Detection of Changes in Total Antioxidant Capacity, the Content of Polyphenols, Caffeine, and Heavy Metals of Teas in Relation to Their Origin and Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tea Samples and Infusion Preparation
2.2. PH Values
2.3. Moisture
2.4. Water Activity
2.5. Chemical Reagents
2.5.1. Total Polyphenolic Content and Total Antioxidant Capacity
2.5.2. HPLC Analysis
2.6. Determination of Total Polyphenolic Content and Antioxidant Activity
2.6.1. Apparatus
2.6.2. Determination of Total Polyphenolic Content
2.6.3. Determination of Total Antioxidant Capacity
2.7. Determination of Caffeine Using HPLC-DAD
2.8. Heavy Metals Determination—AAS
2.9. Statistical Analysis
3. Results and Discussion
3.1. Changes in Total Antioxidant Capacity, and the Content of Polyphenols and Caffeine, in Teas with Regard to Their Fermentation Process and Origin
3.2. Changes in Heavy Metal Content in Relation to Fermentation Process and Origin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Tao, C.; Song, Y.; Chen, Z.; Zhao, W.; Ji, J.; Shen, N.; Ayoko, G.A.; Frost, R.L. Geological load and health risk of heavy metals uptake by tea from soil: What are the significant influencing factors? CATENA 2021, 204, 105419. [Google Scholar] [CrossRef]
- Li, L.H.; Fu, Q.L.; Achal, V.; Liu, Y.L. A comparison of the potential health risk of aluminum and heavy metals in tea leaves and tea infusion of commercially available green tea in Jiangxi, China. Environ. Monit. Assess. 2015, 187, 228. [Google Scholar] [CrossRef]
- Soliman, N.F. Metals Contents in Black Tea and Evaluation of Potential Human Health Risks to Consumers. Health Econ. Outcome Res. Open Access 2016, 2, 109. [Google Scholar] [CrossRef]
- De Oliveira, L.M.; Das, S.; da Silva, E.B.; Peng Gao, P.; Gress, J.; Liu, Y.; Ma, L.Q. Metal concentrations in traditional and herbal teas and their potential risks to human health. Sci. Total Environ. 2018, 633, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Mander, L.; Lui, H.W. Comprehensive Natural Products II: Chemistry and Biology: Development & Modification of Bioactivity; Elsevier Ltd.: Oxford, UK, 2010; pp. 1000–1032. [Google Scholar]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Puchau, B.; Angeles Zulet, M.; de Echávarri, A.G.; Hermsdorff, H.H.M.; Alfredo Martínez, J. Dietary total antioxidant capacity is negatively associated with some metabolic syndrome features in healthy young adults. Nutrition 2010, 26, 534–541. [Google Scholar] [CrossRef]
- Martorell, I.; Perello, G.; Marti-Cid, R.; Llobet, J.M.; Castell, V.; Domingo, J.L. Human exposure to arsenic, cadmium, mercury, and lead from foods in Catalonia, Spain: Temporal trend. Biol. Trace Elem. Res. 2011, 142, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Pinto, M. Tea: A New Perspective on Health Benefits. Food Res. Int. 2013, 53, 558–567. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, R.; Li, Y.C.; Peng, Y.; Wen, X.; Ni, X. Distribution, accumulation, and potential risks of heavy metals in soil and tea leaves from geologically different plantations. Ecotoxicol. Environ. Saf. 2020, 195, 10475. [Google Scholar] [CrossRef]
- Brzezicha-Cirocka, J.; Grembecka, M.; Szefer, P. Monitoring of essential and heavy metals in green tea from different geographical origins. Environ. Monit. Assess. 2016, 188, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, J.; Frankova, A.; Drabek, O.; Szakova, J.; Ash, C.; Kokoska, L. Aluminium and other elements in selected herbal tea plant species and their infusions. Food Chem. 2013, 139, 728–734. [Google Scholar] [CrossRef]
- Lachman, J.; Hejtmánková, K.; Dudjak, E.; Fernández, E.; Pivec, V. Content of polyphenolic antioxidants and phenolcarboxylic in selected parts of yacon. In Vitamins 2003 (Proceedings Book)—Natural Antioxidants and Free Radicals; University of Pardubice: Pardubice, Czech Republic, 2003; pp. 89–97. [Google Scholar]
- Brand–Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Bobková, A.; Jakabová, S.; Belej, Ľ.; Jurčaga, L.; Čapla, J.; Bobko, M.; Demianová, A. Analysis of caffeine and chlorogenic acids content regarding the preparation method of coffee beverage. Int. J. Food Eng. 2021, 17, 403–410. [Google Scholar] [CrossRef]
- Zhu, J.J.; Tang, A.T.H.; Matinlinna, J.P.; Tsoi, J.K.H.; Hägg, U. Potentiometric Determination of Fluoride Release from Three Types of Tea Leaves. Int. J. Electrochem. Sci. 2013, 8, 11142–11150. [Google Scholar]
- Zhang, H.; Jiang, Y.; Lv, Y.; Pan, J.; Duan, Y.; Huang, Y.; Zhu, Y.; Zhang, S.; Geng, K. Effect of water quality on the main components in Fuding white tea infusions. J. Food Sci. Technol. 2017, 5, 1206–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, H.; Jahan, S.; Khan, A.; Khan, L.; Khan, B.T.; Ullah, H.; Riaz, M.; Ullah, K. Supplementation of green tea extract (GTE) in extender improves structural and functional characteristics, total antioxidant capacity and in vivo fertility of buffalo (Bubalus bubalis) bull spermatozoa. Theriogenology 2020, 145, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, H.; Zhang, B.; Deng, Z. The synergistic and antagonistic antioxidant interactions of dietary phytochemical combinations. Crit. Rev. Food Sci. Nutr. 2021, 1–20. [Google Scholar] [CrossRef]
- Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. J. 2020, 6, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Xu, H.; Ye, J.; Gaikwad, N.W. Comparative effect of black, green, oolong, and white tea intake on weight gain and bile acid metabolism. Nutrition 2019, 65, 208–215. [Google Scholar] [CrossRef]
- Shannon, E.; Jaiswal, A.K.; Abu-Ghannam, N. Polyphenolic content and antioxidant capacity of white, green, black, and herbal teas: A kinetic study. Food Res. 2018, 2, 1–11. [Google Scholar] [CrossRef]
- Chang, M.Y.; Lin, Y.Y.; Chang, Y.C.; Huang, W.Y.; Lin, W.S.; Chen, C.Y.; Lin, Y.S. Effects of Infusion and Storage on Antioxidant Activity and Total Phenolic Content of Black Tea. Appl. Sci. 2020, 10, 2685. [Google Scholar] [CrossRef] [Green Version]
- Veljković, J.N.; Pavlović, A.; Mitic, S.; Tošić, S.; Stojanović, G.; Kaličanin, B.M.; Stanković, D.; Stojkovic, M.; Mitić, M.; Brcanović, J.M. Evaluation of individual phenolic compounds and antioxidant properties of black, green, herbal and fruit tea infusions consumed in Serbia: Spectrophotometrical and electrochemical approaches. J. Food Nutr. Res. 2013, 52, 12–24. [Google Scholar]
- Salihovic, M.; Sapcanin, A.; Pazalja, M.; Alispahic, A.; Dedic, A.; Ramic, E. Determination of caffeine in different commercially available green and black teas. Bull. Chem. Technol. Bosnia. Herzeg. 2014, 43, 1–4. [Google Scholar]
- Heckman, M.A.; Weil, J.; de Mejia, E.G. Caffeine (1, 3, 7-trimethylxanthine) in Foods: A Comprehensive Review on Consumption, Functionality, Safety, and Regulatory Matters. J. Food Sci. 2010, 75, R77–R87. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Z.; Huang, Y.; Jiang, Y.; Liu, Y.; Wen, W.; Li, H.; Shao, J.; Wang, C.; Zhu, X. Antioxidant Capacity, Metal Contents, and Their Health Risk Assessment of Tartary Buckwheat Teas. ACS Omega 2020, 5, 9724–9732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, R.; Chen, R.; Peng, Y.; Wen, X.; Gao, L. Accumulation of Heavy Metals in Tea Leaves and Potential Risk Assesment: A Case study from Puan County, Guizhou Province, China. Int. J. Environ. Res. Publick Healts. 2018, 13, 133. [Google Scholar] [CrossRef] [Green Version]
- Karimi, G.; Hasanzadeh, M.; Nili, A.; Khashayarmanesh, Z.; Samiei, Z.; Nazari, F.; Teimuri, M. Concentrations and health risk of heavy metals in tea samples marketed in Iran. Pharmacology 2008, 3, 164–174. [Google Scholar]
- Schwalfenberg, G.; Genuis, S.J.; Rodushkin, I. The Benefits and Risks of Consuming Brewed Tea: Beware of Toxic Element Contamination. J. Toxicol. 2013, 2013, 370460. [Google Scholar] [CrossRef] [Green Version]
- Crinella, F.M. Does soy-based infant formula cause ADHD? Update and public policy considerations. Expert Rev. Neurother. 2012, 12, 395–407. [Google Scholar] [CrossRef]
- Pourramezani, F.; Akrami Mohajeri, F.; Salmani, M.H.; Dehghani Tafti, A.; Khalili Sadrabad, E. Evaluation of heavy metal concentration in imported black tea in Iran and consumer risk assessments. Food Sci. Nutr. 2019, 7, 4021–4026. [Google Scholar] [CrossRef] [Green Version]
- Márquez-García, B.; Ángeles Fernández-Recamales, M.; Córdoba, F. Effects of Cadmium on Phenolic Composition and Antioxidant Activities of Erica andevalensis. J. Bot. 2012, 2012, 936950. [Google Scholar] [CrossRef] [Green Version]
- Idrees, M.; Jan, F.A.; Hussain, S.; Salam, A. Heavy Metals Level, Health Risk Assessment Associated with Contamination of Black Tea; A Case Study from Khyber Pakhtunkhwa (KPK), Pakistan. Biol. Trace Elem. Res. 2020, 198, 344–349. [Google Scholar] [CrossRef] [PubMed]
Fermentation | Sample ID | Origin | Type |
---|---|---|---|
Non-fermented | 1A | China | Green |
Fermented | 1B | China | Black |
Non-fermented | 2A | Japan | Green |
Fermented | 2B | Japan | Black |
Non-fermented | 3A | Nepal | Green |
Fermented | 3B | Nepal | Black |
Non-fermented | 4A | Korea | Green |
Fermented | 4B | Korea | Black |
Phase | Power (W) | Power (%) | Building Up Time (min) | Temperature (°C) | Hold-Off (min) |
---|---|---|---|---|---|
Initialization (Achieving the specified conditions) | 800 | 90 | 15 | 160 | 0 |
Mineralization (Maintaining the specified conditions) | 800 | 90 | 0 | 160 | 20 |
Cooling | – | – | – | – | 20 |
Heavy Metal | Detection Limit (mg L−1) | Sensitivity (mg L−1) | Wave-Length (nm) |
---|---|---|---|
Cd | 0.001 | 0.01 | 228.8 |
Pb | 0.02 | 0.1 | 217.0 |
Cu | 0.002 | 0.03 | 324.8 |
Zn | 0.006 | 0.008 | 213.9 |
Co | 0.005 | 0.05 | 240.7 |
Cr | 0.003 | 0.04 | 357.9 |
Ni | 0.008 | 0.06 | 232.0 |
Mn | 0.003 | 0.02 | 279.5 |
Fe | 0.005 | 0.04 | 241.8 |
Sample 1 | ||||||
aw | Moisture (%) | pH | TPC m (g GAE kg−1) | TAC (%) | Caffeine (mg g−1) | |
China (green) | 0.580 a | 7.247 b | 6.030 a | 41.798 a | 59.178 a | 27.224 a |
China (black) | 0.551 b | 8.440 a | 5.330 b | 19.083 b | 59.474 a | 27.095 b |
Pr > F(Model) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.469 | 0.007 |
Significant | Yes | Yes | Yes | Yes | No | Yes |
Sample 2 | ||||||
aw | Moisture (%) | pH | TPC (g GAE kg−1) | TAC (%) | Caffeine (mg g−1) | |
Japan (green) | 0.543 b | 7.720 b | 5.953 a | 36.052 a | 57.565 b | 18.831 b |
Japan (black) | 0.551 a | 9.682 a | 5.303 b | 15.173 b | 59.856 a | 21.650 a |
Pr > F(Model) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Significant | Yes | Yes | Yes | Yes | Yes | Yes |
Sample 3 | ||||||
aw | Moisture (%) | pH | TPC (g GAE kg−1) | TAC (%) | Caffeine (mg g−1) | |
Nepal (green) | 0.531 b | 7.820 b | 5.788 a | 38.706 a | 58.778 a | 19.788 b |
Nepal (black) | 0.551 a | 8.028 a | 5.670 b | 33.381 b | 58.599 a | 36.715 a |
Pr > F(Model) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.683 | <0.0001 |
Significant | Yes | Yes | Yes | Yes | No | Yes |
Sample 4 | ||||||
aw | Moisture (%) | pH | TPC (g GAE kg−1) | TAC (%) | Caffeine (mg g−1) | |
Korea (green) | 0.547 b | 8.488 b | 5.842 a | 22.951 a | 62.228 b | 19.775 b |
Korea (black) | 0.562 a | 9.628 a | 5.383 b | 10.203 b | 63.739 a | 24.852 a |
Pr > F(Model) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.002 | <0.0001 |
Significant | Yes | Yes | Yes | Yes | Yes | Yes |
Sample ID | Type | Country of Origin | Cu | Zn | Mn | Fe | Cr |
1A | Green | China | 13.8 | 31.1 | 528.5 | 69.3 | 0.9 |
2A | Green | Japan | 5.3 | 24.0 | 207.6 | 67.5 | 0.7 |
3A | Green | Nepal | 13.2 | 29.6 | 427.6 | 115.6 | 1.4 |
4A | Green | Korea | 7.2 | 29.1 | 553.9 | 76.5 | 1.3 |
1B | Black | China | 16.8 | 30.7 | 522.5 | 72.6 | 1.7 |
2B | Black | Japan | 7.5 | 24.2 | 263.8 | 78.2 | 1.0 |
3B | Black | Nepal | 14.1 | 31.5 | 480.1 | 99.1 | 0.9 |
4B | Black | Korea | 9.7 | 31.8 | 247.7 | 56.7 | 0.9 |
Sample ID | Type | Country of Origin | Ni | Co | Pb | Cd | Hg |
1A | Green | China | 6.2 | 0.8 | 0.4 | 0.15 | 0.000345 |
2A | Green | Japan | 3.2 | 0.2 | 0.8 | 0.12 | 0.000817 |
3A | Green | Nepal | 7.9 | 0.7 | 2.0 | 0.16 | 0.001737 |
4A | Green | Korea | 10.3 | 1.2 | 0.5 | 0.22 | 0.001572 |
1B | Black | China | 6.2 | 0.4 | 0.7 | 0.17 | 0.000702 |
2B | Black | Japan | 3.5 | 0.5 | 1.0 | 0.14 | 0.000868 |
3B | Black | Nepal | 9.8 | 0.5 | 1.1 | 0.21 | 0.001271 |
4B | Black | Korea | 14.5 | 0.6 | 1.0 | 0.33 | 0.000854 |
Cu | Zn | Mn | Fe | Cr | |
Black | 12.025 a | 29.550 a | 378.525 a | 76.650 a | 1.125 a |
Green | 9.875 a | 28.450 a | 429.400 a | 82.225 a | 1.075 a |
Pr > F(Model) | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 |
Significant | No | No | No | No | No |
Pr > F(Type) | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 |
Significant | No | No | No | No | No |
Ni | Co | Pb | Cd | Hg | |
Black | 8.500 a | 0.500 a | 0.950 a | 0.213 a | 0.001 a |
Green | 6.900 a | 0.725 a | 0.925 a | 0.163 a | 0.001 a |
Pr > F(Model) | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 |
Significant | No | No | No | No | No |
Pr > F(Type) | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 |
Significant | No | No | No | No | No |
Observation | Prior | Posterior | China | Japan | Korea | Nepal |
---|---|---|---|---|---|---|
1A | China | China | 1.000 | 0.000 | 0.000 | 0.000 |
2A | Japan | Japan | 0.000 | 1.000 | 0.000 | 0.000 |
3A | Nepal | Nepal | 0.000 | 0.000 | 0.000 | 1.000 |
4A | Korea | Nepal | 0.000 | 0.000 | 0.000 | 1.000 |
1B | China | China | 1.000 | 0.000 | 0.000 | 0.000 |
2B | Japan | Japan | 0.000 | 1.000 | 0.000 | 0.000 |
3B | Nepal | Nepal | 0.000 | 0.000 | 0.000 | 1.000 |
4B | Korea | Japan | 0.000 | 1.000 | 0.000 | 0.000 |
From\To | China | Japan | Korea | Nepal | Total | % Correct |
---|---|---|---|---|---|---|
China | 2 | 0 | 0 | 0 | 2 | 100.00% |
Japan | 0 | 2 | 0 | 0 | 2 | 100.00% |
Korea | 0 | 1 | 0 | 1 | 2 | 0.00% |
Nepal | 0 | 0 | 0 | 2 | 2 | 100.00% |
Total | 2 | 3 | 0 | 3 | 8 | 75.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobková, A.; Demianová, A.; Belej, Ľ.; Harangozo, Ľ.; Bobko, M.; Jurčaga, L.; Poláková, K.; Božiková, M.; Bilčík, M.; Árvay, J. Detection of Changes in Total Antioxidant Capacity, the Content of Polyphenols, Caffeine, and Heavy Metals of Teas in Relation to Their Origin and Fermentation. Foods 2021, 10, 1821. https://doi.org/10.3390/foods10081821
Bobková A, Demianová A, Belej Ľ, Harangozo Ľ, Bobko M, Jurčaga L, Poláková K, Božiková M, Bilčík M, Árvay J. Detection of Changes in Total Antioxidant Capacity, the Content of Polyphenols, Caffeine, and Heavy Metals of Teas in Relation to Their Origin and Fermentation. Foods. 2021; 10(8):1821. https://doi.org/10.3390/foods10081821
Chicago/Turabian StyleBobková, Alica, Alžbeta Demianová, Ľubomír Belej, Ľuboš Harangozo, Marek Bobko, Lukáš Jurčaga, Katarína Poláková, Monika Božiková, Matúš Bilčík, and Július Árvay. 2021. "Detection of Changes in Total Antioxidant Capacity, the Content of Polyphenols, Caffeine, and Heavy Metals of Teas in Relation to Their Origin and Fermentation" Foods 10, no. 8: 1821. https://doi.org/10.3390/foods10081821
APA StyleBobková, A., Demianová, A., Belej, Ľ., Harangozo, Ľ., Bobko, M., Jurčaga, L., Poláková, K., Božiková, M., Bilčík, M., & Árvay, J. (2021). Detection of Changes in Total Antioxidant Capacity, the Content of Polyphenols, Caffeine, and Heavy Metals of Teas in Relation to Their Origin and Fermentation. Foods, 10(8), 1821. https://doi.org/10.3390/foods10081821