Geographical Differentiation of Hom Mali Rice Cultivated in Different Regions of Thailand Using FTIR-ATR and NIR Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. FTIR-ATR Analysis
2.3. NIR Analysis
2.4. Data Pre-Processing and Statistical Analysis
3. Results and Discussion
3.1. FTIR-ATR Spectroscopy
3.2. NIR Spectroscopy
3.3. The Potential of FTIR and NIR Spectroscopy Techniques for Geographical Differentiation of Thai Hom Mali Rice
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reeves, T.G.; Thomas, G.; Ramsay, G. Save and Grow in Practice: Maize, Rice, Wheat—A Guide to Sustainable Cereal Production; UN Food and Agriculture Organization: Rome, Italy, 2016. [Google Scholar]
- Vanavichit, A.; Kamolsukyeunyong, W.; Siangliw, M.; Siangliw, J.L.; Traprab, S.; Ruengphayak, S.; Chaichoompu, E.; Saensuk, C.; Phuvanartnarubal, E.; Toojinda, T.; et al. Thai Hom Mali Rice: Origin and breeding for subsistence rainfed lowland rice system. Rice 2018, 11, 20. [Google Scholar] [CrossRef] [Green Version]
- Yoshihashi, T.; Nguyen, T.T.H.; Kabaki, N. Area dependency of 2-acetyl-1-pyrroline content in an aromatic rice variety, Khao Dawk Mali 105. Jpn. Agric. Res. Q. 2004, 38, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Srinuttrakul, W.; Permnamtip, V. Geographical origin of Thai Hom Mali rice based on elemental and stable isotopic compositions. J. Phys. Conf. Ser. 2019, 1285, 012004. [Google Scholar] [CrossRef]
- Maione, C.; Barbosa, R.M. Recent applications of multivariate data analysis methods in the authentication of rice and the most analyzed parameters: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1868–1879. [Google Scholar] [CrossRef]
- Chung, I.M.; Park, S.K.; Lee, K.J.; An, M.J.; Lee, J.H.; Oh, Y.T.; Kim, S.H. Authenticity testing of environment-friendly Korean rice (Oryza sativa L.) using carbon and nitrogen stable isotope ratio analysis. Food Chem. 2017, 234, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.M.; Kim, J.K.; Prabakaran, M.; Yang, J.H.; Kim, S.H. Authenticity of rice (Oryza sativa L.) geographical origin based on analysis of C, N, O and S stable isotope ratios: A preliminary case report in Korea, China and Philippine. J. Sci. Food Agric. 2016, 96, 2433–2439. [Google Scholar] [CrossRef]
- Wang, J.; Chen, T.; Zhang, W.; Zhao, Y.; Yang, S.; Chen, A. Tracing the geographical origin of rice by stable isotopic analyses combined with chemometrics. Food Chem. 2020, 313, 126093. [Google Scholar] [CrossRef]
- Arif, M.; Chilvers, G.; Day, S.; Naveed, S.A.; Woolfe, M.; Rodionova, O.Y.; Pomerantsev, A.L.; Kracht, O.; Brodie, C.; Mihailova, A.; et al. Differentiating Pakistani long-grain rice grown inside and outside the accepted Basmati Himalayan geographical region using a ‘one-class’ multi-element chemometric model. Food Control 2021, 123, 107827. [Google Scholar] [CrossRef]
- Cheajesadagul, P.; Arnaudguilhem, C.; Shiowatana, J.; Siripinyanond, A.; Szpunar, J. Discrimination of geographical origin of rice based on multi-element fingerprinting by high resolution inductively coupled plasma mass spectrometry. Food Chem. 2013, 141, 3504–3509. [Google Scholar] [CrossRef]
- Gonzálvez, A.; Armenta, S.; De La Guardia, M. Geographical traceability of “Arròs de Valencia” rice grain based on mineral element composition. Food Chem. 2011, 126, 1254–1260. [Google Scholar] [CrossRef]
- Chung, I.M.; Kim, J.K.; Lee, K.J.; Park, S.K.; Lee, J.H.; Son, N.Y.; Jin, Y.-I.; Kim, S.H. Geographic authentication of Asian rice (Oryza sativa L.) using multi-elemental and stable isotopic data combined with multivariate analysis. Food Chem. 2018, 240, 840–849. [Google Scholar] [CrossRef]
- Kelly, S.; Baxter, M.; Chapman, S.; Rhodes, C.; Dennis, J.; Brereton, P. The application of isotopic and elemental analysis to determine the geographical origin of premium long grain rice. Eur. Food Res. Technol. 2002, 214, 72–78. [Google Scholar] [CrossRef]
- Lagad, R.A.; Singh, S.K.; Rai, V.K. Rare earth elements and 87Sr/86Sr isotopic characterization of Indian Basmati rice as potential tool for its geographical authenticity. Food Chem. 2017, 217, 254–265. [Google Scholar] [CrossRef]
- Li, A.; Keely, B.; Chan, S.H.; Baxter, M.; Rees, G.; Kelly, S. Verifying the provenance of rice using stable isotope ratio and multi-element analyses: A feasibility study. Qual. Assur. Saf. Crop. Foods. 2015, 7, 343–354. [Google Scholar] [CrossRef]
- Suzuki, Y.; Chikaraishi, Y.; Ogawa, N.O.; Ohkouchi, N.; Korenaga, T. Geographical origin of polished rice based on multiple element and stable isotope analyses. Food Chem. 2008, 109, 470–475. [Google Scholar] [CrossRef]
- Luykx, D.M.; Van Ruth, S.M. An overview of analytical methods for determining the geographical origin of food products. Food Chem. 2008, 107, 897–911. [Google Scholar] [CrossRef]
- Rodriguez-Saona, L.E.; Allendorf, M.E. Use of FTIR for rapid authentication and detection of adulteration of food. Annu. Rev. Food Sci. Technol. 2011, 2, 467–483. [Google Scholar] [CrossRef]
- Teye, E.; Amuah, C.L.; McGrath, T.; Elliott, C. Innovative and rapid analysis for rice authenticity using hand-held NIR spectrometry and chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 217, 147–154. [Google Scholar] [CrossRef]
- Ruoff, K.; Luginbühl, W.; Künzli, R.; Iglesias, M.T.; Bogdanov, S.; Bosset, J.O.; von der Ohe, K.; von der Ohe, W.; Amado, R. Authentication of the botanical and geographical origin of honey by mid-infrared spectroscopy. J. Agric. Food Chem. 2006, 54, 6873–6880. [Google Scholar] [CrossRef]
- Cozzolino, D. An overview of the use of infrared spectroscopy and chemometrics in authenticity and traceability of cereals. Int. Food Res. J. 2014, 60, 262–265. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, B.; Wei, Y.; Zhang, B. Near infrared reflectance spectroscopy for determination of the geographical origin of wheat. Food Chem. 2013, 138, 1902–1907. [Google Scholar] [CrossRef] [PubMed]
- Sinelli, N.; Casale, M.; Di Egidio, V.; Oliveri, P.; Bassi, D.; Tura, D.; Casiraghi, E. Varietal discrimination of extra virgin olive oils by near and mid infrared spectroscopy. Food Res. Int. 2010, 43, 2126–2131. [Google Scholar] [CrossRef]
- Bassbasi, M.; De Luca, M.; Ioele, G.; Oussama, A.; Ragno, G. Prediction of the geographical origin of butters by partial least square discriminant analysis (PLS-DA) applied to infrared spectroscopy (FTIR) data. J. Food Compos. Anal. 2014, 33, 210–215. [Google Scholar] [CrossRef]
- Luo, W.; Huan, S.; Fu, H.; Wen, G.; Cheng, H.; Zhou, J.; Wu, H.; Shen, G.; Yu, R. Preliminary study on the application of near infrared spectroscopy and pattern recognition methods to classify different types of apple samples. Food Chem. 2011, 128, 555–561. [Google Scholar] [CrossRef]
- Giraudo, A.; Grassi, S.; Savorani, F.; Gavoci, G.; Casiraghi, E.; Geobaldo, F. Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis. Food Control 2019, 99, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Tan, C.; Lin, Z. Authenticity detection of black rice by near-infrared spectroscopy and support vector data description. Int. J. Anal. Chem. 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Le Nguyen Doan, D.; Nguyen, Q.C.; Marini, F.; Biancolillo, A. Authentication of Rice (Oryza sativa L.) using Near Infrared Spectroscopy Combined with Different Chemometric Classification Strategies. Appl. Sci. 2021, 11, 362. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Peng, Y.; Yang, Y.; Wang, Q. Detection of fraud in high-quality rice by near-infrared spectroscopy. J. Food Sci. 2020, 85, 2773–2782. [Google Scholar] [CrossRef]
- Sampaio, P.S.; Castanho, A.; Almeida, A.S.; Oliveira, J.; Brites, C. Identification of rice flour types with near-infrared spectroscopy associated with PLS-DA and SVM methods. Eur. Food Res. Technol. 2020, 246, 527–537. [Google Scholar] [CrossRef]
- McGrath, T.F.; Shannon, M.; Chevallier, O.P.; Ch, R.; Xu, F.; Kong, F.; Peng, H.; Teye, E.; Akaba, S.; Wu, D.; et al. Food Fingerprinting: Using a two-tiered approach to monitor and mitigate food fraud in rice. J. AOAC Int. 2021, 104, 16–28. [Google Scholar] [CrossRef]
- Attaviroj, N.; Kasemsumran, S.; Noomhorm, A. Rapid Variety Identification of Pure Rough Rice by Fourier-Transform Near-Infrared Spectroscopy. Cereal Chem. 2011, 88, 490–496. [Google Scholar] [CrossRef]
- Wongsaipun, S.; Theanjumpol, P.; Kittiwachana, S. Development of a Universal Calibration Model for Quantification of Adulteration in Thai Jasmine Rice Using Near-infrared Spectroscopy. Food Anal. Methods 2021, 14, 997–1010. [Google Scholar] [CrossRef]
- McCall, E.R.; Jurgens, J.F.; Hoffpauir, C.L.; Pons, W.A.; Stark, S.M.; Cucullu, A.F.; Heinzelman, D.C.; Cirino, V.O.; Murray, M.D. Composition of rice, influence of variety and environment on physical and chemical composition. J. Agric. Food Chem. 1953, 1, 988–993. [Google Scholar] [CrossRef]
- Asaoka, M.; Okuno, K.; Hara, K.; Oba, M.; Fuwa, H. Effects of environmental temperature at the early developmental stage of seeds on the characteristics of endosperm starches of rice (Oryza sativa L.). J. Jpn. Soc. Starch Sci. 1989, 36, 1–8. [Google Scholar] [CrossRef]
Harvest Year | Region | Province | District | Number of Samples |
---|---|---|---|---|
2019 | Northeast (UC) | Bueng Kan | Phon Charoen | 5 |
2019 | Northeast (UC) | Bueng Kan | Seka | 5 |
2019 | Northeast (UC) | Nakhon Phanom | Si Songkhram | 5 |
2019 | Northeast (UC) | Nakhon Phanom | That Phanom | 5 |
2019 | Northeast (UC) | Nong Khai | Phon Phisai | 5 |
2019 | Northeast (UC) | Nong Khai | Sakhrai | 5 |
2019 | Northeast (UC) | Sakon Nakhon | Phang Khon | 10 |
2019 | Northeast (UC) | Udon Thani | Kut Chap | 10 |
2019 | Northeast (UC) | Nong Bua Lam Phu | Na Klang | 10 |
2019 | Northeast (UC) | Khon Kaen | Khao Suan Kwang | 10 |
2019 | North | Phayao | Chun | 10 |
2019 | North | Phayao | Phu Sang | 8 |
2019 | North | Chiang Rai | Mae Chan | 5 |
2019 | North | Chiang Mai | Hang Dong | 5 |
2019 | North | Phayao | Chiang Muan | 2 |
2018 | North | Phayao | Phu Kamyao | 4 |
2018 | North | Phayao | Dok Khamtai | 1 |
2018 | North | Phayao | Chun | 2 |
2018 | North | Chiang Mai | Mae Rim | 3 |
2018 | North | Chiang Rai | Mae Chan | 7 |
2018 | Northeast (LC) | Kalasin | Mueang | 10 |
2018 | Northeast (LC) | Mukdahan | Khamcha-i | 10 |
2018 | Northeast (LC) | Yasothon | Mueang | 5 |
2018 | Northeast (LC) | Yasothon | Sai Mun | 5 |
2018 | Northeast (LC) | Roi Et | Kaset Wisai | 5 |
2018 | Northeast (LC) | Amnat Charoen | Mueang | 3 |
2018 | Northeast (LC) | Amnat Charoen | Senangkhanikhom | 3 |
2018 | Northeast (LC) | Ubon Ratchathani | Muang Sam Sip | 3 |
2018 | Northeast (LC) | Ubon Ratchathani | Det Udom | 3 |
2018 | Northeast (LC) | Surin | Chumphon Buri | 3 |
2018 | Northeast (LC) | Maha Sarakham | Phayakkhaphum Phisai | 3 |
Year | N (Train. Set) | N (Test Set) | Model | R2X (cum) | R2Y (cum) | Q2 (cum) | Correct Classification Rate of the Test Set, % | ||
---|---|---|---|---|---|---|---|---|---|
Northeast | North | Total | |||||||
2018 | 47 | 23 | OPLS-DA | 0.919 | 0.981 | 0.776 | 100 | 100 | 100 |
2019 | 67 | 33 | OPLS-DA | 0.637 | 0.929 | 0.477 | 96.65 | 100 | 96.97 |
Technique | N Train. Set (2019) | N Test Set (2018) | Model | R2X (cum) | R2Y (cum) | Q2 (cum) | Correct Classification Rate of the Test (North, n = 17), % |
---|---|---|---|---|---|---|---|
Benchtop FTIR-ATR | 100 | 70 | OPLS-DA | 0.619 | 0.906 | 0.54 | 100 |
Handheld NIR | 100 | 70 | OPLS-DA | 0.97 | 0.696 | 0.544 | 100 |
Year | Rice Samples | N (Train. Set) | N (Test Set) | Model | R2X (cum) | R2Y (cum) | Q2 (cum) | Correct Classification Rate of the Test Set, % | ||
---|---|---|---|---|---|---|---|---|---|---|
Northeast | North | Total | ||||||||
2018 | Ground | 47 | 23 | OPLS-DA | 0.992 | 0.771 | 0.409 | 94.12 | 66.67 | 86.96 |
2019 | Ground | 67 | 33 | OPLS-DA | 0.969 | 0.734 | 0.488 | 91.30 | 70.00 | 84.85 |
2019 | Whole grains | 67 | 33 | OPLS-DA | 0.972 | 0.752 | 0.489 | 95.65 | 70.00 | 87.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srinuttrakul, W.; Mihailova, A.; Islam, M.D.; Liebisch, B.; Maxwell, F.; Kelly, S.D.; Cannavan, A. Geographical Differentiation of Hom Mali Rice Cultivated in Different Regions of Thailand Using FTIR-ATR and NIR Spectroscopy. Foods 2021, 10, 1951. https://doi.org/10.3390/foods10081951
Srinuttrakul W, Mihailova A, Islam MD, Liebisch B, Maxwell F, Kelly SD, Cannavan A. Geographical Differentiation of Hom Mali Rice Cultivated in Different Regions of Thailand Using FTIR-ATR and NIR Spectroscopy. Foods. 2021; 10(8):1951. https://doi.org/10.3390/foods10081951
Chicago/Turabian StyleSrinuttrakul, Wannee, Alina Mihailova, Marivil D. Islam, Beatrix Liebisch, Florence Maxwell, Simon D. Kelly, and Andrew Cannavan. 2021. "Geographical Differentiation of Hom Mali Rice Cultivated in Different Regions of Thailand Using FTIR-ATR and NIR Spectroscopy" Foods 10, no. 8: 1951. https://doi.org/10.3390/foods10081951
APA StyleSrinuttrakul, W., Mihailova, A., Islam, M. D., Liebisch, B., Maxwell, F., Kelly, S. D., & Cannavan, A. (2021). Geographical Differentiation of Hom Mali Rice Cultivated in Different Regions of Thailand Using FTIR-ATR and NIR Spectroscopy. Foods, 10(8), 1951. https://doi.org/10.3390/foods10081951