 | −1 | 1 | 0 | 10 | 25 | 16 | 6.07 | 0.16 | 5.45 | 2.62 | 1.65 | 7.45 | 5.80 | 0.92 | 1.00 | 3.39 |
11 | 1 | 0 | 1 | 14 | 20 | 18 | 6.11 | 0.20 | 7.05 | 2.75 | 2.52 | 8.58 | 6.06 | 1.31 | 1.61 | 0.00 |
12 | −1 | −1 | 0 | 10 | 15 | 16 | 6.11 | 0.17 | 6.05 | 2.09 | 2.00 | 8.06 | 6.06 | 1.43 | 1.56 | 2.72 |
13 | 0 | 0 | 0 | 12 | 20 | 16 | 5.98 | 0.17 | 5.55 | 2.60 | 1.62 | 6.10 | 4.48 | 1.12 | 1.30 | 0.00 |
14 | 1 | −1 | 0 | 14 | 15 | 16 | 5.82 | 0.15 | 6.00 | 3.30 | 1.31 | 7.20 | 5.88 | 0.99 | 1.08 | 0.00 |
15 | 0 | 1 | 1 | 12 | 25 | 18 | 5.93 | 0.15 | 6.05 | 3.55 | 0.60 | 7.27 | 6.67 | 0.86 | 1.03 | 0.00 |
Source | Salt Gain | Water Loss | |||||||
---|---|---|---|---|---|---|---|---|---|
DF (1) | Adj SS (2) | Adj MS (3) | F-Value | p-Value | Adj SS | Adj MS | F-Value | p-Value | |
Regression | 9 | 6.71023 | 0.74558 | 9.50 | 0.012 | 34.5245 | 3.8361 | 8.60 | 0.014 |
Linear | 3 | 0.74015 | 0.24672 | 3.14 | 0.125 | 14.0087 | 4.6696 | 10.47 | 0.014 |
X1 | 1 | 0.17409 | 0.17409 | 2.22 | 0.197 | 0.0269 | 0.0269 | 0.06 | 0.816 |
X2 | 1 | 0.40656 | 0.40656 | 5.33 | 0.043 | 4.1797 | 4.1797 | 9.37 | 0.028 |
X3 | 1 | 0.06949 | 0.06949 | 0.89 | 0.390 | 9.8021 | 9.8021 | 21.98 | 0.005 |
Square | 3 | 1.27796 | 0.42599 | 5.43 | 0.050 | 15.4819 | 5.1606 | 11.57 | 0.011 |
X1*X1 | 1 | 1.17951 | 1.17951 | 15.03 | 0.012 | 3.5833 | 3.5833 | 8.03 | 0.036 |
X2*X2 | 1 | 0.00000 | 0.00000 | 0.00 | 0.994 | 0.0751 | 0.0751 | 0.17 | 0.699 |
X3*X3 | 1 | 0.04959 | 0.04959 | 0.63 | 0.463 | 4.2974 | 4.2974 | 9.64 | 0.027 |
Interaction | 3 | 4.69212 | 1.56404 | 19.94 | 0.003 | 5.0339 | 1.6780 | 3.76 | 0.094 |
X1*X2 | 1 | 1.35594 | 1.35594 | 17.28 | 0.009 | 10.0436 | 10.0436 | 22.52 | 0.005 |
X1*X3 | 1 | 0.38710 | 0.38710 | 4.93 | 0.077 | 1.0683 | 1.0683 | 2.40 | 0.182 |
X2*X3 | 1 | 2.94908 | 2.94908 | 37.59 | 0.002 | 0.3824 | 0.3824 | 0.86 | 0.397 |
Residual Error | 5 | 0.39228 | 0.07846 | 2.2299 | 0.4460 | ||||
Lack of Fit | 3 | 0.36414 | 0.12138 | 8.63 | 0.106 | 2.2250 | 0.7417 | 299.93 | 0.303 |
Pure Error | 2 | 0.02814 | 0.01407 | 0.0049 | 0.0025 | ||||
R2 | 94.48 | 93.93 |
Targeted Quality Values | Optimum Process Parameters | |||
---|---|---|---|---|
SG | WL | Concentration (%) | Temperature (°C) | Time (h) |
Minimum (0.448) | Maximum (8.65) | 10.53 | 19.17 | 15.38 |
Optimized Brining Process | Salt Gain | Water Loss | ||
---|---|---|---|---|
Af | Bf | Af | Bf | |
Simulation 1 | 1.033 | 0.977 | 1.124 | 0.918 |
Simulation 2 | 1.029 | 0.981 | 1.207 | 1.056 |
Simulation 3 | 1.088 | 0.928 | 1.526 | 1.334 |
Simulation 4 | 1.023 | 0.987 | 1.207 | 1.056 |
Simulation 5 | 1.081 | 0.924 | 1.526 | 1.334 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Moon, E.-w.; Ha, J.-H. Application of Response Surface Methodology Based on a Box-Behnken Design to Determine Optimal Parameters to Produce Brined Cabbage Used in Kimchi. Foods 2021, 10, 1935. https://doi.org/10.3390/foods10081935
Song H, Moon E-w, Ha J-H. Application of Response Surface Methodology Based on a Box-Behnken Design to Determine Optimal Parameters to Produce Brined Cabbage Used in Kimchi. Foods. 2021; 10(8):1935. https://doi.org/10.3390/foods10081935
Chicago/Turabian StyleSong, Hyeyeon, Eun-woo Moon, and Ji-Hyoung Ha. 2021. "Application of Response Surface Methodology Based on a Box-Behnken Design to Determine Optimal Parameters to Produce Brined Cabbage Used in Kimchi" Foods 10, no. 8: 1935. https://doi.org/10.3390/foods10081935
APA StyleSong, H., Moon, E. -w., & Ha, J. -H. (2021). Application of Response Surface Methodology Based on a Box-Behnken Design to Determine Optimal Parameters to Produce Brined Cabbage Used in Kimchi. Foods, 10(8), 1935. https://doi.org/10.3390/foods10081935