Comparison of Sensory Qualities in Eggs from Three Breeds Based on Electronic Sensory Evaluations
Abstract
:1. Introduction
2. Material and Methods
2.1. Samples Preparation
2.2. Egg Quality Analysis
2.3. Texture Profile Analysis (TPA)
2.4. Electronic Nose Analysis
2.5. Electronic Tongue Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Egg Quality Analysis
3.2. Texture Profile Analysis (TPA)
3.3. Electronic Nose Analysis
3.4. Electronic Tongue Analysis
3.5. Classification Algorithms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, X.; Dong, J.; Li, Y.; Xu, H.; Tang, X. Maintaining the predictive abilities of egg freshness models on new variety based on VIS-NIR spectroscopy technique. Comput. Electron. Agric. 2019, 156, 669–676. [Google Scholar] [CrossRef]
- Deisingh, A.K.; Stone, D.C.; Thompson, M. Applications of electronic noses and tongues in food analysis. Int. J. Food Sci. Technol. 2004, 39, 587–604. [Google Scholar] [CrossRef]
- Carrillo, S.; Lopez, E.; Casas, M.M.; Avila, E.; Castillo, R.M.; Carranco, M.E.; Calvo, C.; Perez-Gil, F. Potential use of seaweeds in the laying hen ration to improve the quality of n-3 fatty acid enriched eggs. J. Appl. Phycol. 2008, 20, 721–728. [Google Scholar] [CrossRef]
- Herber-McNeill, S.M.; Van Elswyk, M.E. Dietary marine algae maintains egg consumer acceptability while enhancing yolk color. Poult. Sci. 1998, 77, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Shapira, N.; Weill, P.; Loewenbach, R. Egg fortification with n-3 polyunsaturated fatty acids (PUFA): Nutritional benefits versus high n-6 PUFA western diets, and consumer acceptance. Isr. Med. Assoc. J. 2008, 10, 262–265. [Google Scholar]
- Ianni, A.; Palazzo, F.; Grotta, L.; Innosa, D.; Martino, C.; Bennato, F.; Martino, G. Chemical-nutritional parameters and volatile profile of eggs and cakes made with eggs from ISA Warren laying hens fed with a dietary supplementation of extruded linseed. Asian-Australas J. Anim. Sci. 2020, 33, 1191–1201. [Google Scholar] [CrossRef]
- Gonzalez-Esquerra, R.; Leeson, S. Effect of feeding hens regular or deodorized menhaden oil on production parameters, yolk fatty acid profile, and sensory quality of eggs. Poult. Sci. 2000, 79, 1597–1602. [Google Scholar] [CrossRef]
- Brelaz, K.C.B.T.R.; Cruz, F.G.G.; Brasil, R.J.M.; Silva, A.F.; Rufino, J.P.F.; Costa, V.R.; Viana Filho, G.B. Fish Waste Oil in Laying Hens Diets. Braz. J. Poultry Sci. 2019, 21. [Google Scholar] [CrossRef]
- Goldberg, E.M.; Gakhar, N.; Ryland, D.; Aliani, M.; Gibson, R.A.; House, J.D. Fatty Acid Profile and Sensory Characteristics of Table Eggs from Laying Hens Fed Hempseed and Hempseed Oil. J. Food Sci. 2012, 77, S153–S160. [Google Scholar] [CrossRef]
- Goldberg, E.M.; Ryland, D.; Aliani, M.; House, J.D. Interactions between canola meal and flaxseed oil in the diets of White Lohmann hens on fatty acid profile and sensory characteristics of table eggs. Poult. Sci. 2016, 95, 1805–1812. [Google Scholar] [CrossRef]
- Takahashi, H. Association Between Arachidonic Acid and Chicken Meat and Egg Flavor, and Their Genetic Regulation. J. Poult. Sci. 2018, 55, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, Y.; Yan, P.; Shi, T.; Wei, X. Effects of conjugated linoleic acid on the performance of laying hens, lipid composition of egg yolk, egg flavor, and serum components. Asian-Australas J. Anim. Sci. 2017, 30, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Al-Ajeeli, M.N.; Miller, R.K.; Leyva, H.; Hashim, M.M.; Abdaljaleel, R.A.; Jameel, Y.; Bailey, C.A. Consumer acceptance of eggs from Hy-Line Brown layers fed soybean or soybean-free diets using cage or free-range rearing systems. Poult. Sci. 2018, 97, 1848–1851. [Google Scholar] [CrossRef]
- Brasil, R.J.M.; Cruz, F.G.G.; Rufino, J.P.F.; Oliveira Filho, P.A.; Freitas, B.K.M.; Viana Filho, G.B. Physical-Chemical and Sensorial Quality of Eggs Coated With Copaiba Oil Biofilm and Stored At Room Temperature for Different Periods. Braz. J. Poultry Sci. 2019, 21. [Google Scholar] [CrossRef]
- Ahn, D.U.; Sunwoo, H.H.; Wolfe, F.H.; Sim, J.S. Effects of dietary alpha-linolenic acid and strain of hen on the fatty-acid composition, storage stability, and flavor characteristics of chicken eggs. Poult. Sci. 1995, 74, 1540–1547. [Google Scholar] [CrossRef]
- Xiang, X.; Jin, G.; Gouda, M.; Jin, Y.; Ma, M. Characterization and classification of volatiles from different breeds of eggs by SPME-GC-MS and chemometrics. Food Res. Int. 2019, 116, 767–777. [Google Scholar] [CrossRef]
- Shahid, M.S.; Raza, T.; Wu, Y.Q.; Mangi, M.H.; Nie, W.; Yuan, J.M. Comparative Effects of Flaxseed Sources on the Egg ALA Deposition and Hepatic Gene Expression in Hy-Line Brown Hens. Foods 2020, 9, 1663. [Google Scholar] [CrossRef] [PubMed]
- Kovacs-Nolan, J.; Phillips, M.; Mine, Y. Advances in the value of eggs and egg components for human health. J. Agric. Food. Chem. 2005, 53, 8421–8431. [Google Scholar] [CrossRef]
- Williams, S.K.; Damron, B.L. Sensory and fatty acid profile of eggs from commercial hens fed rendered spent hen meal. Poult. Sci. 1999, 78, 614–617. [Google Scholar] [CrossRef]
- Lawlor, J.B.; Gaudette, N.; Dickson, T.; House, J.D. Fatty acid profile and sensory characteristics of table eggs from laying hens fed diets containing microencapsulated fish oil. Anim. Feed Sci. Technol. 2010, 156, 97–103. [Google Scholar] [CrossRef]
- Juliano, P.; Toldra, M.; Koutchma, T.; Balasubramaniam, V.M.; Clark, S.; Mathews, J.W.; Dunne, C.P.; Sadler, G.; Barbosa-Canovas, G.V. Texture and water retention improvement in high-pressure thermally treated scrambled egg patties. J. Food Sci. 2006, 71, E52–E61. [Google Scholar] [CrossRef]
- Kassis, N.; Drake, S.R.; Beamer, S.K.; Matak, K.E.; Jaczynski, J. Development of nutraceutical egg products with omega-3-rich oils. LWT-Food Sci. Technol. 2010, 43, 777–783. [Google Scholar] [CrossRef]
- Gu, S.; Wang, X.; Tao, N.; Wu, N. Characterization of volatile compounds in different edible parts of steamed Chinese mitten crab (Eriocheir sinensis). Food Res. Int. 2013, 54, 81–92. [Google Scholar] [CrossRef]
- Xiang, X.; Wang, Y.; Yu, Z.; Ma, M.; Zhu, Z.; Jin, Y. Non-destructive characterization of egg odor and fertilization status by SPME/GC-MS coupled with electronic nose. J. Sci. Food Agric. 2019, 99, 3264–3275. [Google Scholar] [CrossRef]
- Liu, P.; Tu, K. Prediction of TVB-N content in eggs based on electronic nose. Food Control 2012, 23, 177–183. [Google Scholar] [CrossRef]
- Yimenu, S.M.; Kim, J.Y.; Kim, B.S. Prediction of egg freshness during storage using electronic nose. Poult. Sci. 2017, 96, 3733–3746. [Google Scholar] [CrossRef]
- Dutta, R.; Hines, E.L.; Gardner, J.W.; Udrea, D.D.; Boilot, P. Non-destructive egg freshness determination: An electronic nose based approach. Meas. Sci. Technol. 2003, 14, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, Z.; Bodor, Z.; Zinia Zaukuu, J.-L.; Kaszab, T.; Bazar, G.; Toth, T.; Mohacsi-Farkas, C. Electronic Nose for Monitoring Odor Changes of Lactobacillus Species during Milk Fermentation and Rapid Selection of Probiotic Candidates. Foods 2020, 9, 1539. [Google Scholar] [CrossRef]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A. Electronic tongues and their analytical application. Anal. Bioanal. Chem. 2002, 373, 136–146. [Google Scholar] [CrossRef]
- Ciosek, P.; Wroblewski, W. Sensor arrays for liquid sensing—Electronic tongue systems. Analyst 2007, 132, 963–978. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Y.; Wang, Y.; Kong, B.; Chen, Q. Evaluation of the flavour properties of cooked chicken drumsticks as affected by sugar smoking times using an electronic nose, electronic tongue, and HS-SPME/GC-MS. LWT Food Sci. Technol. 2021, 140, 110764. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, J.; Pei, Z.; Wei, P.; Xiang, D.; Cao, X.; Shen, X.; Li, C. Volatile flavour components and the mechanisms underlying their production in golden pompano (Trachinotus blochii) fillets subjected to different drying methods: A comparative study using an electronic nose, an electronic tongue and SDE-GC-MS. Food Res. Int. 2019, 123, 217–225. [Google Scholar] [CrossRef]
- Wang, S.; He, Y.; Wang, Y.; Tao, N.; Wu, X.; Wang, X.; Qiu, W.; Ma, M. Comparison of flavour qualities of three sourced Eriocheir sinensis. Food Chem. 2016, 200, 24–31. [Google Scholar] [CrossRef]
- Valente, N.I.P.; Rudnitskaya, A.; Oliveira, J.A.B.P.; Gaspar, E.M.M.; Gomes, M.T.S.R. Cheeses Made from Raw and Pasteurized Cow’s Milk Analysed by an Electronic Nose and an Electronic Tongue. Sensors 2018, 18, 2415. [Google Scholar] [CrossRef] [Green Version]
- Kalit, M.T.; Markovic, K.; Kalit, S.; Vahcic, N.; Havranek, J. Application of electronic nose and electronic tongue in the dairy industry. Mljekarstvo 2014, 64, 228–244. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, R.; Tudu, B.; Bandyopadhyay, R.; Bhattacharyya, N. A review on combined odor and taste sensor systems. J. Food Eng. 2016, 190, 10–21. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, B.; Dong, J.; Lu, B.; Hu, C.; Tang, X. Egg freshness prediction using a comprehensive analysis based on visible near infrared spectroscopy. Spectrosc. Lett. 2020, 53, 512–522. [Google Scholar] [CrossRef]
- Ivarsson, P.; Holmin, S.; Hojer, N.E.; Krantz-Rulcker, C.; Winquist, F. Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms. Sens. Actuators B Chem. 2001, 76, 449–454. [Google Scholar] [CrossRef]
- Apetrei, C.; Rodriguez-Mendez, M.L.; de Saja, J.A. Modified carbon paste electrodes for discrimination of vegetable oils. Sens. Actuators B Chem. 2005, 111, 403–409. [Google Scholar] [CrossRef]
- Zhao, Q.; Xue, Y.; Shen, Q. Changes in the major aroma-active compounds and taste components of Jasmine rice during storage. Food Res. Int. 2020, 133, 109160. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, G.; Jin, Y.; Ma, M.; Wang, N.; Liu, C.; He, L. Discriminating eggs from different poultry species by fatty acids and volatiles profiling: Comparison of SPME-GC/MS, electronic nose, and principal component analysis method. Eur. J. Lipid Sci. Technol. 2014, 116, 1044–1053. [Google Scholar] [CrossRef]
- Del Signore, A. Chemometric analysis and volatile compounds of traditional balsamic vinegars from Modena. J. Food Eng. 2001, 50, 77–90. [Google Scholar] [CrossRef]
- Pekel, E. Estimation of soil moisture using decision tree regression. Theor. Appl. Climatol. 2020, 139, 1111–1119. [Google Scholar] [CrossRef]
- Subari, N.; Saleh, J.M.; Shakaff, A.Y.M.; Zakaria, A. A Hybrid Sensing Approach for Pure and Adulterated Honey Classification. Sensors 2012, 12, 14022–14040. [Google Scholar] [CrossRef]
- Li, J.; Zhu, S.; Jiang, S.; Wang, J. Prediction of egg storage time and yolk index based on electronic nose combined with chemometric methods. LWT Food Sci. Technol. 2017, 82, 369–376. [Google Scholar] [CrossRef]
- Taskaya, L.; Chen, Y.-C.; Jaczynski, J. Color improvement by titanium dioxide and its effect on gelation and texture of proteins recovered from whole fish using isoelectric solubilization/precipitation. LWT Food Sci. Technol. 2010, 43, 401–408. [Google Scholar] [CrossRef]
- Wen, Z.; Wu, Y.; Qi, Z.; Li, X.; Li, F.; Wu, X.; Yang, P. Rubber seed oil supplementation enriches n-3 polyunsaturated fatty acids and reduces cholesterol contents of egg yolks in laying hens. Food Chem. 2019, 301, 125198. [Google Scholar] [CrossRef]
- Ayerza, R.; Coates, W. An omega-3 fatty acid enriched chia diet: Influence on egg fatty acid composition, cholesterol and oil content. Can. J. Anim. Sci. 1999, 79, 53–58. [Google Scholar] [CrossRef]
- Orczewska-Dudek, S.; Pietras, M.; Puchala, M.; Nowak, J. Camelina sativa oil and camelina cake as sources of polyunsaturated fatty acids in the diets of laying hens: Effect on hen performance, fatty acid profile of yolk lipids, and egg sensory quality. Ann. Anim. Sci. 2020, 20, 1365–1377. [Google Scholar] [CrossRef]
- Qin, L.; Gao, J.-X.; Xue, J.; Chen, D.; Lin, S.-Y.; Dong, X.-P.; Zhu, B.-W. Changes in Aroma Profile of Shiitake Mushroom (Lentinus edodes) during Different Stages of Hot Air Drying. Foods 2020, 9, 444. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, A.; Shakaff, A.Y.M.; Adorn, A.H.; Ahmad, M.N.; Masnan, M.J.; Aziz, A.H.A.; Fikri, N.A.; Abdullah, A.H.; Kamarudin, L.M. Improved Classification of Orthosiphon stamineus by Data Fusion of Electronic Nose and Tongue Sensors. Sensors 2010, 10, 8782–8796. [Google Scholar] [CrossRef]
- Ha, D.; Sun, Q.; Su, K.; Wan, H.; Li, H.; Xu, N.; Sun, F.; Zhuang, L.; Hu, N.; Wang, P. Recent achievements in electronic tongue and bioelectronic tongue as taste sensors. Sens. Actuators B Chem. 2015, 207, 1136–1146. [Google Scholar] [CrossRef]
Number | Sensors | Sensitive Characteristics | Reference Volatiles |
---|---|---|---|
S1 | W1C | Aromatic | Toluene, 10 ppm |
S2 | W5S | Nitrogen oxides | NO2, 1 ppm |
S3 | W3C | Ammonia | Benzene, 10 ppm |
S4 | W6S | Hydrogen | H2, 100 ppb |
S5 | W5C | Alkane | Propane, 1 ppm |
S6 | W1S | Methane | CH3, 100 ppm |
S7 | W1W | Sulfur | H2S, 1 ppm |
S8 | W2S | Alcohol, aromatic | CO, 100 ppm |
S9 | W2W | Aromatic, sulfur organic | H2S, 1 ppm |
S10 | W3S | High concentrations > 100 ppm | CH3, 100 ppm |
Items | B 1 | H 2 | W 3 | SEM 4 | p Value |
---|---|---|---|---|---|
Color | 9.80 a | 6.50 b | 9.10 a | 0.35 | 0.00 |
Weight (g) | 55.45 a | 54.86 a | 44.97 b | 1.09 | 0.00 |
Height (mm) | 5.55 ab | 6.38 a | 4.76 b | 0.29 | 0.03 |
HU | 74.38 | 78.63 | 72.22 | 2.21 | 0.40 |
Items | B 1 | H 2 | W 3 | SEM 4 | p Value |
---|---|---|---|---|---|
Hardness (N) | 3.02 | 2.99 | 3.13 | 0.14 | 0.92 |
Adhesiveness (N.mm) | 0.07 | 0.08 | 0.07 | 0.00 | 0.69 |
Cohesiveness (Ratio) | 0.58 a | 0.51 ab | 0.47 b | 0.02 | 0.07 |
Springiness (mm) | 4.72 | 5.14 | 4.80 | 0.13 | 0.43 |
Chewiness | 8.46 | 8.06 | 6.95 | 0.61 | 0.61 |
Items | B 1 | H 2 | W 3 | SEM 4 | p Value |
---|---|---|---|---|---|
Hardness (N) | 5.20 | 7.41 | 7.71 | 0.48 | 0.06 |
Adhesiveness (N.mm) | 0.05 | 0.05 | 0.04 | 0.00 | 0.37 |
Cohesiveness (Ratio) | 0.60 b | 0.59 b | 0.65 a | 0.01 | 0.04 |
Springiness (mm) | 4.62 | 5.40 | 4.28 | 0.29 | 0.28 |
Chewiness | 14.44 | 23.98 | 22.24 | 2.17 | 0.16 |
Sensors | Yolk | Albumen | ||||
---|---|---|---|---|---|---|
PC1 1 | PC2 2 | PC3 3 | PC1 | PC2 | PC3 | |
W1C | −0.38 | 0.06 | 0.25 | −0.37 | −0.14 | −0.06 |
W5S | 0.39 | −0.08 | 0.05 | 0.36 | −0.15 | −0.01 |
W3C | −0.38 | 0.14 | 0.1 | −0.38 | 0.03 | −0.02 |
W6S | 0.1 | 0.37 | 0.68 | 0.12 | 0.49 | 0.78 |
W5C | −0.38 | 0.16 | 0.02 | −0.38 | 0.03 | −0.02 |
W1S | 0.26 | 0.52 | −0.28 | 0.25 | 0.41 | −0.53 |
W1W | 0.36 | −0.25 | 0.2 | 0.32 | −0.33 | 0.16 |
W2S | 0.22 | 0.55 | −0.36 | 0.16 | 0.57 | −0.15 |
W2W | 0.36 | −0.26 | 0.14 | 0.33 | −0.32 | 0.14 |
W3S | 0.18 | 0.33 | 0.44 | 0.35 | −0.05 | −0.18 |
Sensors | Yolk | Albumen | ||||
---|---|---|---|---|---|---|
PC1 1 | PC2 2 | PC3 3 | PC1 | PC2 | PC3 | |
Astringency | 0.54 | 0.16 | 0.01 | −0.36 | 0.52 | 0.16 |
Aftertaste-A | 0.21 | −0.19 | 0.71 | −0.48 | 0.11 | −0.06 |
Bitterness | 0.1 | 0.66 | 0.39 | 0.45 | 0.02 | 0.47 |
Aftertaste-B | −0.43 | 0.36 | 0.39 | 0.43 | 0.11 | 0.43 |
Richness | 0.46 | −0.03 | 0.03 | 0.34 | 0.49 | −0.29 |
Saltiness | 0.08 | −0.57 | 0.42 | 0.29 | −0.42 | −0.56 |
Umami | 0.5 | 0.2 | −0.13 | −0.26 | −0.54 | 0.41 |
Classification Algorithms | Electronic Nose | Electronic Tongue | ||||
---|---|---|---|---|---|---|
Yolk | Albumen | Egg | Yolk | Albumen | Egg | |
LDA 1 | 100% | 100% | 100% | 96.7% | 88.9% | 58.3% |
Fine KNN 2 | 100% | 100% | 100% | 90.0% | 61.1% | 87.5% |
Linear SVM 3 | 100% | 100% | 100% | 73.3% | 77.8% | 66.7% |
Fine tree | 100% | 91.7% | 100% | 96.7% | 61.1% | 64.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Gao, L.; Zhang, H.; Wang, J.; Qiu, K.; Qi, G.; Wu, S. Comparison of Sensory Qualities in Eggs from Three Breeds Based on Electronic Sensory Evaluations. Foods 2021, 10, 1984. https://doi.org/10.3390/foods10091984
Dong X, Gao L, Zhang H, Wang J, Qiu K, Qi G, Wu S. Comparison of Sensory Qualities in Eggs from Three Breeds Based on Electronic Sensory Evaluations. Foods. 2021; 10(9):1984. https://doi.org/10.3390/foods10091984
Chicago/Turabian StyleDong, Xiaoguang, Libing Gao, Haijun Zhang, Jing Wang, Kai Qiu, Guanghai Qi, and Shugeng Wu. 2021. "Comparison of Sensory Qualities in Eggs from Three Breeds Based on Electronic Sensory Evaluations" Foods 10, no. 9: 1984. https://doi.org/10.3390/foods10091984
APA StyleDong, X., Gao, L., Zhang, H., Wang, J., Qiu, K., Qi, G., & Wu, S. (2021). Comparison of Sensory Qualities in Eggs from Three Breeds Based on Electronic Sensory Evaluations. Foods, 10(9), 1984. https://doi.org/10.3390/foods10091984