Key Factors Affecting the Flesh Flavor Quality and the Nutritional Value of Grass Carp in Four Culture Modes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Culture and Four Treatment Modes
2.2. Detection of Water Quality Parameters
2.3. Sample Collection
2.4. Determination of Nutritional Value Indexes
2.5. Determination of Volatile Aroma Components
2.6. Analysis of Relative Odor Activity Values
2.7. Analysis of Flavor Characteristics
2.8. Statistical Analysis
3. Results
3.1. Water Quality Analysis
3.2. Growth Performance and Nutrition Composition
3.3. Analysis of Volatile Compounds
3.4. Analysis of Key Flavor Components
3.5. Flavor Characteristics Analysis
3.6. Correlation Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Tian, J.; Zhang, J.; Yu, E.; Sun, J.; Xia, Y.; Zhang, K.; Li, Z.-F.; Gong, W.; Wang, G.; Xie, J. Identification and analysis of lipid droplet-related proteome in the adipose tissue of grass carp (Ctenopharyngodon idella) under fed and starved conditions. Comp. Biochem. Physiol. Part D Genom. Proteom. 2020, 36, 100710. [Google Scholar]
- Cai, L.; Tong, F.; Tang, T.; Ao, Z.; Wei, Z.; Yang, F.; Shu, Y.; Liu, S.; Mai, K. Comparative evaluation of nutritional value and flavor quality of muscle in triploid and diploid common carp: Application of genetic improvement in fish quality. Aquaculture 2021, 541, 736780. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.; Wang, Z.; Cai, S.; Zhu, B.; Dong, X. Recent advances in fishy odor in aquatic fish products, from formation to control. Int. J. Food Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Selli, S.; Rannou, C.; Prost, C.; Robin, J.; Serot, T. Characterization of Aroma-Active Compounds in Rainbow Trout (Oncorhynchus mykiss) Eliciting an Off-Odor. J. Agric. Food Chem. 2006, 54, 9496–9502. [Google Scholar] [CrossRef]
- Alexi, N.; Fountoulaki, E.; Grigorakis, K. Quality of reared gilthead sea bream (Sparus aurata) during ice storage, as affected by dietary fish oil substitution; an instrumental and sensory designation approach. Aquac. Res. 2017, 48, 3817–3828. [Google Scholar] [CrossRef]
- Mu, H.; Wei, Z.; Yi, L.; Liang, H.; Zhao, L.; Zhang, W.; Mai, K. Dietary fishmeal levels affect the volatile compounds in cooked muscle of farmed large yellow croaker Larimichthys crocea. Aquac. Res. 2017, 48, 5821–5834. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, X.; Jin, M.; Jiao, L.; Sun, P.; Betancor, M.B.; Tocher, D.R.; Zhou, Q. Modification of nutritional values and flavor qualities of muscle of swimming crab (Portunus trituberculatus): Application of a dietary lipid nutrition strategy. Food Chem. 2020, 308, e125607. [Google Scholar] [CrossRef]
- Azaria, S.; van Rijn, J. Off-flavor compounds in recirculating aquaculture systems (RAS): Production and removal processes. Aquac. Eng. 2018, 83, 57–64. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Tang, R.; He, X.; Li, L.; Takagi, Y.; Li, D. Improvement of muscle quality of grass carp (Ctenopharyngodon idellus) with a bio-floating bed in culture ponds. Front. Physiol. 2019, 10, e683. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, G.; Xie, J.; Yu, E.; Yu, D.; LI, Z.; Zhang, K. Relationship between bacterial community composition and Ctenopharyngodon idella growth in periphyton substrate systems with different densities. J. Fish. China 2019, 43, 988–996. [Google Scholar]
- Yu, E.; Fu, B.; Wang, G.; Li, Z.; Ye, D.; Jiang, Y.; Ji, H.; Wang, X.; Yu, D.; Ehsan, H.; et al. Proteomic and metabolomic basis for improved textural quality in crisp grass carp (Ctenopharyngodon idellus C.et V) fed with a natural dietary pro-oxidant. Food Chem. 2020, 325, 126906. [Google Scholar] [CrossRef]
- Mao, D.; Zhang, K.; Ou, H.; Xie, J.; Wu, Y.; Huang, Z.; Wang, G.; Yu, D.; Yu, E.; Li, Z.; et al. Comparative analysis on flesh quality of grass carp (Ctenopharyngodon idellus) fed with two kinds feeds. Chin. J. Anim. Nutr. 2018, 30, 2226–2234. [Google Scholar]
- Ruan, Q.; An, Y.; Chen, Z.; You, J.; Xiong, S. Effect of Short-Time Micro-Flow Water Treatment on Flavor Quality of Grass Carp Fish Meat. J. Food Sci. Technol. 2021, 03, 30–42. [Google Scholar]
- Zhang, K.; Yu, D.; Li, Z.; Xie, J.; Wang, G.; Gong, W.; Yu, E.; Tian, J. Influence of eco-substrate addition on organic carbon, nitrogen and phosphorus budgets of intensive aquaculture ponds of the Pearl River, China. Aquaculture 2020, 520, 734868. [Google Scholar] [CrossRef]
- Xu, L.; Yu, X.; Li, M.; Chen, J.; Wang, X. Monitoring oxidative stability and changes in key volatile compounds in edible oils during ambient storage through HS-SPME/GC–MS. Int. J. Food Prop. 2017, 20, S2926–S2938. [Google Scholar] [CrossRef] [Green Version]
- Yi, C.; Li, Y.; Zhu, H.; Liu, Y.; Quan, K. Effect of Lactobacillus plantarum fermentation on the volatile flavors of mung beans. LWT 2021, 146, 111434. [Google Scholar] [CrossRef]
- Dong, W.; Hu, R.; Long, Y.; Li, H.; Zhang, Y.; Zhu, K.; Chu, Z. Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chem. 2019, 272, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Hiplot Platform. Available online: https://hiplot.com.cn/ (accessed on 1 August 2021).
- Wu, K.; Xie, J.; Wang, Q.; Ling, M.; Wu, J. Effect of Monascus Fermentation on Aroma Patterns of Semi-Dried Grass Carp. Food Nutr. Sci. 2019, 10, 923–936. [Google Scholar]
- Giri, A.; Osako, K.; Ohshima, T. Identification and characterisation of headspace volatiles of fish miso, a Japanese fish meat based fermented paste, with special emphasis on effect of fish species and meat washing. Food Chem. 2010, 120, 621–631. [Google Scholar] [CrossRef]
- Gu, S.; Wang, X.; Tao, N.; Wu, N. Characterization of volatile compounds in different edible parts of steamed Chinese mitten crab (Eriocheir sinensis). Food Res. Int. 2013, 54, 81–92. [Google Scholar] [CrossRef]
- Zhuang, K.; Wu, N.; Wang, X.; Wu, X.; Wang, S.; Long, X.; Wei, X. Effects of 3 Feeding Modes on the Volatile and Nonvolatile Compounds in the Edible Tissues of Female Chinese Mitten Crab (Eriocheir sinensis). J. Food Sci. 2016, 81, S968–S981. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, P.; Wu, X.; Wu, X.; Wang, B.; Huang, Y.; Hu, Y.; Lin, J.; Lu, Z.; Li, G. GourdBase: A genome-centered multi-omics database for the bottle gourd (Lagenaria siceraria), an economically important cucurbit crop. Sci. Rep. 2018, 8, 3604. [Google Scholar] [CrossRef]
- Geran, L.C.; Travers, S.P. Bitter-responsive gustatory neurons in the rat parabrachial nucleus. J. Neurophysiol. 2009, 101, 1598–1612. [Google Scholar] [CrossRef]
- Zhou, X.; Chong, Y.; Ding, Y.; Gu, S.; Liu, L. Determination of the effects of different washing processes on aroma characteristics in silver carp mince by MMSE–GC–MS, e-nose and sensory evaluation. Food Chem. 2016, 207, 205–213. [Google Scholar] [CrossRef]
- Goto, T.; Shimamoto, S.; Takaya, M.; Sato, S.; Takahashi, K.; Nishimura, K.; Morii, Y.; Kunishige, K.; Ohtsuka, A.; Ijiri, D. Impact on genetic differences among various chicken breeds on free amino acid contents of egg yolk and albumen. Sci. Rep. 2021, 11, 2270. [Google Scholar] [CrossRef]
- Moretti, V.M.; Vasconi, M.; Caprino, F.; Bellagamba, F. Fatty Acid Profiles and Volatile Compounds Formation During Processing and Ripening of a Traditional Salted Dry Fish Product. J. Food Process. Preserv. 2017, 41, e13133. [Google Scholar] [CrossRef]
- Guo, Q.; Yu, J.; Zhao, Y.; Liu, T.; Su, M.; Jia, Z.; Zhao, Y.; Mu, Z.; Yang, M. Identification of fishy odor causing compounds produced by Ochromonas sp. and Cryptomonas ovate with gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography. Sci. Total Environ. 2019, 671, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Piveteau, F.; Le Guen, S.; Gandemer, G.; Baud, J.P.; Prost, C.; Demaimay, M. Aroma of Fresh Oysters Crassostrea gigas: Composition and Aroma Notes. J. Agric. Food Chem. 2000, 48, 4851–4857. [Google Scholar] [CrossRef] [PubMed]
- Josephson, D.B.; Lindsay, R.C.; Stuiber, D.A. Variations in the occurrences of enzymically derived volatile aroma compounds in salt- and freshwater fish. J. Agric. Food Chem. 1984, 32, 1344–1347. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, H.; Liu, H.; Ma, R.; Ma, J.; Fang, H. Fermentation by Multiple Bacterial Strains Improves the Production of Bioactive Compounds and Antioxidant Activity of Goji Juice. Molecules 2019, 24, 3519. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Liu, X.; Tian, H.; Han, B.; Li, Y.; Tang, C.; Zhu, K.; Li, C.; Meng, Y. Odor-active volatile compounds profile of triploid rainbow trout with different marketable sizes. Aquac. Rep. 2020, 17, e100312. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, S.; Peng, Y.; Jin, Y.; Xu, D.; Xu, X. Effect of lactic acid bacteria on mackerel (Pneumatophorus japonicus) seasoning quality and flavor during fermentation. Food Biosci. 2021, 41, 100971. [Google Scholar] [CrossRef]
- Song, X.F.; Yang, X.H.; Huang, Z.T. Advances in Studies on Nitrate Toxicity to Fish [J]. Period. Ocean Univ. China 2019, 49, 34–41. [Google Scholar]
- Smallbone, W.; Cable, J.; Maceda-Veiga, A. Chronic nitrate enrichment decreases severity and induces protection against an infectious disease. Environ. Int. 2016, 91, 265–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, L.H.; Lin, Y.; Pan, W.J.; Huang, X.; Ge, X.P.; Zhou, Q.L.; Liu, B.; Ren, M.C.; Zhang, W.-x.; Liang, H.-l.; et al. Comparative transcriptome analysis reveals the gene expression profiling in bighead carp (Aristichthys nobilis) in response to acute nitrite toxicity. Fish Shellfish Immunol. 2018, 79, 244–255. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Y.; Xiao, Y.; Li, X.; Xu, X.; Zhao, H.; Wu, L.; Li, J. Effects of chronic nitrate exposure on the intestinal morphology, immune status, barrier function, and microbiota of juvenile turbot (Scophthalmus maximus). Ecotoxicol. Environ. Saf. 2021, 207, 111287. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.K.; Hur, Y.B. Toxic effects of waterborne nitrite exposure on antioxidant responses, acetylcholinesterase inhibition, and immune responses in olive flounders, Paralichthys olivaceus, reared in bio-floc and seawater. Fish Shellfish Immunol. 2020, 97, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.S.; Ma, S.; Shan, H.W.; Wang, T.; Xiao, W. Responses of hemocyanin and energy metabolism to acute nitrite stress in juveniles of the shrimp Litopenaeus vannamei. Ecotoxicol. Environ. Saf. 2019, 186, 109753. [Google Scholar] [CrossRef] [PubMed]
- Dolomatov, S.; Zukow, W.; Hagner-Derengowska, M.; Kozestanska, M.; Jaworska, I.; Nalazek, A. Toxic and physiological aspects of metabolism of nitrites and nitrates in the fish organism. J. Health Sci. 2013, 3, 68–91. [Google Scholar]
- Ping, L. Effects of compound feed with oaked beans and embrittlement on growth performance and muscle quality in Ctenopharynodon idellus. China Feed 2017, 18, 33–37. [Google Scholar]
- Mao, D. Comparative Study of Effect of Two Kinds of Feed on Body Characteristics and Muscle Quality of Grass Crap (Ctenopharyngodon Idellus); Dalian Ocean University: Dalian, China, 2018. [Google Scholar]
Crude Protein (g/100 g) | Crude Fat (g/100 g) | Ash (g/100 g) | Moisture (g/100 g) | |
---|---|---|---|---|
Commercial diet | 28.8 | 5.5 | 8.1 | 10.9 |
Faba bean | 28 | 1.4 | 4.1 | 14.4 |
Grass powder | 14.1 | 1.8 | 10.8 | 12.9 |
Control | FBT | GBT | WWT | |
---|---|---|---|---|
Weight gain rate (%) | 34.61 ± 0.64 a | 7.52 ± 0.73 d | 19.62 ± 1.83 c | 30.58 ± 1.96 b |
Condition factor (%) | 33.41 ± 2.7 a | 27.18 ± 1.41 b | 29.55 ± 0.81 a,b | 32.61 ± 3.01 a |
Compound | Threshold (μg/kg) | Odor Attributes | Control | FBT | GPT | WWT | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Relative Content (%) | ROAV | Relative Content (%) | ROAV | Relative Content (%) | ROAV | Relative Content (%) | ROAV | |||||||||||
Muscle Sample | Skin Sample | Muscle Sample | Skin Sample | Muscle Sample | Skin Sample | Muscle Sample | Skin Sample | Muscle Sample | Skin Sample | Muscle Sample | Skin Sample | Muscle Sample | Skin Sample | Muscle Sample | Skin Sample | |||
1-Octen-3-ol | 1.0 | Mushroom | 0.99 | 21.11 | 3.703 | 100 * | 2.40 | – | 30.572 * | – | 2.63 | 16.17 | 30.306 * | 96.820 * | 9.28 | 24.79 | 100 * | 100 |
Nonanal | 1.0 | Fatty | 23.67 | 8.12 | 88.339 * | 38.483 * | 5.58 | 5.18 | 32.741 * | 6.957 | 8.67 | 16.70 | 100 * | 100 * | 8.44 | 10.03 | 90.987 * | 40.471 * |
Hexanal | 4.5 | Grass, fresh | – | 1.56 | – | 1.647 | 17.05 | 15.96 | 100 * | 21.418 * | 7.79 | 2.92 | 19.955 | 3.885 | 3.14 | – | 7.520 | – |
Decanal | 0.1 | Grass | 2.68 | – | 100 * | – | – | 0.66 | – | 8.800 | – | – | – | – | – | 0.58 | – | 23.448 |
Eucalyptol | 3.0 | Chemical | 1.84 | – | 2.293 | – | – | - | – | – | – | – | – | – | – | – | – | – |
Heptanal | 3.0 | Green | – | – | – | – | – | 1.36 | – | 0.607 | – | 0.57 | – | 1.134 | – | 0.89 | – | 1.199 |
Octanal | 0.7 | Green | – | – | – | – | – | 4.22 | – | 8.099 | – | 2.39 | – | 20.407 | – | – | – | – |
Tetradecanal | 110.0 | Fishy | – | – | – | – | – | - | – | – | – | – | – | – | 2.61 | – | 0.255 | – |
(E)-2-Octenal | 3.0 | Fatty | – | – | – | – | 2.48 | 3.39 | 4.844 | 1.515 | – | – | – | – | – | – | – | – |
(E)-2-Decenal | 0.3 | Fatty | – | – | – | – | 1.86 | 5.96 | 36.414 * | 26.666 * | – | – | – | – | – | – | – | – |
(E)-2-Nonenal | 0.08 | Fishy, tallow | – | – | – | – | – | 5.96 | – | 100 * | – | – | – | – | – | – | – | – |
(E,E)-2,4-Nonadienal | 0.090 | Fishy, waxy | – | – | – | – | – | 2.05 | – | 30.634 * | – | – | – | – | – | – | – | – |
(E,E)-2,4-Decadienal | 0.070 | Fishy | – | – | – | – | – | 4.74 | – | 90.897 * | – | – | – | – | – | – | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Kaneko, G.; Sun, J.; Wang, G.; Xie, J.; Tian, J.; Li, Z.; Gong, W.; Zhang, K.; Xia, Y.; et al. Key Factors Affecting the Flesh Flavor Quality and the Nutritional Value of Grass Carp in Four Culture Modes. Foods 2021, 10, 2075. https://doi.org/10.3390/foods10092075
Zhang J, Kaneko G, Sun J, Wang G, Xie J, Tian J, Li Z, Gong W, Zhang K, Xia Y, et al. Key Factors Affecting the Flesh Flavor Quality and the Nutritional Value of Grass Carp in Four Culture Modes. Foods. 2021; 10(9):2075. https://doi.org/10.3390/foods10092075
Chicago/Turabian StyleZhang, Junming, Gen Kaneko, Jinhui Sun, Guangjun Wang, Jun Xie, Jingjing Tian, Zhifei Li, Wangbao Gong, Kai Zhang, Yun Xia, and et al. 2021. "Key Factors Affecting the Flesh Flavor Quality and the Nutritional Value of Grass Carp in Four Culture Modes" Foods 10, no. 9: 2075. https://doi.org/10.3390/foods10092075
APA StyleZhang, J., Kaneko, G., Sun, J., Wang, G., Xie, J., Tian, J., Li, Z., Gong, W., Zhang, K., Xia, Y., & Yu, E. (2021). Key Factors Affecting the Flesh Flavor Quality and the Nutritional Value of Grass Carp in Four Culture Modes. Foods, 10(9), 2075. https://doi.org/10.3390/foods10092075