Determination of Floral Origin Markers of Latvian Honey by Using IRMS, UHPLC-HRMS, and 1H-NMR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. IRMS
2.2.1. Protein Extraction by Dialysis
2.2.2. δ13C and δ15N, and Total Carbon and Nitrogen Analysis
2.3. UHPLC-HRMS
2.3.1. Chemicals
2.3.2. SULLE Sample Preparation
2.3.3. UHPLC-HRMS Systems
2.4. NMR
2.4.1. Sample Preparation
2.4.2. 1H-NMR Spectra Acquisition
2.4.3. 1H-NMR Spectra Processing
2.5. Statistical Analysis
3. Results and Discussion
3.1. IRMS Analysis of Honey Proteins
3.2. UHPLC-HRMS Analysis
3.3. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Apiculture Programmes 2020–22. Available online: https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/animals_and_animal_products/documents/honey-apiculture-programmes-overview-2020-2022.pdf (accessed on 11 November 2021).
- Geana, E.I.; Ciucure, C.T. Establishing authenticity of honey via comprehensive Romanian honey analysis. Food Chem. 2020, 306, 125595. [Google Scholar] [CrossRef]
- Bontempo, L.; Camin, F.; Ziller, L.; Perini, M.; Nicolini, G.; Larcher, R. Isotopic and elemental composition of selected types of Italian honey. Meas. J. Int. Meas. Confed. 2017, 98, 283–289. [Google Scholar] [CrossRef]
- Puścion-Jakubik, A.; Borawska, M.H.; Socha, K. Modern methods for assessing the quality of Bee Honey and botanical origin identification. Foods 2020, 9, 1028. [Google Scholar] [CrossRef]
- Rusko, J.; Vainovska, P.; Vilne, B.; Bartkevics, V. Phenolic profiles of raw mono- and polyfloral honeys from Latvia. J. Food Compos. Anal. 2021, 98, 103813. [Google Scholar] [CrossRef]
- Kečkeš, S.; Gašić, U.; Veličković, T.Ć.; Milojković-Opsenica, D.; Natić, M.; Tešić, Ž. The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry. Food Chem. 2013, 138, 32–40. [Google Scholar] [CrossRef]
- Lo Dico, G.M.; Ulrici, A.; Pulvirenti, A.; Cammilleri, G.; Macaluso, A.; Vella, A.; Giaccone, V.; Lo Cascio, G.; Graci, S.; Scuto, M.; et al. Multivariate statistical analysis of the polyphenols content for the discrimination of honey produced in Sicily (Southern Italy). J. Food Compos. Anal. 2019, 82, 103225. [Google Scholar] [CrossRef]
- Kuballa, T.; Brunner, T.S.; Thongpanchang, T.; Walch, S.G.; Lachenmeier, D.W. Application of NMR for authentication of honey, beer and spices. Curr. Opin. Food Sci. 2018, 19, 57–62. [Google Scholar] [CrossRef]
- Consonni, R.; Bernareggi, F.; Cagliani, L.R. NMR-based metabolomic approach to differentiate organic and conventional Italian honey. Food Control. 2019, 98, 133–140. [Google Scholar] [CrossRef]
- Boffo, E.F.; Tavares, L.A.; Tobias, A.C.T.; Ferreira, M.M.C.; Ferreira, A.G. Identification of components of Brazilian honey by 1H NMR and classification of its botanical origin by chemometric methods. LWT—Food Sci. Technol. 2012, 49, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Spiteri, M.; Jamin, E.; Thomas, F.; Rebours, A.; Lees, M.; Rogers, K.M.; Rutledge, D.N. Fast and global authenticity screening of honey using 1H-NMR profiling. Food Chem. 2015, 189, 60–66. [Google Scholar] [CrossRef]
- Schievano, E.; Stocchero, M.; Zuccato, V.; Conti, I.; Piana, L. NMR assessment of European acacia honey origin and composition of EU-blend based on geographical floral markers. Food Chem. 2019, 288, 96–101. [Google Scholar] [CrossRef]
- Brereton, R.G. Chemometrics: Data Analysis for the Laboratory and Chemical Plant; John Wiley & Sons: Chichester, UK, 2003; pp. 185–220. [Google Scholar]
- Vasić, V.; Đurđić, S.; Tosti, T.; Radoičić, A.; Lušić, D.; Milojković-Opsenica, D.; Tešić, Ž.; Trifković, J. Two aspects of honeydew honey authenticity: Application of advance analytical methods and chemometrics. Food Chem. 2020, 305, 125457. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xue, X.; Du, X.; Cheng, N.; Chen, L.; Zhao, J.; Zheng, J.; Cao, W. Identification of Acacia Honey Adulteration with Rape Honey Using Liquid Chromatography–Electrochemical Detection and Chemometrics. Food Anal. Methods 2014, 7, 2003–2012. [Google Scholar] [CrossRef]
- Geană, E.I.; Ciucure, C.T.; Costinel, D.; Ionete, R.E. Evaluation of honey in terms of quality and authenticity based on the general physicochemical pattern, major sugar composition and δ13C signature. Food Control. 2020, 109, 106919. [Google Scholar] [CrossRef]
- Wen, Y.Q.; Zhang, J.; Li, Y.; Chen, L.; Zhao, W.; Zhou, J.; Jin, Y. Characterization of Chinese unifloral honeys based on proline and phenolic content as markers of botanical origin, using multivariate analysis. Molecules 2017, 22, 735. [Google Scholar] [CrossRef] [Green Version]
- Requirements for Food Quality Schemes, Procedures for the Implementation, Operation, Monitoring, and Control Thereof. Annex 7. Available online: https://likumi.lv/ta/en/en/id/268347-requirements-for-food-quality-schemes-procedures-for-the-implementation-operation-monitoring-and-control-thereof (accessed on 11 November 2021).
- Bilikova, K.; Krakova, T.K.; Yamaguchi, K.; Yamaguchi, Y. Major royal jelly proteins as markers of authenticity and quality of honey. Arh. Hig. Rada Toksikol. 2015, 66, 259–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shtangeeva, I.; Buša, L.; Viksna, A. Carbon and nitrogen stable isotope ratios of soils and grasses as indicators of soil characteristics and biological taxa. Appl. Geochem. 2019, 104, 19–24. [Google Scholar] [CrossRef]
- Schievano, E.; Sbrizza, M.; Zuccato, V.; Piana, L.; Tessari, M. NMR carbohydrate profile in tracing acacia honey authenticity. Food Chem. 2020, 309, 125788. [Google Scholar] [CrossRef]
- Chen, C.T.; Chen, B.Y.; Nai, Y.S.; Chang, Y.M.; Chen, K.H.; Chen, Y.W. Novel inspection of sugar residue and origin in honey based on the 13C/12C isotopic ratio and protein content. J. Food Drug Anal. 2019, 27, 175–183. [Google Scholar] [CrossRef]
- Wu, L.; Du, B.; Vander Heyden, Y.; Chen, L.; Zhao, L.; Wang, M.; Xue, X. Recent advancements in detecting sugar-based adulterants in honey—A challenge. TrAC—Trends Anal. Chem. 2017, 86, 25–38. [Google Scholar] [CrossRef]
- Schellenberg, A.; Chmielus, S.; Schlicht, C.; Camin, F.; Perini, M.; Bontempo, L.; Heinrich, K.; Kelly, S.D.; Rossmann, A.; Thomas, F.; et al. Multielement stable isotope ratios (H, C, N, S) of honey from different European regions. Food Chem. 2010, 121, 770–777. [Google Scholar] [CrossRef]
- Fang, L.; He, X.; Zhang, X.; Yang, Y.; Liu, R.; Shi, S.; Shi, X.; Zhang, Y. A small amount of nitrogen transfer from white clover to citrus seedling via common arbuscular mycorrhizal networks. Agronomy 2021, 11, 32. [Google Scholar] [CrossRef]
- Rouwenhorst, R.J.; Frank Jzn, J.; Scheffers, W.A.; van Dijken, J.P. Determination of protein concentration by total organic carbon analysis. J. Biochem. Biophys. Methods 1991, 22, 119–128. [Google Scholar] [CrossRef]
- Chua, L.S.; Lee, J.Y.; Chan, G.F. Honey protein extraction and determination by mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 3063–3074. [Google Scholar] [CrossRef]
- Bocian, A.; Buczkowicz, J.; Jaromin, M.; Hus, K.K.; Legáth, J. An effective method of isolating honey proteins. Molecules 2019, 24, 2399. [Google Scholar] [CrossRef] [Green Version]
- Karabagias, I.K.; Maia, M.; Karabagias, V.K.; Gatzias, I.; Badeka, A.V. Characterization of eucalyptus, chestnut and heather honeys from Portugal using multi-parameter analysis and chemo-calculus. Foods 2018, 7, 194. [Google Scholar] [CrossRef] [Green Version]
- Bleha, R.; Shevtsova, T.V.; Živčáková, M.; Korbářová, A.; Ježková, M.; Saloň, I.; Brindza, J.; Synytsya, A. Spectroscopic discrimination of bee pollen by composition, color, and botanical origin. Foods 2021, 10, 1682. [Google Scholar] [CrossRef]
- Halagarda, M.; Groth, S.; Popek, S.; Rohn, S.; Pedan, V. Antioxidant activity and phenolic profile of selected organic and conventional honeys from Poland. Antioxidants 2020, 9, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant activity, total phenolic content, individual phenolics and physicochemical parameters suitability for Romanian honey authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Lamas, L.B.; Flórez, S.M.; Toyos, P.A.; et al. Phenolic compounds in honey and their associated health benefits: A review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [Green Version]
- Gerginova, D.; Simova, S.; Popova, M.; Stefova, M.; Stanoeva, J.P.; Bankova, V. NMR profiling of North Macedonian and Bulgarian honeys for detection of botanical and geographical origin. Molecules 2020, 25, 4687. [Google Scholar] [CrossRef] [PubMed]
- Schievano, E.; Tonoli, M.; Rastrelli, F. NMR Quantification of Carbohydrates in Complex Mixtures. A Challenge on Honey. Anal. Chem. 2017, 89, 13405–13414. [Google Scholar] [CrossRef] [PubMed]
- Consonni, R.; Cagliani, L.R.; Cogliati, C. Geographical discrimination of honeys by saccharides analysis. Food Control 2013, 32, 543–548. [Google Scholar] [CrossRef]
- Consonni, R.; Cagliani, L.R.; Cogliati, C. NMR characterization of saccharides in italian honeys of different floral sources. J. Agric. Food Chem. 2012, 60, 4526–4534. [Google Scholar] [CrossRef]
- Kortesniemi, M.; Slupsky, C.M.; Ollikka, T.; Kauko, L.; Spevacek, A.R.; Sjövall, O.; Yang, B.; Kallio, H. NMR profiling clarifies the characterization of Finnish honeys of different botanical origins. Food Res. Int. 2016, 86, 83–92. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Liu, Y.; Liu, H.; Zheng, X.; Shen, G.; Feng, J. Compositional identification and authentication of Chinese honeys by 1H NMR combined with multivariate analysis. Food Res. Int. 2020, 130, 108936. [Google Scholar] [CrossRef]
- Zieliński, Ł.; Deja, S.; Jasicka-Misiak, I.; Kafarski, P. Chemometrics as a tool of origin determination of polish monofloral and multifloral honeys. J. Agric. Food Chem. 2014, 62, 2973–2981. [Google Scholar] [CrossRef]
Floral Origins | δ13C, ‰ | δ15N, ‰ | Total C, % | Total N, % | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | N | |
Buckwheat | −28.7 | 0.7 | 6.8 | 1.5 | 48.1 | 1.4 | 9.6 | 0.5 | 4 |
Clover | −27.7 | 0.9 | 6.5 | 1.7 | 50 | 4 | 8 | 2 | 6 |
Heather | −28.13 | 0.10 | −2.3 | 1.0 | 47.4 | 0.6 | 10.0 | 0.6 | 3 |
Linden | −26.7 | 0.2 | 5.8 | 0.7 | 50 | 2 | 7.0 | 0.7 | 3 |
Rapeseed | −27.5 | 0.5 | 4.9 | 1.1 | 53 | 4 | 6.4 | 0.8 | 4 |
Willow | −27.6 | 0.5 | 6.5 | 1.0 | 56 | 7 | 6 | 2 | 3 |
Polyfloral | −27.4 | 0.9 | 4 | 3 | 51 | 6 | 8 | 2 | 55 |
Floral Origins | Mean ± SD, μg/kg | ||||
---|---|---|---|---|---|
p-Hydroxybenzoic Acid | p-Coumaric Acid | Pantothenic Acid (B5) | Quercetin | Vanillic Acid | |
Buckwheat | 13,863 ± 4472 A | 5561 ± 1159 A | 910 ± 247 AB | 1297 ± 511 A | 602 ± 329 AB |
Clover | 7907 ± 4809 AB | 3963 ± 991 AB | 764 ± 193 AB | 523 ± 204 AB | 477 ± 164 AB |
Heather | 2984 ± 494 B | 2519 ± 738 B | 1513 ± 250 A | 198 ± 86 B | 190 ± 29 B |
Linden | 1423 ± 1004 B | 2509 ± 161 B | 558 ± 243 B | 475 ± 390 AB | 447 ± 337 AB |
Rapeseed | 1740 ± 248 B | 2341 ± 499 B | 577 ± 87 B | 986 ± 167 AB | 725 ± 28 AB |
Willow | 6753 ± 3252 AB | 4550 ± 1529 AB | 1017 ± 131 AB | 726 ± 445 AB | 1014 ± 619 A |
Polyfloral | 3923 ± 3522 B | 2685 ± 1271 B | 986 ± 412 AB | 824 ± 419 AB | 585 ± 288 AB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labsvards, K.D.; Rudovica, V.; Kluga, R.; Rusko, J.; Busa, L.; Bertins, M.; Eglite, I.; Naumenko, J.; Salajeva, M.; Viksna, A. Determination of Floral Origin Markers of Latvian Honey by Using IRMS, UHPLC-HRMS, and 1H-NMR. Foods 2022, 11, 42. https://doi.org/10.3390/foods11010042
Labsvards KD, Rudovica V, Kluga R, Rusko J, Busa L, Bertins M, Eglite I, Naumenko J, Salajeva M, Viksna A. Determination of Floral Origin Markers of Latvian Honey by Using IRMS, UHPLC-HRMS, and 1H-NMR. Foods. 2022; 11(1):42. https://doi.org/10.3390/foods11010042
Chicago/Turabian StyleLabsvards, Kriss Davids, Vita Rudovica, Rihards Kluga, Janis Rusko, Lauma Busa, Maris Bertins, Ineta Eglite, Jevgenija Naumenko, Marina Salajeva, and Arturs Viksna. 2022. "Determination of Floral Origin Markers of Latvian Honey by Using IRMS, UHPLC-HRMS, and 1H-NMR" Foods 11, no. 1: 42. https://doi.org/10.3390/foods11010042
APA StyleLabsvards, K. D., Rudovica, V., Kluga, R., Rusko, J., Busa, L., Bertins, M., Eglite, I., Naumenko, J., Salajeva, M., & Viksna, A. (2022). Determination of Floral Origin Markers of Latvian Honey by Using IRMS, UHPLC-HRMS, and 1H-NMR. Foods, 11(1), 42. https://doi.org/10.3390/foods11010042