Accumulation of Selected Metal Elements in Fruiting Bodies of Oyster Mushroom
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oyster Mushroom Production Strains
2.2. Setup of the Experiment
- Comparison of the accumulation of individual elements from the point of view of caps vs. stipes,
- Verification of synergistic and antagonistic relationships in the intake of individual elements on the unfortified variant,
- Observation of the change of synergistic and antagonistic relationships in the intake of individual elements after substrate fortification with sodium selenate.
2.3. Growing of Biological Material
2.4. Selenium and Selected Hazardous Metals Determination
2.5. Statistic Analysis
3. Results and Discussion
3.1. The Cumulation of Elements in the Individual Parts of the Fruiting Body
3.2. Synergistic and Antagonistic Relationships in Unfortified Variants
3.2.1. Synergistic Relationships
3.2.2. Antagonistic Relationships
3.3. Synergistic and Antagonistic Relationships in Variants Fortified with Selenium
3.3.1. Synergistic Relationships
3.3.2. Antagonistic Relationships
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Villas-Bôas, S.G.; Esposito, E.; Mitchell, D.A. Microbial Conversion of Lignocellulosic Residues for Production of Animal Feeds. Anim. Feed Sci. Technol. 2002, 98, 1–12. [Google Scholar] [CrossRef]
- Alam, N.; Amin, R.; Khan, A.; Ara, I.; Shim, M.J.; Lee, M.W.; Lee, U.Y.; Lee, T.S. Comparative Effects of Oyster Mushrooms on Lipid Profile, Liver and Kidney Function in Hypercholesterolemic Rats. Mycobiology 2009, 37, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Cheung, P.C.K. Mushrooms as Functional Foods; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 1–259. [Google Scholar] [CrossRef] [Green Version]
- Khatun, K.; Mahtab, H.; Khanam, P.A.; Sayeed, M.A.; Khan, K.A. Oyster Mushroom Reduced Blood Glucose and Cholesterol in Diabetic Subjects. Mymensingh Med. J. MMJ 2007, 16, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.H.; Liang, Z.C.; Chia, Y.C.; Lien, J.L.; Chen, K.S.; Lee, M.Y.; Wang, J.C. Antihyperlipidemic and Antioxidant Effects of Extracts from Pleurotus Citrinopileatus. J. Agric. Food Chem. 2006, 54, 2103–2110. [Google Scholar] [CrossRef] [PubMed]
- Nosál’ová, V.; Bobek, P.; Cerná, S.; Galbavý, S.; Stvrtina, S. Effects of Pleuran (Beta-Glucan Isolated from Pleurotus ostreatus) on Experimental Colitis in Rats. Physiol. Res. 2001, 50, 575–581. [Google Scholar] [PubMed]
- Ajayi, O.T.; Ajayi, O.T. Staphylococcus Aureus Propriétés Antibactériennes et Thérapeutiques In Vivo de P. Ostreatus Contre Staphylococcus Aureus. Res. J. Health Sci. 2021, 9, 273–281. [Google Scholar]
- Vlasenko, V.A.; Ilyicheva, T.N.; Zmitrovich, I.v.; Turmunkh, D.; Dondov, B.; Teplyakova, T.v.; Enkhtuya, O.; Nyamsuren, K.; Samiya, J.; Altangerel, U.; et al. First Data on Antiviral Activity of Aqueous Extracts from Medicinal Mushrooms from the Altai Mountains in Russia against Influenza Virus Type A. Int. J. Med. Mushrooms 2021, 23, 37–45. [Google Scholar] [CrossRef]
- Joo Seo, D.; Choi, C.; Antiviral, C.; Baz, M.; Mifsud, E. Antiviral Bioactive Compounds of Mushrooms and Their Antiviral Mechanisms: A Review. Viruses 2021, 13, 350. [Google Scholar] [CrossRef]
- Wang, H.; Gao, J.; Ng, T.B. A New Lectin with Highly Potent Antihepatoma and Antisarcoma Activities from the Oyster Mushroom Pleurotus Ostreatus. Biochem. Biophys. Res. Commun. 2000, 275, 810–816. [Google Scholar] [CrossRef]
- Mattila, P.; Salo-Väänänen, P.; Könkö, K.; Aro, H.; Jalava, T. Basic Composition and Amino Acid Contents of Mushrooms Cultivated in Finland. J. Agric. Food Chem. 2002, 50, 6419–6422. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.G.; Yossef, H.E.; Ibrahim, H.H. Protective Effects of Mushroom and Their Ethyl Extract on Aging Compared with L-Carnitine. Int. J. Nutr. Metab. 2010, 2, 63–69. [Google Scholar] [CrossRef]
- Jayakumar, T.; Aloysius Thomas, P.; Geraldine, P. Protective Effect of an Extract of the Oyster Mushroom, Pleurotus Ostreatus, on Antioxidants of Major Organs of Aged Rats. Exp. Gerontol. 2007, 42, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Audrey, T.T.K.; Calixte, E.N.H.; André-Ledoux, N.; Nico, N.F.; Paul, M.F. Proximate and Minerals Composition of 12 Wild Mushrooms from the Noun Division, West Region in Cameroon Nutrient Content of Mushrooms from West Region, Cameroon Composition Proximale et Minérale de 12 Champignons Sauvages du Département du Noun, Région de l’Ouest-Cameroun. Cameroon J. Biol. Biochem. Sci. 2021, 2021, 100–107. [Google Scholar]
- Mleczek, M.; Budka, A.; Kalač, P.; Siwulski, M.; Niedzielski, P. Family and Species as Determinants Modulating Mineral Composition of Selected Wild-Growing Mushroom Species. Environ. Sci. Pollut. Res. 2020, 28, 389–404. [Google Scholar] [CrossRef]
- Santos, M.P.O.; Santos, M.V.N.; Matos, R.S.; van der Maas, A.S.; Faria, M.C.S.; Batista, B.L.; Rodrigues, J.L.; Bomfeti, C.A. Pleurotus Strains with Remediation Potential to Remove Toxic Metals from Doce River Contaminated by Samarco Dam Mine. Int. J. Environ. Sci. Technol. 2021, 8, 1–14. [Google Scholar] [CrossRef]
- Krejsa, J.; Šíma, J.; Kobera, M.; Šeda, M.; Svoboda, L. Detrimental and Essential Elements in Fruiting Bodies of Mushrooms with Ecological Relationship to Birch (Betula sp.) Collected in the Bohemian Forest, the Czech Republic. Environ. Sci. Pollut. Res. 2021, 28, 67852–67862. [Google Scholar] [CrossRef]
- Demková, L.; Árvay, J.; Hauptvogl, M.; Michalková, J.; Šnirc, M.; Harangozo, Ľ.; Bobuľská, L.; Bajčan, D.; Kunca, V. Mercury Content in Three Edible Wild-Growing Mushroom Species from Different Environmentally Loaded Areas in Slovakia: An Ecological and Human Health Risk Assessment. J. Fungi 2021, 7, 434. [Google Scholar] [CrossRef]
- Ralston, N.V.; Raymond, L.J. Dietary Selenium’s Protective Effects against Methylmercury Toxicity. Toxicology 2010, 278, 112–123. [Google Scholar] [CrossRef]
- Hegedűsová, A.; Mezeyová, I.; Hegedűs, O.; Andrejiová, A.; Juríková, T.; Golian, M.; Lošák, T. Increasing of Selenium Content and Qualitative Parameters in Garden Pea (Pisum Sativum L.) after Its Foliar Application. Acta Sci. Pol. Hortorum Cultus 2017, 16, 3–17. [Google Scholar] [CrossRef]
- Yan, H.; Chang, H. Antioxidant and Antitumor Activities of Selenium- and Zinc-Enriched Oyster Mushroom in Mice. Biol. Trace Elem. Res. 2012, 150, 236–241. [Google Scholar] [CrossRef]
- Falandysz, J. Selenium in Edible Mushrooms. J. Environ. Sci. Health Part C 2008, 26, 256–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golian, M.; Hegedűsová, A.; Trochcová, M.; Maťová, A.; Šlosár, M. The Influence of Selenium on Selected Heavy Metals Cumulation in Oyster Mushroom Fruiting Bodies. Potravin. Slovak J. Food Sci. 2019, 13, 200–205. [Google Scholar] [CrossRef]
- Mocak, J.; Bond, A.M.; Mitchell, S.; Scollary, G.; Bond, A.M. A Statistical Overview of Standard (IUPAC and ACS) and New Procedures for Determining the Limits of Detection and Quantification: Application to Voltammetric and Stripping Techniques. Pure Appl. Chem. 1997, 69, 297–328. [Google Scholar] [CrossRef]
- Hegedus, O.; Hegedusová, A.; Jakabová, S.; Vargová, A.; Pernyeszi, T.; Boros, B. Evaluation of an HPIC Method for Determination of Nitrates in Vegetables. Chromatographia 2010, 71, 93–97. [Google Scholar] [CrossRef]
- Srikram, A.; Supapvanich, S. Proximate Compositions and Bioactive Compounds of Edible Wild and Cultivated Mushrooms from Northeast Thailand. Agric. Nat. Resour. 2016, 50, 432–436. [Google Scholar] [CrossRef]
- Singh, A.; Research, P.D.; Singh, I.S.; Pradesh, U.; Singh, S. Nutritional and Health Importance of Fresh and Dehydrated Oyster Mushroom (Pleurotus florida). J. Curr. Res. Food Sci. 2021, 2, 10–14. [Google Scholar]
- Gogavekar, S.S.; Rokade, S.A.; Ranveer, R.C.; Ghosh, J.S.; Kalyani, D.C.; Sahoo, A.K. Important Nutritional Constituents, Flavour Components, Antioxidant and Antibacterial Properties of Pleurotus Sajor-Caju. J. Food Sci. Technol. 2014, 51, 1483–1491. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Sun, X.; Shen, Y.; Chang, C.; Guo, E.; La, G.; Zhao, Y.; Li, X. Tolerance and Removal Mechanisms of Heavy Metals by Fungus Pleurotus Ostreatus HAAS. Water Air Soil Pollut. 2017, 228, 130. [Google Scholar] [CrossRef]
- Baldrian, P.; Gabriel, J. Copper and Cadmium Increase Laccase Activity in Pleurotus ostreatus. FEMS Microbiol. Lett. 2002, 206, 69–74. [Google Scholar] [CrossRef]
- Gucia, M.; Jarzyńska, G.; Kojta, A.K.; Falandysz, J. Temporal Variability in 20 Chemical Elements Content of Parasol Mushroom (Macrolepiota Procera) Collected from Two Sites over a Few Years. J. Environ. Sci. Health Part B 2012, 47, 81–88. [Google Scholar] [CrossRef]
- Ahmad Zakil, F.; Xuan, L.H.; Zaman, N.; Alan, N.I.; Salahutheen, N.A.A.; Sueb, M.S.M.; Isha, R. Growth Performance and Mineral Analysis of Pleurotus ostreatus from Various Agricultural Wastes Mixed with Rubber Tree Sawdust in Malaysia. Bioresour. Technol. Rep. 2022, 17, 100873. [Google Scholar] [CrossRef]
- Reguła, J.; Siwulski, M. Dried shiitake (Lentinulla edodes) and oyster (Pleurotus ostreatus) mushrooms as a good source of nutrient. Acta Sci. Pol. Technol. Aliment. 2007, 6, 135–142. [Google Scholar]
- Arnold, M.; Rajagukguk, Y.V.; Gramza-Michałowska, A. Functional Food for Elderly High in Antioxidant and Chicken Eggshell Calcium to Reduce the Risk of Osteoporosis—A Narrative Review. Foods 2021, 10, 656. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.S.; Ahmed, S.A.; Telang, S.M.; Baig, M.M.V. The Nutritional Value of Pleurotus ostreatus (Jacq.: Fr.) Kumm Cultivated on Different Lignocellulosic Agro-Wastes. Innov. Rom. Food Biotechnol. 2010, 7, 66–76. [Google Scholar]
- Riaz, N.; Guerinot, M. lou All Together Now: Regulation of the Iron Deficiency Response. J. Exp. Bot. 2021, 72, 2045–2055. [Google Scholar] [CrossRef] [PubMed]
- Raman, J.; Jang, K.Y.; Oh, Y.L.; Oh, M.; Im, J.H.; Lakshmanan, H.; Sabaratnam, V. Cultivation and Nutritional Value of Prominent Pleurotus spp.: An Overview. Mycobiology 2021, 49, 1–14. [Google Scholar] [CrossRef]
- Budzyńska, S.; Siwulski, M.; Magdziak, Z.; Budka, A.; Gąsecka, M.; Kalač, P.; Rzymski, P.; Niedzielski, P.; Mleczek, M. Influence of Iron Addition (Alone or with Calcium) to Elements Biofortification and Antioxidants in Pholiota Nameko. Plants 2021, 10, 2275. [Google Scholar] [CrossRef]
- Sanglimsuwan, S.; Yoshida, N.; Morinaga, T.; Murooka, Y. Resistance to and Uptake of Heavy Metals in Mushrooms. J. Ferment. Bioeng. 1993, 75, 112–114. [Google Scholar] [CrossRef]
- Árvay, J.; Hauptvogl, M.; Šnirc, M.; Gažová, M.; Demková, L.; Bobuľská, L.; Hrstková, M.; Bajčan, D.; Harangozo, Ľ.; Bilčíková, J.; et al. Determination of elements in wild edible mushrooms: Levels and risk assessment. Microbiol. Biotechnol. Food Sci. 2021, 2021, 999–1004. [Google Scholar] [CrossRef] [Green Version]
- Wesołowska, M.; Filipczyk, P.; Zaguła, G.; Puchalski, C.; Dżugan, M. Health safety of edible wild mushrooms collected from the industrial area. J. Microbiol. Biotechnol. Food Sci. 2021, 2021, 456–459. [Google Scholar] [CrossRef] [Green Version]
- Rózsa, M.; Măniuțiu, D.-N.; Egyed, E. Influence of magnesium (Mg) source on the Cordyceps militaris (L.) mushroom mycelium growth. Curr. Trends Nat. Sci. 2021, 10, 333–340. [Google Scholar] [CrossRef]
- Włodarczyk, A.; Krakowska, A.; Sułkowska-Ziaja, K.; Suchanek, M.; Zięba, P.; Opoka, W.; Muszyńska, B. Pleurotus spp. Mycelia Enriched in Magnesium and Zinc Salts as a Potential Functional Food. Molecules 2020, 26, 162. [Google Scholar] [CrossRef]
- Keskin, F.; Sarikurkcu, C.; Akata, I.; Tepe, B. Metal Concentrations of Wild Mushroom Species Collected from Belgrad Forest (Istanbul, Turkey) with Their Health Risk Assessments. Environ. Sci. Pollut. Res. 2021, 28, 36193–36204. [Google Scholar] [CrossRef] [PubMed]
- Alaimo, M.G.; Dongarrà, G.; la Rosa, A.; Tamburo, E.; Vasquez, G.; Varrica, D. Major and Trace Elements in Boletus Aereus and Clitopilus Prunulus Growing on Volcanic and Sedimentary Soils of Sicily (Italy). Ecotoxicol. Environ. Saf. 2018, 157, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Mleczek, M.; Budka, A.; Siwulski, M.; Mleczek, P.; Gąsecka, M.; Jasińska, A.; Kalač, P.; Sobieralski, K.; Niedzielski, P.; Proch, J.; et al. Investigation of Differentiation of Metal Contents of Agaricus Bisporus, Lentinula Edodes and Pleurotus ostreatus Sold Commercially in Poland between 2009 and 2017. J. Food Compos. Anal. 2020, 90, 103488. [Google Scholar] [CrossRef]
- Ernst, W.H.O.; Verkleij, J.A.C.; Schat, H. Metal Tolerance in Plants. Acta Bot. Neerl. 1992, 41, 229–248. [Google Scholar] [CrossRef]
- Koštíř, J. Biochemie; Avicenum: Praha, Czech Republic, 1974; pp. 1–565. [Google Scholar]
- Baker, A.J.M. Accumulators and Excluders-Strategies in the Response of Plants to Heavy Metals. Available online: https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1898610 (accessed on 13 October 2021).
- Melgar, M.J.; Alonso, J.; García, M.A. Cadmium in Edible Mushrooms from NW Spain: Bioconcentration Factors and Consumer Health Implications. Food Chem. Toxicol. 2016, 88, 13–20. [Google Scholar] [CrossRef]
- Kalač, P. A Review of Chemical Composition and Nutritional Value of Wild-Growing and Cultivated Mushrooms. J. Sci. Food Agric. 2013, 93, 209–218. [Google Scholar] [CrossRef]
- Raiesi, F.; Sadeghi, E. Interactive Effect of Salinity and Cadmium Toxicity on Soil Microbial Properties and Enzyme Activities. Ecotoxicol. Environ. Saf. 2019, 168, 221–229. [Google Scholar] [CrossRef]
- Luo, Y.; Rimmer, D.L. Zinc-Copper Interaction Affecting Plant Growth on a Metal-Contaminated Soil. Environ. Pollut. 1995, 88, 79–83. [Google Scholar] [CrossRef]
- Manzi, P.; Aguzzi, A.; Pizzoferrato, L. Nutritional Value of Mushrooms Widely Consumed in Italy. Food Chem. 2001, 73, 321–325. [Google Scholar] [CrossRef]
- García, M.A.; Alonso, J.; Melgar, M.J. Radiocaesium Activity Concentrations in Macrofungi from Galicia (NW Spain): Influence of Environmental and Genetic Factors. Ecotoxicol. Environ. Saf. 2015, 115, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.; García, M.A.; Pérez-López, M.; Melgar, M.J. The Concentrations and Bioconcentration Factors of Copper and Zinc in Edible Mushrooms. Arch. Environ. Contam. Toxicol. 2003, 44, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Sarikurkcu, C.; Copur, M.; Yildiz, D.; Akata, I. Metal Concentration of Wild Edible Mushrooms in Soguksu National Park in Turkey. Food Chem. 2011, 128, 731–734. [Google Scholar] [CrossRef]
- Zhu, F.; Qu, L.; Fan, W.; Qiao, M.; Hao, H.; Wang, X. Assessment of Heavy Metals in Some Wild Edible Mushrooms Collected from Yunnan Province, China. Environ. Monit. Assess. 2011, 179, 191–199. [Google Scholar] [CrossRef]
- Pavlik, M.; Krupova, D.; Malucka, L.U.; Pavlik, M.; Rajtar, M. Preliminary Mycoremediation Evaluation of Waste Ash from Thermal Power Plant Utilising the Oyster Mushroom. In Proceedings of the Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, Albena, Bulgaria, 29 June–5 July 2017; pp. 147–154. [Google Scholar] [CrossRef]
- Koutrotsios, G.; Danezis, G.; Georgiou, C.; Zervakis, G.I. Elemental Content in Pleurotus Ostreatus and Cyclocybe Cylindracea Mushrooms: Correlations with Concentrations in Cultivation Substrates and Effects on the Production Process. Molecules 2020, 25, 2179. [Google Scholar] [CrossRef]
- Rashid, M.H.; Rahman, M.M.; Correll, R.; Naidu, R. Arsenic and Other Elemental Concentrations in Mushrooms from Bangladesh: Health Risks. Int. J. Environ. Res. Public Health 2018, 15, 919. [Google Scholar] [CrossRef] [Green Version]
Designation | Identificaton | Description |
---|---|---|
P.O. strain 1 | HK35 | dr. Jablonský, Czech University of Life Sciences Prague |
P.O. strain 2 | Kryos B | dr. Jablonský, Czech University of Life Sciences Prague |
P.O. strain 3 | P-80 | Mr. Rajtár, Mycoforest Company Slovakia, |
P.O. strain 4 | dr. Pavlík, Zvolen, spruce harvest | |
P.O. strain 5 | 2175 | Mr. Rajtár, Mycoforest Company Slovakia |
P.O. strain 6 | CHINA BLACK | Mr. Rajtár, Mycoforest Company Slovakia |
P.O. strain 7 | PL-27 | commercial strain |
P.O. strain 8 | isolate from the market, Slovakia | |
P.O. strain 9 | origin unknown | |
P.O. strain 10 | MEY 2191 | Mr. Rajtár, Mycoforest Company Slovakia |
P.O. strain 11 | GIZA | Mr. Rajtár, Mycoforest Company Slovakia |
P.O. strain 12 | K12 | Mr. Rajtár, Mycoforest Company Slovakia |
P.O. strain 13 | RH | Mr. Rajtár, Mycoforest Company Slovakia |
P.O. strain 14 | K6 | Mr. Rajtár, Mycoforest Company Slovakia |
P.O. strain 15 | origin unknown | |
P.O. strain 16 | origin unknown | |
P.O. strain 17 | origin unknown | |
P.O. strain 18 | P-84 | Mr. Rajtár, Mycoforest Company Slovakia |
P.O. strain 19 | origin unknown | |
P.O. strain 20 | origin unknown | |
P.O. strain 21 | origin unknown, China 4 | |
P.O. strain 22 | PO-DD-1/1 | Crop Research Institute, Czech Republic |
P.O. strain 23 | PO-SV-1/1 | Crop Research Institute, Czech Republic |
P.O. strain 24 | PO-PH-1/1A | Crop Research Institute, Czech Republic |
P.O. strain 25 | PO-HOR-1/2 | Crop Research Institute, Czech Republic |
P.O. strain 26 | PO-HOR-2/4 | Crop Research Institute, Czech Republic |
P.O. strain 27 | PO-HD-1/1A | Crop Research Institute, Czech Republic |
P.O. strain 28 | PO-HD-2/1 | Crop Research Institute, Czech Republic |
P.O. strain 29 | PO-MV-1/1A | Crop Research Institute, Czech Republic |
P.O. strain 30 | PO-SK-1 | Crop Research Institute, Czech Republic |
P.O. strain 31 | PO-SK-3 | Crop Research Institute, Czech Republic |
P.O. strain 32 | PO-SK-5 | Crop Research Institute, Czech Republic |
P.O. strain 33 | PO-PSB | Crop Research Institute, Czech Republic |
P.O. strain 34 | Po-OH--JR1A | Crop Research Institute, Czech Republic |
P.O. strain 35 | PO ŠMA | Crop Research Institute, Czech Republic |
P.O. strain 36 | origin unknown | |
P.O. strain 37 | from Hlíva Huť, Crop Research Institute, Czech Republic | |
P.O. strain 38 | 210-ENV | dr. Havránek, 2009, Olomouc, Czech Republic |
P.O. strain 39 | 93-PLV | dr. Havranek 2008, Pohořany, Crop Research Institute, Czech Republic |
P.O. strain 40 | PLM pl | dr. Petrželová 2016, PR Doubrava (from Moravičany-Bradlec), Crop Research Institute, Czech Republic |
P.O. strain 41 | PLNZ sp1 | dr. Petrželová, 2016, CHKO Litovelské Pomoraví (from Nové Zámky a Nový Dvůr), Czech Republic |
P.O. strain 42 | PLO sp | Dr. Egertová, Sochor 2015, Olomoučany, Czech Republic |
P.O. strain 43 | PLP pl | dr. Jurková, 2013, Pohořany, Czech Republic |
P.O. strain 44 | dr. Semerdžieva, 1993, Czech Republic | |
P.O. strain 45 | dr. G. Ritter, 1956, Schierke, Harz mountains, Germany | |
P.O. strain 46 | dr. E. Jones, 1966, England, Great Britain | |
P.O. strain 47 | dr. W. Luthart, 1959, České Budějovice, Czech Republic | |
P.O. strain 48 | dr. Luthart, 1960, České Budějovice, Czech Republic | |
P.O. strain 49 | dr. Torev, 1965, Plovdiv, Bulgaria | |
P.O. strain 50 | dr. Ginterová, 1973, Svatý Jur near Bratislava, Slovakia | |
P.O. strain 51 | dr. Semerdžieva, 1983, Gaštanica near Nitra, Slovakia | |
P.O. strain 52 | dr. Ohira 1975, Shuzenzi-cho, Pref. Shizuoka, Japan | |
P.O. strain 53 | dr. Semerdžieva, 1987, Trutnov-okolí, Czech Republic | |
P.O. strain 54 | dr. Semerdžieva, 1985, Czech Republic | |
P.O. strain 55 | isolate from the market, Slovakia, 2019, SPOREA, origin Poland | |
P.O. strain 56 | isolate from the market, Slovakia, 2019, origin Slovakia | |
P.O. strain 57 | isolate from the market, Slovakia, 2019, České houby, origin Czech Republic | |
P.O. strain 58 | isolate from the market, Slovakia, 2019, České houby, from ČR, origin Czech Republic | |
P.O. strain 59 | isolate from the market, Slovakia, 2019, Agaricus Gombatermelo Kft, origin Czech Republic |
The Basic Validation Characteristics of the Method | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Ba | Ca | Cd | Co | Cr | Cu | Fe | Hg | K | Mg | Mn | Na | Ni | Pb | Se | Zn | |
LOD1 (mg kg−1 DM) | 0.0071 | 0.0033 | 0.068 | 0.00040 | 0.0018 | 0.011 | 0.0030 | 0.0011 | 0.00020 | 0.51 | 0.00028 | 0.00026 | 0.18 | 0.0017 | 0.0076 | 0.0028 | 0.0069 |
LOQ1 (mg kg−1 DM) | 0.024 | 0.011 | 0.23 | 0.0013 | 0.0060 | 0.037 | 0.0098 | 0.0038 | 0.00060 | 1.7 | 0.00092 | 0.00086 | 0.60 | 0.0054 | 0.025 | 0.0084 | 0.023 |
RSD (%) | 4.0 | 2.0 | 0.91 | 0.10 | 0.46 | 2.8 | 5.0 | 2.8 | 3.4 | 0.70 | 0.66 | 8.2 | 4.3 | 0.42 | 1.9 | 6.2 | 1.6 |
CL | quadratic | linear | quadratic | linear | linear | linear | linear | linear | linear | linear | quadratic | linear | linear | linear | linear | new racional | linear |
Wavelengths | 396.152 Axial | 455.403 Radial | 422.673 Radial | 214.438 Axial | 238.892 Axial | 284.325 Radial | 324.754 Axial | 238.204 Axial | 253.65 | 766.490 Radial | 280.270 Radial | 257.610 Axial | 818.326 Axial | 221.647 Axial | 182.205 Axial | 196.00 | 213.856 Radial |
Average Contents in 59 Strains of Pleurotus ostreatus | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Al | Ba | Ca | Cu | Fe | K | Mg | Mn | Na | Zn | |
stipe | 4.9 ± 4.5 | 4.8 ± 1.3 | 1200 ± 560 | 5.3 ± 2.4 | 40 ± 21 | 26,000 ± 5200 | 1500 ± 340 | 2.8 ± 1.3 | 590 ± 120 | 41 ± 15 |
cap | 5.5 ± 4.6 | 4.00 ± 0.96 | 1200 ± 920 | 6.2 ± 1.5 | 56 ± 23 | 34,000 ± 4200 | 1800 ± 230 | 6.9 ± 1.8 | 600 ± 160 | 81 ± 25 |
average | 5.2 ± 4.6 | 4.4 ± 1.1 | 1200 ± 740 | 5.8 ± 2.0 | 48 ± 22 | 30,000 ± 4700 | 1700 ± 290 | 4.9 ± 1.6 | 600 ± 140 | 61 ± 20 |
STIPE | ||||||||||
Al | Ba | Ca | Cu | Fe | K | Mg | Mn | Na | Zn | |
Strain PO | PO44 | PO5 | PO3 | PO29 | PO45 | PO31 | PO20 | PO36 | PO2 | PO45 |
mg kg−1 DM | 1.9 | 3.0 | 310 | 1.8 | 12 | 16,000 | 880 | 0.39 | 62 | 11 |
CAP | ||||||||||
Al | Ba | Ca | Cu | Fe | K | Mg | Mn | Na | Zn | |
Strain PO | PO32 | PO17 | PO1 | PO36 | PO45 | PO58 | PO17 | PO45 | PO1 | PO45 |
mg kg−1 DM | 1.7 | 2.6 | 200 | 3.0 | 22 | 24,000 | 1400 | 2.8 | 46 | 140 |
STIPE | ||||||||||
Al | Ba | Ca | Cu | Fe | K | Mg | Mn | Na | Zn | |
Strain PO | PO1 | PO39 | PO39 | PO38 | PO39 | PO45 | PO51 | PO58 | PO26 | PO31 |
mg kg−1 DM | 22.0 | 9.7 | 3200 | 12.0 | 120 | 40,000 | 2400 | 4.8 | 800 | 83 |
CAP | ||||||||||
Al | Ba | Ca | Cu | Fe | K | Mg | Mn | Na | Zn | |
Strain PO | PO43 | PO26 | PO26 | PO39 | PO2 | PO21 | PO21 | PO34 | PO26 | PO1 |
mg kg−1 DM | 17.0 | 6.9 | 4600 | 18.0 | 110 | 49,000 | 2400 | 11 | 920 | 920 |
Pleurotus ostreatus strain 2-‘Kryos B’—The Content of Selected Metals mg kg−1 DM | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variant | Zn | Co | Ni | Hg | Cu | Mn | Fe | Cr | Pb * | Cd * | Se |
C | 35.0 ± 3.3 a | 0.61 ± 0.16 a | 0.68 ± 0.32 a | 0.041 ± 0.0041 a | 7.50 ± 0.96 a | 8.20 ± 0.91 a | 49.0 ± 6.5 a | 0.89 ± 0.52 a | 1.60 ± 0.57 ab | 0.23 ± 0.046 ab | 0.11 ± 0.036 a |
X | 36.0 ± 2.7 a | 0.91 ± 0.16 b | 1.10 ± 0.32 b | 0.047 ± 0.0047 b | 7.40 ± 0.89 a | 7.90 ± 0.40 ab | 49.0 ± 6.6 a | 0.75 ± 0.25 ab | 1.90 ± 0.31 a | 0.25 ± 0.048 a | 0.32 ± 0.13 b |
Y | 38.0 ± 2.3 a | 0.99 ± 0.17 b | 1.60 ± 0.24 c | 0.048 ± 0.0048 b | 7.40 ± 0.72 a | 7.70 ± 0.39 b | 48.0 ± 2.9 a | 0.62 ± 0.16 bc | 1.40 ± 0.38 b | 0.19 ± 0.063 ab | 0.48 ± 0.094 c |
Z | 37.0 ± 2.8 a | 1.20 ± 0.19 c | 1.80 ± 0.24 d | 0.048 ± 0.0048 b | 7.20 ± 0.69 a | 7.70 ± 0.30 b | 48.0 ± 3.8 a | 0.47 ± 0.17 c | 0.97 ± 0.61 c | 0.18 ± 0.089 b | 0.81 ± 0.20 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golian, M.; Hegedűsová, A.; Mezeyová, I.; Chlebová, Z.; Hegedűs, O.; Urminská, D.; Vollmannová, A.; Chlebo, P. Accumulation of Selected Metal Elements in Fruiting Bodies of Oyster Mushroom. Foods 2022, 11, 76. https://doi.org/10.3390/foods11010076
Golian M, Hegedűsová A, Mezeyová I, Chlebová Z, Hegedűs O, Urminská D, Vollmannová A, Chlebo P. Accumulation of Selected Metal Elements in Fruiting Bodies of Oyster Mushroom. Foods. 2022; 11(1):76. https://doi.org/10.3390/foods11010076
Chicago/Turabian StyleGolian, Marcel, Alžbeta Hegedűsová, Ivana Mezeyová, Zuzana Chlebová, Ondrej Hegedűs, Dana Urminská, Alena Vollmannová, and Peter Chlebo. 2022. "Accumulation of Selected Metal Elements in Fruiting Bodies of Oyster Mushroom" Foods 11, no. 1: 76. https://doi.org/10.3390/foods11010076
APA StyleGolian, M., Hegedűsová, A., Mezeyová, I., Chlebová, Z., Hegedűs, O., Urminská, D., Vollmannová, A., & Chlebo, P. (2022). Accumulation of Selected Metal Elements in Fruiting Bodies of Oyster Mushroom. Foods, 11(1), 76. https://doi.org/10.3390/foods11010076