Handheld Spectral Sensing Devices Should Not Mislead Consumers as Far as Non-Authentic Food Is Concerned: A Case Study with Adulteration of Milk Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples, Materials, and Reagents
2.2. Standard Additions and Preparation of Dry Blending
2.3. Spray Drying and Preparation of Wet Blending
2.4. Miniature NIR Sensors and Measurements
2.5. Data Processing
2.6. One-Class Classifier SIMCA Models, Construction and Validation for Non-Targeted Analysis
2.7. Orthogonal Partial Least Square Regression Models for Targeted Analysis
2.8. Model Bias Statistical Test
2.9. Limit of Detection
3. Results
3.1. Outlier Identification and Spectral Quality Assessment
3.2. Final SIMCA Models and Non-Targeted Analysis
3.3. Targeted Analysis and Multivariate Linear Regression Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Everstine, K.; Spink, J.; Kennedy, S. Economically Motivated Adulteration (EMA) of Food: Common Characteristics of EMA Incidents. J. Food Prot. 2013, 76, 723–735. [Google Scholar] [CrossRef] [PubMed]
- Aarts, J. Coins, money and exchange in the Roman world. A cultural-economic perspective. Archaeol. Dialogues 2005, 12, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Howgego, C. The Monetization of Temperate Europe. J. Rom. Stud. 2013, 103, 16–45. [Google Scholar] [CrossRef]
- Haour, A.; Christie, A. Cowries in the archaeology of West Africa: The present picture. Azania Archaeol. Res. Afr. 2019, 54, 287–321. [Google Scholar] [CrossRef] [Green Version]
- Accum, F. A Treatise on Adulterations of Food, and Culinary Poisons; Ed. AB’M Small: Philadelphia, PA, USA, 1820. [Google Scholar]
- Ibrahim, Y.; Howarth, A. Constructing the Eastern European Other: The Horsemeat Scandal and the Migrant Other. J. Contemp. Eur. Stud. 2016, 24, 397–413. [Google Scholar] [CrossRef]
- Schaefer, K.A.; Scheitrum, D.; Nes, K. International sourcing decisions in the wake of a food scandal. Food Policy 2018, 81, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Desmarchelier, A.; Cuadra, M.G.; Delatour, T.; Mottier, P. Simultaneous quantitative determination of melamine and cyanuric acid in cow’s milk and milk-based infant formula by liquid chromatography-electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 2009, 57, 7186–7193. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.; Fan, S.; Zhou, P.; Zhang, L.; Zhao, Y.; Wu, Y. Determination of melamine and its analogues in egg by gas chromatography-tandem mass spectrometry using an isotope dilution technique. Food Addit. Contam. Part A 2010, 27, 1497–1506. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Rodriguez-Saona, L.E.; Giusti, M.M. Midinfrared Spectroscopy for Juice AuthenticationRapid Differentiation of Commercial Juices. J. Agric. Food Chem. 2007, 55, 4443–4452. [Google Scholar] [CrossRef] [PubMed]
- Ellis, D.I.; Brewster, V.L.; Dunn, W.B.; Allwood, J.W.; Golovanov, A.P.; Goodacre, R. Fingerprinting food: Current technologies for the detection of food adulteration and contamination. Chem. Soc. Rev. 2012, 41, 5706–5727. [Google Scholar] [CrossRef] [PubMed]
- Medina, S.; Pereira, J.; da Silva, P.M.C.; Perestrelo, R.; Câmara, J.S. Food fingerprints—A valuable tool to monitor food authenticity and safety. Food Chem. 2019, 278, 144–162. [Google Scholar] [CrossRef]
- Lai, Y.W.; Kemsley, E.K.; Wilson, R.H. Potential of Fourier Transform Infrared Spectroscopy for the Authentication of Vegetable Oils. J. Agric. Food Chem. 1994, 42, 1154–1159. [Google Scholar] [CrossRef]
- Ellis, D.I.; Broadhurst, D.; Clarke, S.J.; Goodacre, R. Rapid identification of closely related muscle foods by vibrational spectroscopy and machine learning. Analyst 2005, 130, 1648–1654. [Google Scholar] [CrossRef] [PubMed]
- Mauer, L.J.; Chernyshova, A.L.; Hiatt, A.; Deering, A.; Davis, R. Melamine Detection in Infant Formula Powder Using Near- and Mid-Infrared Spectroscopy. J. Agric. Food Chem. 2009, 57, 3974–3980. [Google Scholar] [CrossRef]
- Park, C.W.; Lee, I.; Kwon, S.-H.; Lee, K.-S.; Jo, C.; Ko, D.-K. Authentication of adulterated edible oil using coherent anti-Stokes Raman scattering spectroscopy. J. Raman Spectrosc. 2017, 48, 1330–1336. [Google Scholar] [CrossRef]
- Henn, R.; Kirchler, C.G.; Grossgut, M.-E.; Huck, C.W. Comparison of sensitivity to artificial spectral errors and multivariate LOD in NIR spectroscopy—Determining the performance of miniaturizations on melamine in milk powder. Talanta 2017, 166, 109–118. [Google Scholar] [CrossRef]
- Grassi, S.; Casiraghi, E.; Alamprese, C. Handheld NIR device: A non-targeted approach to assess authenticity of fish fillets and patties. Food Chem. 2018, 243, 382–388. [Google Scholar] [CrossRef]
- Kademi, H.I.; Ulusoy, B.H.; Hecer, C. Applications of miniaturized and portable near infrared spectroscopy (NIRS) for inspection and control of meat and meat products. Food Rev. Int. 2019, 35, 201–220. [Google Scholar] [CrossRef]
- Yan, J.; van Stuijvenberg, L.; van Ruth, S.M. Handheld near-infrared spectroscopy for distinction of extra virgin olive oil from other olive oil grades substantiated by compositional data. Eur. J. Lipid Sci. Technol. 2019, 121, 1900031. [Google Scholar] [CrossRef] [Green Version]
- Müller-Maatsch, J.; van Ruth, S. Handheld devices for food authentication and their applications: A review. Foods 2021, 10, 2901. [Google Scholar] [CrossRef] [PubMed]
- Abernethy, G.; Higgs, K. Rapid detection of economic adulterants in fresh milk by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2013, 1288, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Frank, N.; Bessaire, T.; Tarres, A.; Goyon, A.; Delatour, T. Development of a quantitative multi-compound method for the detection of 14 nitrogen-rich adulterants by LC-MS/MS in food materials. Food Addit. Contam. Part A 2017, 34, 1842–1852. [Google Scholar] [CrossRef] [PubMed]
- Marvin, H.J.; Bouzembrak, Y.; Janssen, E.M.; van der Fels-Klerx, H.J.; van Asselt, E.D.; Kleter, G.A. A holistic approach to food safety risks: Food fraud as an example. Food Res. Int. 2016, 89, 463–470. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization. 11843 Capability of Detection—Part 1: Terms and Definitions; International Organization for Standardization: Geneva, Switzerland, 1997. [Google Scholar]
- Ortiz, M.; Sarabia, L.; Herrero, A.; Sánchez, M.; Sanz, M.; Rueda, M.; Giménez, D.; Meléndez, M. Capability of detection of an analytical method evaluating false positive and false negative (ISO 11843) with partial least squares. Chemom. Intell. Lab. Syst. 2003, 69, 21–33. [Google Scholar] [CrossRef]
- Goodman, L.A. On the exact variance of products. J. Am. Stat. Assoc. 1960, 55, 708–713. [Google Scholar] [CrossRef]
- Kagan, A.; Shepp, L.A. Why the variance? Stat. Probab. Lett. 1998, 38, 329–333. [Google Scholar] [CrossRef]
- Pomerantsev, A.L. Acceptance areas for multivariate classification derived by projection methods. J. Chemom. 2008, 22, 601–609. [Google Scholar] [CrossRef]
- Pomerantsev, A.L.; Rodionova, O.Y. Concept and role of extreme objects in PCA/SIMCA. J. Chemom. 2014, 28, 429–438. [Google Scholar] [CrossRef]
- Gonzalez, R.R.R.; Cobuccio, L.; Delatour, T. Reconstitution followed by non-targeted mid-infrared analysis as a workable and cost-effective solution to overcome the blending duality in milk powder adulteration detection. Food Chem. 2019, 295, 42–50. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Chen, Y. Hits and misses in research trends to monitor contaminants in food. Anal. Bioanal. Chem. 2018, 410, 5331–5351. [Google Scholar] [CrossRef]
- Lutter, P.; Savoy-Perroud, M.-C.; Campos-Gimenez, E.; Meyer, L.; Goldmann, T.; Bertholet, M.-C.; Mottier, P.; Desmarchelier, A.; Monard, F.; Perrin, C.; et al. Screening and confirmatory methods for the determination of melamine in cow’s milk and milk-based powdered infant formula: Validation and proficiency-tests of ELISA, HPLC-UV, GC-MS and LC-MS/MS. Food Control. 2011, 22, 903–913. [Google Scholar] [CrossRef]
- Beloglazova, N.V.; Graniczkowska, K.; Ediage, E.N.; Averkieva, O.; De Saeger, S. Sensitive Flow-through Immunoassay for Rapid Multiplex Determination of Cereal-borne Mycotoxins in Feed and Feed Ingredients. J. Agric. Food Chem. 2017, 65, 7131–7137. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Xie, L.L.; Pan, C.; Yuan, M.F.; Tao, Z.H.; Mao, H.P. A novel on-chip solution enabling rapid analysis of melamine and chloramphenicol in milk by smartphone. J. Food Process Eng. 2019, 41, e12976. [Google Scholar] [CrossRef]
- Zangheri, M.; Di Nardo, F.; Calabria, D.; Marchegiani, E.; Anfossi, L.; Guardigli, M.; Mirasoli, M.; Baggiani, C.; Roda, A. Smartphone biosensor for point-of-need chemiluminescence detection of chratoxin A in wine and coffee. Anal. Chim. Acta 2021, 1163, 338515. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delatour, T.; Becker, F.; Krause, J.; Romero, R.; Gruna, R.; Längle, T.; Panchaud, A. Handheld Spectral Sensing Devices Should Not Mislead Consumers as Far as Non-Authentic Food Is Concerned: A Case Study with Adulteration of Milk Powder. Foods 2022, 11, 75. https://doi.org/10.3390/foods11010075
Delatour T, Becker F, Krause J, Romero R, Gruna R, Längle T, Panchaud A. Handheld Spectral Sensing Devices Should Not Mislead Consumers as Far as Non-Authentic Food Is Concerned: A Case Study with Adulteration of Milk Powder. Foods. 2022; 11(1):75. https://doi.org/10.3390/foods11010075
Chicago/Turabian StyleDelatour, Thierry, Florian Becker, Julius Krause, Roman Romero, Robin Gruna, Thomas Längle, and Alexandre Panchaud. 2022. "Handheld Spectral Sensing Devices Should Not Mislead Consumers as Far as Non-Authentic Food Is Concerned: A Case Study with Adulteration of Milk Powder" Foods 11, no. 1: 75. https://doi.org/10.3390/foods11010075
APA StyleDelatour, T., Becker, F., Krause, J., Romero, R., Gruna, R., Längle, T., & Panchaud, A. (2022). Handheld Spectral Sensing Devices Should Not Mislead Consumers as Far as Non-Authentic Food Is Concerned: A Case Study with Adulteration of Milk Powder. Foods, 11(1), 75. https://doi.org/10.3390/foods11010075