Antibiotic Use in Livestock and Residues in Food—A Public Health Threat: A Review
Abstract
:1. Introduction
2. Antibiotic Use in Livestock
3. Antibiotic Residues in Food
3.1. Products of Non-Animal Origin
3.2. Products of Animal Origin
3.3. Methods of Analysis
- (a)
- Screening analysis methods list
- Microbial Inhibition Test (Microtest)
- 2.
- Delvotest
- 3.
- Enzyme-linked immunosorbent assay (ELISA)
- 4.
- Radioimmunotest (RIA)
- 5.
- Chemiluminescence Immunoassay (CLIA)
- 6.
- Colloidal gold immunochromatographic assay (CGIA)
- 7.
- Fluorescence Polarization Assay (FPIA)
- 8.
- Lateral flow immunoassay (LFIA)
- (b)
- Confirmatory analysis methods
- Liquid chromatography coupled with mass spectrometry (LC/MS/MS)
- 2.
- Gas chromatography coupled with mass spectrometry (GC/MS/MS)
4. Impact of Food Consumption with Antibiotic Residues on Consumers’ Health
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Darwish, W.S.; Eldaly, E.A.; El-Abbasy, M.T.; Ikenaka, Y.; Nakayama, S.; Ishizuka, M. Antibiotic Residues in Food: The African Scenario. Jpn. J. Vet. Res. 2013, 61 (Suppl. S13), S13–S22. [Google Scholar] [PubMed]
- Page, S.W.; Gautier, P. Use of Antimicrobial Agents in Livestock. Rev. Sci. Technol. 2012, 31, 145–188. [Google Scholar] [CrossRef] [PubMed]
- Simoneit, C.; Burow, E.; Tenhagen, B.-A.; Käsbohrer, A. Oral Administration of Antimicrobials Increase Antimicrobial Resistance in E. Coli from Chicken—A Systematic Review. Prev. Vet. Med. 2015, 118, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between Veterinary Antimicrobial Use and Antimicrobial Resistance in Food-Producing Animals: A Report on Seven Countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Treiber, F.M.; Beranek-Knauer, H. Antimicrobial Residues in Food from Animal Origin—A Review of the Literature Focusing on Products Collected in Stores and Markets Worldwide. Antibiotics 2021, 10, 534. [Google Scholar] [CrossRef]
- Muaz, K.; Riaz, M.; Akhtar, S.; Park, S.; Ismail, A. Antibiotic Residues in Chicken Meat: Global Prevalence, Threats, and Decontamination Strategies: A Review. J. Food Prot. 2018, 81, 619–627. [Google Scholar] [CrossRef]
- Hammerum, A.M.; Heuer, O.E.; Emborg, H.-D.; Bagger-Skjøt, L.; Jensen, V.F.; Rogues, A.-M.; Skov, R.L.; Agersø, Y.; Brandt, C.T.; Seyfarth, A.M.; et al. Danish Integrated Antimicrobial Resistance Monitoring and Research Program. Emerg. Infect. Dis. 2007, 13, 1633–1639. [Google Scholar] [CrossRef]
- Disseminating Innovative Solutions for Antibiotic Resistance Management. Available online: https://disarmproject.eu/ (accessed on 27 March 2022).
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global Trends in Antimicrobial Use in Food Animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Albero, B.; Tadeo, J.L.; Miguel, E.; Pérez, R.A. Rapid Determination of Antibiotic Residues in Cereals by Liquid Chromatography Triple Mass Spectrometry. Anal. Bioanal. Chem. 2019, 411, 6129–6139. [Google Scholar] [CrossRef]
- EU Approves Limits on Antibiotics Use in Farm Animals. Available online: https://www.meatpoultry.com/articles/20383-eu-approves-limits-on-antibiotics-use-in-farm-animals (accessed on 30 March 2022).
- Regulation (EU). 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC (Text with EEA Relevance); European Commission: Brussels, Belgium, 2018; Volume 4. [Google Scholar]
- Hiraku, Y.; Sekine, A.; Nabeshi, H.; Midorikawa, K.; Murata, M.; Kumagai, Y.; Kawanishi, S. Mechanism of Carcinogenesis Induced by a Veterinary Antimicrobial Drug, Nitrofurazone, via Oxidative DNA Damage and Cell Proliferation. Cancer Lett. 2004, 215, 141–150. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Z.; Zhao, W.; Liu, C.; Qian, X.; Zhang, M.; Wei, G.; Khan, E.; Hau Ng, Y.; Sik Ok, Y. Recent Advances in Photodegradation of Antibiotic Residues in Water. Chem. Eng. J. 2021, 405, 126806. [Google Scholar] [CrossRef]
- Huang, F.; An, Z.; Moran, M.J.; Liu, F. Recognition of Typical Antibiotic Residues in Environmental Media Related to Groundwater in China (2009–2019). J. Hazard. Mater. 2020, 399, 122813. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Ning, J.; Peng, D.; Chen, T.; Ahmad, I.; Ali, A.; Lei, Z.; Abu bakr Shabbir, M.; Cheng, G.; Yuan, Z. Current Advances in Immunoassays for the Detection of Antibiotics Residues: A Review. Food Agric. Immunol. 2020, 31, 268–290. [Google Scholar] [CrossRef]
- Regulation (EC). No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition (Text with EEA Relevance); European Commission: Brussels, Belgium, 2003; Volume 268. [Google Scholar]
- Kirchhelle, C. Pharming Animals: A Global History of Antibiotics in Food Production (1935–2017). Palgrave Commun. 2018, 4, 96. [Google Scholar] [CrossRef] [Green Version]
- Hassali, M.A.A.; Yann, H.R.; Verma, A.K.; Hussain, R.; Sivaraman, S. Antibiotic Use in Food Animals: Malaysia Overview; School of Pharmaceutical Sciences, Universiti Sains Malaysia: Penang, Malaysia, 2018. [Google Scholar]
- Regulation (EU). 2019/4 of the European Parliament and of the Council of 11 December 2018 on the Manufacture, Placing on the Market and Use of Medicated Feed, Amending Regulation (EC) No 183/2005 of the European Parliament and of the Council and Repealing Council Directive 90/167/EEC (Text with EEA Relevance); European Commission: Brussels, Belgium, 2018; Volume 4. [Google Scholar]
- Regulation (EC). No 767/2009 of the European Parliament and of the Council of 13 July 2009 on the Placing on the Market and Use of Feed, Amending European Parliament and Council Regulation (EC) No 1831/2003 and Repealing Council Directive 79/373/EEC, Commission Directive 80/511/EEC, Council Directives 82/471/EEC, 83/228/EEC, 93/74/EEC, 93/113/EC and 96/25/EC and Commission Decision 2004/217/EC (Text with EEA Relevance); European Commission: Brussels, Belgium, 2009; Volume 229. [Google Scholar]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A Review of Antibiotic Use in Food Animals: Perspective, Policy, and Potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayorova, Y.; Glebov, V.; Erofeeva, V.; Yablochnikov, S.; Laver, B. Physiological Evaluation of the Cardiology System of Nonresident Students at Different Training Periods. E3S Web Conf. 2020, 169, 04004. [Google Scholar] [CrossRef]
- Maslennikova, O.; Erofeeva, V. Biological Contamination of Soils in Urbanized Ecosystems by Toxocara sp. Eggs. E3S Web Conf. 2020, 169, 04002. [Google Scholar] [CrossRef]
- Erofeeva, V.; Zakirova, Y.; Yablochnikov, S.; Prys, E.; Prys, I. The Use of Antibiotics in Food Technology: The Case Study of Products from Moscow Stores. E3S Web Conf. 2021, 311, 10005. [Google Scholar] [CrossRef]
- Regulation (EC). No 726/2004 of the European Parliament and of the Council of 31 March 2004 Laying down Community Procedures for the Authorisation and Supervision of Medicinal Products for Human and Veterinary Use and Establishing a European Medicines Agency (Text with EEA Relevance); European Commission: Brussels, Belgium, 2004; Volume 136. [Google Scholar]
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A Global Perspective on the Use, Sales, Exposure Pathways, Occurrence, Fate and Effects of Veterinary Antibiotics (VAs) in the Environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef]
- Callaway, T.R.; Edrington, T.S.; Rychlik, J.L.; Genovese, K.J.; Poole, T.L.; Jung, Y.S.; Bischoff, K.M.; Anderson, R.C.; Nisbet, D.J. Ionophores: Their Use as Ruminant Growth Promotants and Impact on Food Safety. Curr. Issues Intest. Microbiol. 2003, 4, 43–51. [Google Scholar]
- Diana, A.; Boyle, L.A.; Leonard, F.C.; Carroll, C.; Sheehan, E.; Murphy, D.; Manzanilla, E.G. Removing Prophylactic Antibiotics from Pig Feed: How Does It Affect Their Performance and Health? BMC Vet. Res. 2019, 15, 67. [Google Scholar] [CrossRef]
- Daros, R.R.; Eriksson, H.K.; Weary, D.M.; von Keyserlingk, M.A.G. The Relationship between Transition Period Diseases and Lameness, Feeding Time, and Body Condition during the Dry Period. J. Dairy Sci. 2020, 103, 649–665. [Google Scholar] [CrossRef]
- Bucław, M. The Use of Inulin in Poultry Feeding: A Review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 1015–1022. [Google Scholar] [CrossRef] [Green Version]
- Adewole, D.I.; Kim, I.H.; Nyachoti, C.M. Gut Health of Pigs: Challenge Models and Response Criteria with a Critical Analysis of the Effectiveness of Selected Feed Additives—A Review. Asian-Australas. J. Anim. Sci. 2016, 29, 909–924. [Google Scholar] [CrossRef] [Green Version]
- Regulation (EU). 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007; European Commission: Brussels, Belgium, 2018; Volume 150. [Google Scholar]
- Bacanlı, M.; Başaran, N. Importance of Antibiotic Residues in Animal Food. Food Chem. Toxicol. 2019, 125, 462–466. [Google Scholar] [CrossRef]
- Donoghue, D.J. Antibiotic Residues in Poultry Tissues and Eggs: Human Health Concerns? Poult. Sci. 2003, 82, 618–621. [Google Scholar] [CrossRef]
- Long, Y.; Li, B.; Liu, H. Analysis of Fluoroquinolones Antibiotic Residue in Feed Matrices Using Terahertz Spectroscopy. Appl. Opt. 2018, 57, 544–550. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [Green Version]
- Kimera, Z.I.; Mdegela, R.H.; Mhaiki, C.J.N.; Karimuribo, E.D.; Mabiki, F.; Nonga, H.E.; Mwesongo, J. Determination of Oxytetracycline Residues in Cattle Meat Marketed in the Kilosa District, Tanzania. Onderstepoort J. Vet. Res. 2015, 82, 911. [Google Scholar] [CrossRef] [Green Version]
- Nigeria, I.A.; Olufemi, O.I.; Agboola, E.A. Oxytetracycline Residues in Edible Tissues of Cattle Slaughtered. Niger. Vet. J. 2011, 31, 2. [Google Scholar]
- Bedada, A.H.; Zewde, B.M. Tetracycline Residue Levels in Slaughtered Beef Cattle from Three Slaughterhouses in Central Ethiopia. Glob. Vet. 2012, 8, 546–554. [Google Scholar]
- Tavakoli, H.R.; Firouzabadi, M.S.S.; Afsharfarnia, S.; Jafari, N.J.; Sa’Adat, S. Detecting antibiotic residues by hplc method in chicken and calves meat in diet of a military center in tehran. Acta Med. Mediterr. 2015, 31, 1427–1433. [Google Scholar]
- Er, B.; Onurdag, F.K.; Demirhan, B.; Ozgacar, S.Ö.; Oktem, A.B.; Abbasoglu, U. Screening of Quinolone Antibiotic Residues in Chicken Meat and Beef Sold in the Markets of Ankara, Turkey. Poult. Sci. 2013, 92, 2212–2215. [Google Scholar] [CrossRef] [PubMed]
- Salama, N.A.; Abou-Raya, S.H.; Shalaby, A.R.; Emam, W.H.; Mehaya, F.M. Incidence of Tetracycline Residues in Chicken Meat and Liver Retailed to Consumers. Food Addit. Contam.Part B Surveill 2011, 4, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Guetiya Wadoum, R.E.; Zambou, N.F.; Anyangwe, F.F.; Njimou, J.R.; Coman, M.M.; Verdenelli, M.C.; Cecchini, C.; Silvi, S.; Orpianesi, C.; Cresci, A.; et al. Abusive Use of Antibiotics in Poultry Farming in Cameroon and the Public Health Implications. Br. Poult. Sci. 2016, 57, 483–493. [Google Scholar] [CrossRef]
- Muriuki, F.K.; Ogara, W.O.; Njeruh, F.M.; Mitema, E.S. Tetracycline Residue Levels in Cattle Meat from Nairobi Salughter House in Kenya. J. Vet. Sci. 2001, 2, 97–101. [Google Scholar] [CrossRef]
- Chowdhury, S.; Hassan, M.M.; Alam, M.; Sattar, S.; Bari, M.S.; Saifuddin, A.K.M.; Hoque, M.A. Antibiotic Residues in Milk and Eggs of Commercial and Local Farms at Chittagong, Bangladesh. Vet. World 2015, 8, 467–471. [Google Scholar] [CrossRef] [Green Version]
- Zheng, N.; Wang, J.; Han, R.; Xu, X.; Zhen, Y.; Qu, X.; Sun, P.; Li, S.; Yu, Z. Occurrence of Several Main Antibiotic Residues in Raw Milk in 10 Provinces of China. Food Addit. Contam. Part B Surveill 2013, 6, 84–89. [Google Scholar] [CrossRef]
- Nchima, G.; Choongo, K.; Flavien, B.; Muzandu, K.; Nalubamba, K.; Monga, G.; Kangwa, H.; Muma, J. Determination of Oxytetracycline and Sulphamethazine Residues in Marketed Beef from Selected Parts of Zambia to Assess Compliance with Maximum Residual Limits. Am. J. Res. Commun. 2017, 5, 42–64. [Google Scholar]
- Olatoye, I.O.; Ehinmowo, A.A. Oxytetracycline Residues in Edible Tissues of Cattle Slaughtered in Akure, Nigeria. Niger. Vet. J. 2010, 31, 2. [Google Scholar] [CrossRef] [Green Version]
- Cheong, C.K.; Hajeb, P.; Jinap, S.; Ismail-Fitry, M. Sulfonamides Determination in Chicken Meat Products from Malaysia. Int. Food Res. J. 2010, 17, 885–892. [Google Scholar]
- Kumari Anjana, R.K.N.; Jayachandran, K.G.M.C. Persistence of Antibiotic Residue in Milk under Region of Bihar, India. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2296–2299. [Google Scholar] [CrossRef]
- Christou, A.; Agüera, A.; Bayona, J.M.; Cytryn, E.; Fotopoulos, V.; Lambropoulou, D.; Manaia, C.M.; Michael, C.; Revitt, M.; Schröder, P.; et al. The Potential Implications of Reclaimed Wastewater Reuse for Irrigation on the Agricultural Environment: The Knowns and Unknowns of the Fate of Antibiotics and Antibiotic Resistant Bacteria and Resistance Genes—A Review. Water Res. 2017, 123, 448–467. [Google Scholar] [CrossRef] [Green Version]
- Tasho, R.P.; Cho, J.Y. Veterinary Antibiotics in Animal Waste, Its Distribution in Soil and Uptake by Plants: A Review. Sci. Total Environ. 2016, 563–564, 366–376. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Ncube, S.; Chimuka, L. Uptake of Pharmaceuticals by Plants Grown under Hydroponic Conditions and Natural Occurring Plant Species: A Review. Sci. Total Environ. 2018, 636, 477–486. [Google Scholar] [CrossRef]
- Chung, H.S.; Lee, Y.-J.; Rahman, M.M.; Abd El-Aty, A.M.; Lee, H.S.; Kabir, M.H.; Kim, S.W.; Park, B.-J.; Kim, J.-E.; Hacımüftüoğlu, F.; et al. Uptake of the Veterinary Antibiotics Chlortetracycline, Enrofloxacin, and Sulphathiazole from Soil by Radish. Sci. Total Environ. 2017, 605–606, 322–331. [Google Scholar] [CrossRef]
- Herklotz, P.A.; Gurung, P.; Vanden Heuvel, B.; Kinney, C.A. Uptake of Human Pharmaceuticals by Plants Grown under Hydroponic Conditions. Chemosphere 2010, 78, 1416–1421. [Google Scholar] [CrossRef]
- Kurwadkar, S.; Struckhoff, G.; Pugh, K.; Singh, O. Uptake and Translocation of Sulfamethazine by Alfalfa Grown under Hydroponic Conditions. J. Environ. Sci. 2017, 53, 217–223. [Google Scholar] [CrossRef]
- Pan, M.; Chu, L.M. Transfer of Antibiotics from Wastewater or Animal Manure to Soil and Edible Crops. Environ. Pollut. 2017, 231, 829–836. [Google Scholar] [CrossRef]
- Pan, M.; Wong, C.K.C.; Chu, L.M. Distribution of Antibiotics in Wastewater-Irrigated Soils and Their Accumulation in Vegetable Crops in the Pearl River Delta, Southern China. J. Agric. Food Chem. 2014, 62, 11062–11069. [Google Scholar] [CrossRef]
- Albero, B.; Tadeo, J.L.; Escario, M.; Miguel, E.; Pérez, R.A. Persistence and Availability of Veterinary Antibiotics in Soil and Soil-Manure Systems. Sci. Total Environ. 2018, 643, 1562–1570. [Google Scholar] [CrossRef]
- Ahmed, M.B.M.; Rajapaksha, A.U.; Lim, J.E.; Vu, N.T.; Kim, I.S.; Kang, H.M.; Lee, S.S.; Ok, Y.S. Distribution and Accumulative Pattern of Tetracyclines and Sulfonamides in Edible Vegetables of Cucumber, Tomato, and Lettuce. J. Agric. Food Chem. 2015, 63, 398–405. [Google Scholar] [CrossRef]
- Li, X.-W.; Xie, Y.-F.; Li, C.-L.; Zhao, H.-N.; Zhao, H.; Wang, N.; Wang, J.-F. Investigation of Residual Fluoroquinolones in a Soil-Vegetable System in an Intensive Vegetable Cultivation Area in Northern China. Sci. Total Environ. 2014, 468–469, 258–264. [Google Scholar] [CrossRef]
- Wu, X.; Conkle, J.L.; Ernst, F.; Gan, J. Treated Wastewater Irrigation: Uptake of Pharmaceutical and Personal Care Products by Common Vegetables under Field Conditions. Environ. Sci. Technol. 2014, 48, 11286–11293. [Google Scholar] [CrossRef]
- Bassil, R.J.; Bashour, I.I.; Sleiman, F.T.; Abou-Jawdeh, Y.A. Antibiotic Uptake by Plants from Manure-Amended Soils. J. Environ. Sci. Health B 2013, 48, 570–574. [Google Scholar] [CrossRef]
- Nisha, A. Antibiotic Residues—A Global Health Hazard. Vet. World 2008, 2, 375. [Google Scholar] [CrossRef]
- Almashhadany, D.A. Monitoring of Antibiotic Residues among Sheep Meat in Erbil City and Thermal Processing Effect on Their Remnants. Iraqi J. Vet. Sci. 2020, 34, 217–222. [Google Scholar] [CrossRef]
- Babapour, A.; Azami, L.; Fartashmehr, J. Overview of Antibiotic Residues in Beef and Mutton in Ardebil, North West of Iran. World Appl. Sci. J. 2012, 19, 1417–1422. [Google Scholar]
- Ibrahim, A.I.; Junaidu, A.U.; Garba, M.K. Multiple Antibiotic Residues in Meat from Slaughtered Cattle in Nigeria. Internet J. Vet. Med. 2009, 8, 354. [Google Scholar]
- Sanz, D.; Razquín, P.; Condón, S.; Juan Esteban, T.; Herráiz, B.; Mata, L. Incidence of Antimicrobial Residues in Meat Using a Broad Spectrum Screening Strategy. Eur. J. Nutr. Food Saf. 2015, 5, 156–165. [Google Scholar] [CrossRef] [Green Version]
- Widiastuti, R.; Martindah, E.; Anastasia, Y. Detection and Dietary Exposure Assessment of Fluoroquinolones Residues in Chicken Meat from the Districts of Malang and Blitar, Indonesia. Trop. Anim. Sci. J. 2022, 45, 98–103. [Google Scholar] [CrossRef]
- Brown, K.; Mugoh, M.; Call, D.R.; Omulo, S. Antibiotic Residues and Antibiotic-Resistant Bacteria Detected in Milk Marketed for Human Consumption in Kibera, Nairobi. PLoS ONE 2020, 15, e0233413. [Google Scholar] [CrossRef]
- McLaughlin, J.B.; Castrodale, L.J.; Gardner, M.J.; Ahmed, R.; Gessner, B.D. Outbreak of Multidrug-Resistant Salmonella Typhimurium Associated with Ground Beef Served at a School Potluck. J. Food Prot. 2006, 69, 666–670. [Google Scholar] [CrossRef]
- Müller, P.M.; de Medeiros, E.S.; Mota, R.A.; de Rolim, M.B.Q.; Colombo, M.V.; Rübensam, G.; Barreto, F.; de Silva, D.D.; de Silva, T.I.B. Avermectins Residues in Milk Produced in the State of Pernambuco. Food Sci. Technol. 2020, 40, 979–984. [Google Scholar] [CrossRef]
- Iqbal, F. Milk Adulteration: A Growing Health Hazard in Pakistan. In Nutrients in Dairy and Their Implications on Health and Disease; Watson, R.R., Collier, R.J., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 215–222. [Google Scholar] [CrossRef]
- Hajmohammadi, M.; Valizadeh, R.; Ebdalabadi, M.N.; Naserian, A.; Oliveira, C.A.F. de Seasonal Variations in Some Quality Parameters of Milk Produced in Khorasan Razavi Province, Iran. Food Sci. Technol. 2021, 41, 718–722. [Google Scholar] [CrossRef]
- Moghadam, M.M.; Amiri, M.; Riabi, H.R.A.; Riabi, H.R.A. Evaluation of Antibiotic Residues in Pasteurized and Raw Milk Distributed in the South of Khorasan-e Razavi Province, Iran. J. Clin. Diagn Res. 2016, 10, FC31–FC35. [Google Scholar] [CrossRef]
- Ghanavi, Z.; Mollayi, S.; Eslami, Z. Comparison Between the Amount of Penicillin G Residue in Raw and Pasteurized Milk in Iran. Jundishapur J. Microbiol. 2013, 6, 1A. [Google Scholar] [CrossRef] [Green Version]
- David, V. Screening of cattle milk for the presence of antibiotic residues in selected districts of karnataka. J. Indian Vet. Assoc. 2021, 19, 98–104. [Google Scholar]
- Knappstein, K.; Suhren, G.; Walte, H.G.; Slaghuis, B.A.; Ferwerda, R.T.; Zonneveld, V. Prevention of Antibiotic Residues. Appropriate Management of Antibiotic Treatment of Cows in Automatic Milking Systems; Report D12, EU Project “Implications of the Introduction of Automatic Milking on Dairy Farms” QLK5-2000-31006. Available online: http://www.automaticmilking.nl (accessed on 6 May 2022).
- Cornejo, J.; Pokrant, E.; Figueroa, F.; Riquelme, R.; Galdames, P.; Di Pillo, F.; Jimenez-Bluhm, P.; Hamilton-West, C. Assessing Antibiotic Residues in Poultry Eggs from Backyard Production Systems in Chile, First Approach to a Non-Addressed Issue in Farm Animals. Animals 2020, 10, 1056. [Google Scholar] [CrossRef]
- Yang, Y.; Qiu, W.; Li, Y.; Liu, L. Antibiotic Residues in Poultry Food in Fujian Province of China. Food Addit. Contam. Part B Surveill 2020, 13, 177–184. [Google Scholar] [CrossRef]
- Petcu, C.D.; Ciobotaru-Pîrvu, E.; Goran, G.V.; Predescu, C.N.; Oprea, O.D. Study regarding the honey contamination degree assessed in a specialized production unit. Sci. Pap. Ser. D Anim. Sci. 2020, 63, 1. [Google Scholar]
- Regulation (EC). No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC Text with EEA Relevance; European Commission: Brussels, Belgium, 2005; Volume 70. [Google Scholar]
- Regulation (EC). No 470/2009 of the European Parliament and of the Council of 6 May 2009 Laying down Community Procedures for the Establishment of Residue Limits of Pharmacologically Active Substances in Foodstuffs of Animal Origin, Repealing Council Regulation (EEC) No 2377/90 and Amending Directive 2001/82/EC of the European Parliament and of the Council and Regulation (EC) No 726/2004 of the European Parliament and of the Council (Text with EEA Relevance); European Commission: Brussels, Belgium, 2009; Volume 152. [Google Scholar]
- Johnson, D.S. Antibiotic Residues in Honey; Centre for Science and Environment: New Dehli, India, 2010; Volume 48. [Google Scholar]
- Orso, D.; Floriano, L.; Ribeiro, L.C.; Bandeira, N.M.G.; Prestes, O.D.; Zanella, R. Simultaneous Determination of Multiclass Pesticides and Antibiotics in Honey Samples Based on Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Anal. Methods 2016, 9, 1638–1653. [Google Scholar] [CrossRef]
- Bargańska, Ż.; Namieśnik, J.; Ślebioda, M. Determination of antibiotic residues in honey. Trac-Trends Anal. Chem. 2011, 30, 1035–1041. [Google Scholar] [CrossRef]
- Poetschke, G. Tnrungsberichte Der Deutschen Gesellschaft Fur Hygiene. In Minutes of the Meeting of the German Society for Bygiene and Microbiology; German Society for Bygiene and Microbiology: Berlin, Germany, 1951. [Google Scholar]
- Neaves, P. Monitoring Antibiotics in Milk—The Changing World of Test Methods. Available online: https://www.nugi-zentrum.de/fileadmin/website_uni_ulm/nugi/Experimente/%C3%96kologie/Antibiotika-Nachweis/Neaves.pdf (accessed on 29 March 2022).
- Barinova, K.V.; Khomyakova, E.V.; Kuravsky, M.L.; Schmalhausen, E.V.; Muronetz, V.I. Denaturing Action of Adjuvant Affects Specificity of Polyclonal Antibodies. Biochem. Biophys. Res. Commun. 2017, 482, 1265–1270. [Google Scholar] [CrossRef]
- Franek, M.; Kolar, V.; Deng, A.; Crooks, S. Determination of Sulphadimidine (Sulfamethazine) Residues in Milk, Plasma, Urine and Edible Tissues by Sensitive ELISA. Food Agric. Immunol. 1999, 11, 339–349. [Google Scholar] [CrossRef]
- Cháfer-Pericás, C.; Maquieira, Á.; Puchades, R.; Miralles, J.; Moreno, A. Multiresidue Determination of Antibiotics in Feed and Fish Samples for Food Safety Evaluation. Comparison of Immunoassay vs. LC-MS-MS. Food Control 2011, 22, 993–999. [Google Scholar] [CrossRef]
- Fan, G.; Yang, R.; Jiang, J.; Chang, X.; Chen, J.; Qi, Y.; Wu, S.; Yang, X. Development of a Class-Specific Polyclonal Antibody-Based Indirect Competitive ELISA for Detecting Fluoroquinolone Residues in Milk. J. Zhejiang Univ. Sci. B 2012, 13, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Zhao, G.X.; Zhang, H.C.; Wang, P.; Wang, J.P. Production of Monoclonal Antibody against Doxycycline for Immunoassay of Seven Tetracyclines in Bovine Muscle and Milk. J. Environ. Sci. Health B 2013, 48, 92–100. [Google Scholar] [CrossRef]
- Liu, N.; Song, S.; Lu, L.; Nie, D.; Han, Z.; Yang, X.; Zhao, Z.; Wu, A.; Zheng, X. A Rabbit Monoclonal Antibody-Based Sensitive Competitive Indirect Enzyme-Linked Immunoassay for Rapid Detection of Chloramphenicol Residue. Food Agric. Immunol. 2014, 25, 523–534. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, Z.; Beier, R.C.; Jiang, H.; Wu, Y.; Shen, J. Simultaneous Determination of 13 Fluoroquinolone and 22 Sulfonamide Residues in Milk by a Dual-Colorimetric Enzyme-Linked Immunosorbent Assay. Anal. Chem. 2013, 85, 1995–1999. [Google Scholar] [CrossRef]
- Wang, S.; Xu, B.; Zhang, Y.; He, J.X. Development of Enzyme-Linked Immunosorbent Assay (ELISA) for the Detection of Neomycin Residues in Pig Muscle, Chicken Muscle, Egg, Fish, Milk and Kidney. Meat Sci. 2009, 82, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Jeon, M.; Rhee Paeng, I. Quantitative Detection of Tetracycline Residues in Honey by a Simple Sensitive Immunoassay. Anal. Chim. Acta 2008, 626, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; Gao, X.; Duan, Z.; Wang, S. Determination of Chloramphenicol Residues in Milk by Enzyme-Linked Immunosorbent Assay: Improvement by Biotin-Streptavidin-Amplified System. J. Agric. Food Chem. 2010, 58, 3265–3270. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Beier, R.C.; Luo, P.; Zhai, P.; Wu, N.; Lin, G.; Wang, X.; Xu, G. Analysis of Pirlimycin Residues in Beef Muscle, Milk, and Honey by a Biotin-Streptavidin-Amplified Enzyme-Linked Immunosorbent Assay. J. Agric. Food Chem. 2016, 64, 364–370. [Google Scholar] [CrossRef]
- Broto, M.; Matas, S.; Babington, R.; Marco, M.-P.; Galve, R. Immunochemical Detection of Penicillins by Using Biohybrid Magnetic Particles. Food Control 2015, 51, 381–389. [Google Scholar] [CrossRef]
- Jiang, W.; Luo, P.; Wang, X.; Chen, X.; Zhao, Y.; Shi, W.; Shen, J. Development of an Enzyme-Linked Immunosorbent Assay for the Detection of Nitrofurantoin Metabolite, 1-Amino-Hydantoin, in Animal Tissues. Food Control 2012, 23, 20–25. [Google Scholar] [CrossRef]
- Agarwal, V.K.; American Chemical Society (Eds.) Analysis of Antibiotic/Drug Residues in Food Products of Animal Origin; Plenum Press: New York, NY, USA, 1992; ISBN 978-0-306-44199-8. [Google Scholar]
- Wang, C.; Wu, J.; Zong, C.; Xu, J.; Ju, H.-X. Chemiluminescent Immunoassay and Its Applications. Chin. J. Anal. Chem. 2012, 40, 3–10. [Google Scholar] [CrossRef]
- Dodeigne, C.; Thunus, L.; Lejeune, R. Chemiluminescence as Diagnostic Tool. A Review. Talanta 2000, 51, 415–439. [Google Scholar] [CrossRef]
- Posthuma-Trumpie, G.A.; Korf, J.; van Amerongen, A. Lateral Flow (Immuno)Assay: Its Strengths, Weaknesses, Opportunities and Threats. A Literature Survey. Anal. Bioanal. Chem. 2009, 393, 569–582. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Zhang, X.; Huang, X.; Guo, X.; Cai, Q.; Zhu, S. Rapid Detection of Chloramphenicol Residues in Aquatic Products Using Colloidal Gold Immunochromatographic Assay. Sensors 2014, 14, 21872–21888. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Li, X.; Peng, T.; Wang, Z.; Wen, K.; Jiang, H. Latex Bead and Colloidal Gold Applied in a Multiplex Immunochromatographic Assay for High-Throughput Detection of Three Classes of Antibiotic Residues in Milk. Food Control 2017, 77, 1–7. [Google Scholar] [CrossRef]
- Smith, D.S.; Eremin, S.A. Fluorescence Polarization Immunoassays and Related Methods for Simple, High-Throughput Screening of Small Molecules. Anal. Bioanal. Chem. 2008, 391, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Beloglazova, N.V.; Shmelin, P.S.; Eremin, S.A. Sensitive Immunochemical Approaches for Quantitative (FPIA) and Qualitative (Lateral Flow Tests) Determination of Gentamicin in Milk. Talanta 2016, 149, 217–224. [Google Scholar] [CrossRef] [PubMed]
- García-Fernández, J.; Trapiella-Alfonso, L.; Costa-Fernández, J.M.; Pereiro, R.; Sanz-Medel, A. A Quantum Dot-Based Immunoassay for Screening of Tetracyclines in Bovine Muscle. J. Agric. Food Chem. 2014, 62, 1733–1740. [Google Scholar] [CrossRef]
- A Lateral Flow Immunoassay Kit for Detecting Residues of Four Groups of Antibiotics in Farmed Fish -Korean Journal of Fisheries and Aquatic Sciences|Korea Science. Available online: https://www.koreascience.or.kr/article/JAKO201525040830999.page (accessed on 29 March 2022).
- O’Farrell, B. Evolution in Lateral Flow–Based Immunoassay Systems. In Lateral Flow Immunoassay; Wong, R., Tse, H., Eds.; Humana Press: Totowa, NJ, USA, 2009; pp. 1–33. ISBN 978-1-59745-240-3. [Google Scholar]
- Zhou, Y.; Lavorato, D.; Mathews, T.; Countryman, S. Analysis of Antibiotics in Meat for Human Consumption. 15. Available online: http://phx.phenomenex.com/lib/po70540809.pdf (accessed on 29 March 2022).
- Kang, J.-S. Principles and Applications of LC-MS/MS for the Quantitative Bioanalysis of Analytes in Various Biological Samples; IntechOpen: London, UK, 2012; ISBN 978-953-51-0141-3. [Google Scholar]
- Jank, L.; Martins, M.T.; Arsand, J.B.; Motta, T.M.C.; Feijó, T.C.; dos Santos Castilhos, T.; Hoff, R.B.; Barreto, F.; Pizzolato, T.M. Liquid Chromatography–Tandem Mass Spectrometry Multiclass Method for 46 Antibiotics Residues in Milk and Meat: Development and Validation. Food Anal. Methods 2017, 10, 2152–2164. [Google Scholar] [CrossRef]
- European Commission. 2002/657/EC: Commission Decision of 12 August 2002 Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Results (Text with EEA Relevance) (Notified under Document Number C(2002) 3044); European Commission: Brussels, Belgium, 2002; Volume 221. [Google Scholar]
- Papatsiros, V.G. Alternatives to Antibiotics for Farm Animals. CAB Reviews 2013, 8, 1–15. [Google Scholar] [CrossRef]
- Ganguly, N.K.; Arora, N.K.; Chandy, S.J.; Fairoze, M.N.; Gill, J.P.S.; Gupta, U.; Hossain, S.; Joglekar, S.; Joshi, P.C.; Kakkar, M.; et al. Rationalizing Antibiotic Use to Limit Antibiotic Resistance in India. Indian J. Med. Res. 2011, 134, 281–294. [Google Scholar]
- Harbarth, S.; Balkhy, H.H.; Goossens, H.; Jarlier, V.; Kluytmans, J.; Laxminarayan, R.; Saam, M.; Van Belkum, A.; Pittet, D. Antimicrobial Resistance: One World, One Fight! Antimicrob. Resist. Infect. Control 2015, 4, 49. [Google Scholar] [CrossRef] [Green Version]
- Laxminarayan, R.; Chaudhury, R.R. Antibiotic Resistance in India: Drivers and Opportunities for Action. PLoS Med. 2016, 13, e1001974. [Google Scholar] [CrossRef] [Green Version]
- Xie, R.; Zhang, X.D.; Zhao, Q.; Peng, B.; Zheng, J. Analysis of Global Prevalence of Antibiotic Resistance in Acinetobacter Baumannii Infections Disclosed a Faster Increase in OECD Countries. Emerg. Microbes Infect. 2018, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic Resistance in the Food Chain: A Developing Country-Perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.B.; Arnipalli, S.R.; Ziouzenkova, O. Antibiotics in Food Chain: The Consequences for Antibiotic Resistance. Antibiotics 2020, 9, 688. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.G.; Salipante, S.J.; Barlow, M. Independent Origins of Subgroup Bl + B2 and Subgroup B3 Metallo-Beta-Lactamases. J. Mol. Evol. 2004, 59, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Bebrone, C. Metallo-Beta-Lactamases (Classification, Activity, Genetic Organization, Structure, Zinc Coordination) and Their Superfamily. Biochem. Pharmacol. 2007, 74, 1686–1701. [Google Scholar] [CrossRef]
- Martínez, J.L. Natural Antibiotic Resistance and Contamination by Antibiotic Resistance Determinants: The Two Ages in the Evolution of Resistance to Antimicrobials. Front. Microbiol. 2012, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Singh, B.R. An Overview of Mechanisms and Emergence of Antimicrobials Drug Resistance. Adv. Anim. Vet. Sci. 2013, 8, 7–14. [Google Scholar]
- Kumar, M.; Yadav, A.K.; Verma, V.; Singh, B.; Mal, G.; Nagpal, R.; Hemalatha, R. Bioengineered Probiotics as a New Hope for Health and Diseases: An Overview of Potential and Prospects. Future Microbiol. 2016, 11, 585–600. [Google Scholar] [CrossRef]
- Allen, H.K. Antibiotic Resistance Gene Discovery in Food-Producing Animals. Curr. Opin. Microbiol. 2014, 19, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Furuya, E.Y.; Lowy, F.D. Antimicrobial-Resistant Bacteria in the Community Setting. Nat. Rev. Microbiol. 2006, 4, 36–45. [Google Scholar] [CrossRef]
- Hawkey, P.M. The Growing Burden of Antimicrobial Resistance. J. Antimicrob. Chemother. 2008, 62 (Suppl. S1), i1–i9. [Google Scholar] [CrossRef]
- Home|European Antibiotic Awareness Day. Available online: https://antibiotic.ecdc.europa.eu/en (accessed on 9 May 2022).
- De Briyne, N.; Iatridou, D.; Vanderhaeghen, W.; Ignate, K. Use of Antimicrobials in Practice (Targeted on Cattle, Pigs, Poultry, Horses). In Antimicrobials in Livestock 1: Regulation, Science, Practice: A European Perspective; Springer: Berlin/Heidelberg, Germany, 2020; pp. 43–79. ISBN 978-3-030-46720-3. [Google Scholar]
- Commission Regulation (EU). No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin; European Commission: Brussels, Belgium, 2009; Volume 72. [Google Scholar]
- WHO|World Health Organization. Available online: https://www.who.int/ (accessed on 9 May 2022).
- NRDC. Available online: https://www.nrdc.org/ (accessed on 9 May 2022).
- Oliver, J.P.; Gooch, C.A.; Lansing, S.; Schueler, J.; Hurst, J.J.; Sassoubre, L.; Crossette, E.M.; Aga, D.S. Invited Review: Fate of Antibiotic Residues, Antibiotic-Resistant Bacteria, and Antibiotic Resistance Genes in US Dairy Manure Management Systems. J. Dairy Sci. 2020, 103, 1051–1071. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.S.; Garner, E.; Pruden, A.; Aga, D.S. Occurrence and Transformation of Veterinary Antibiotics and Antibiotic Resistance Genes in Dairy Manure Treated by Advanced Anaerobic Digestion and Conventional Treatment Methods. Environ. Pollut. 2018, 236, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Youngquist, C.P.; Mitchell, S.M.; Cogger, C.G. Fate of Antibiotics and Antibiotic Resistance during Digestion and Composting: A Review. J. Environ. Qual. 2016, 45, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Iwu, C.D.; Korsten, L.; Okoh, A.I. The Incidence of Antibiotic Resistance within and beyond the Agricultural Ecosystem: A Concern for Public Health. Microbiologyopen 2020, 9, e1035. [Google Scholar] [CrossRef]
Field of Research | Number of Scientific Publications |
---|---|
Antibiotic residues in food | 67 |
Antibiotic residues in feed | 17 |
Antibiotic residues in animal origin food | 12 |
Antibiotic residues in non-animal origin food | 6 |
Antibiotic residues in meat | 54 |
Antibiotic residues in meat products | 4 |
Antibiotic residues in fish | 12 |
Antibiotic residues in milk | 292 |
Antibiotic residues in eggs | 21 |
Antibiotic residues in honey | 45 |
Antibiotic Residue | Concentration | Sample | Country | Literature |
---|---|---|---|---|
Oxytetracycline | Chicken | Tanzania | Kimeria et al. [38] | |
2604.1 ± 703.7 µg/kg | Muscle | |||
3434.4 ± 604.4 µg/kg | Liver | |||
3533.1 ± 803.6 µg/kg | Kidney | |||
Beef | Nigeria | Olufemi and Agboola [39] | ||
51.8 ± 90.53 µg/kg | Muscle | |||
372.7 ± 366.8 µg/kg | Kidney | |||
1197.7 ± 718.9 µg/kg | Liver | |||
Cattle | Ethiopia | Bedada et al. [40] | ||
15.92 to 108.34 µg/kg | Muscle | |||
9.02 to 112.53 µg/kg | Kidney | |||
Enrofloxacin | 0.73 and 2.57 µg/kg | Chicken tissues | Iran | Tavakoli et al. [41] |
Chloramphenicol | 1.34 and 13.9 µg/kg | |||
Penicillin | 0.87 and 1.3 µg/kg | Calves muscles | ||
Oxytetracycline | 3.5 and 4.61 µg/kg | |||
Quinolones | 30.81 ± 0.45 µg/kg | Chicken | Turkey | Er et al. [42] |
6.64 ± 1.11 µg/kg | Beef | |||
Tetracyclines | Chicken | Egypt | Salama et al. [43] | |
124 to 5812 µg/kg | Breast | |||
107–6010 µg/kg | Thigh | |||
103 to 8148 µg/kg | Livers | |||
Chicken | Cameroon | Guetiya-Wadoum et al. [44] | ||
150 ± 30 µg/g | Liver | |||
62.4 ± 15.3 µg/g | Muscle | |||
Beef | Kenya | Muriuki et al. [45] | ||
50 to 845µg/kg | Kidney | |||
50 to 573 µg/kg | Liver | |||
23–560 µg/kg | Muscle | |||
Amoxicillin | 9.8 to 56.16 µg/mL | Milk | Bangladesh | Chowdhury et al. [46] |
10.46 to 48.8 µg/g | Eggs | |||
Sulfonamides | 16.28 µg/kg | Raw milk | China | Zheng et al. [47] |
Quinolones | 23.25 µg/kg | |||
Oxytetracycline | 199.6 ± 46 ng/g | Beef | Zambia | Nchima et al. [48] |
Sulphamethazine | 86.5 ± 8.7 ng/g | |||
Penicillin G | 15.22 ± 0.61 µg/L | Fresh milk | Nigeria | Olatoye et al. [49] |
7.60 ± 0.60 µg/L | Cheese (wara) | |||
8.24 ± 0.50 µg/L | Fermented milk (nono) | |||
Sulphonamides | Chicken | Malaysia | Cheong et al. [50] | |
0.08–0.193 µg/g | Liver | |||
0.006–0.062 µg/g | Breast | |||
Tetracycline | >0.1 µg/mL | Raw milk | India | Kumari Anjana et al. [51] |
Oxytetracycline | ||||
Sulfadimidine | ||||
Sulfamethoxazole |
Analytical Method | Advantages | Disadvantages |
---|---|---|
Screening analysis methods | easy to operate | mainly qualitative methods |
low price | any result obtained by a screening method must be confirmed by a confirmation method | |
(a) Microbial inhibition test (microtest) | specificity–if the test sample has an antibiotic, it will not allow the development of specific colonies, thus opening a halo area around the sample to be analyzed | expensive test that involves specific endowments specific to a food microbiology laboratory as well as specialized personnel |
obtaining of results only after an average of 18 h of incubation | ||
(b) Delvotest | classic test for determining antibiotics in milk | more expensive than conventional tests |
very sensitive to β-lactam antibiotics | detects only substances that react immunologically with the receptor | |
(c) Enzyme-linked immunosorbent assay (ELISA) | sensitivity of this method is sometimes superior to confirmatory methods | fairly high percentage of false positive results due to cross-reactions |
used for the multi-residue determination of antibiotics in different foods | low reproducibility | |
fast, sensitive and easy to implement test | ||
(d) Radioimmunotest (RIA) | high selectivity | high concentrations of other molecules with antibody affinity could inactivate it |
high sensitivity | ||
(e) Chemiluminescence immunoassay (CLIA) | easy, fast, sensitive and selective test | measurement problems due to the compounds used, such as acridinium derivatives and the immediate emission of light |
(f) Colloidal gold immunochromatographic assay (CGIA) | rapid determination of chloramphenicol | high price |
simultaneous determination of quinolones, tetracycline and sulfonamide in milk; 36 different antibiotics in less than 10 min | ||
(g) Fluorescence polarization assay (FPIA) | easy-to-implement screening method that allows the simultaneous detection of various antibiotics in a short period of time | requires a sample preparation step to extract the antibiotic from the sample |
a filtering step to obtain a colorless sample that does not affect the reading of the sample relative to the fluorescence points | ||
(h) Lateral flow immunoassay (LFIA) | ease of use | many false positive or false negative results, |
increased shelf life—up to 2 years at room temperature | low reproducibility | |
Confirmatory analysis methods | higher specificity than screening methods | use of expensive equipment |
allows the simultaneous determination of many classes of antibiotics | super qualified personnel | |
(a) Liquid chromatography coupled with mass spectrometry (LC/MS/MS) | Determination of 7 classes of antibiotics, 30 antibiotics in less than 8 min | high price |
method of analysis must meet the performance criteria of European Commission Decision No. 2002/657 | ||
(b) Gas chromatography coupled with mass spectrometry (GC/MS/MS) | standardized methods or provided by European reference laboratories | applications are much lower because the derivatization stage is cumbersome and affects the long-term life of the equipment, so the applications are restricted to 1–2 classes of antibiotics that can be determined simultaneously |
Active Substance | Animal Species | Target Tissue | MRL |
---|---|---|---|
Amoxicillin | All food-producing species | Muscle Fat Liver Kidney Milk | 50 μg/kg 50 μg/kg 50 μg/kg 50 μg/kg 4 μg/kg |
Ampicilin | All food-producing species | Muscle Fat Liver Kidney Milk | 50 μg/kg 50 μg/kg 50 μg/kg 50 μg/kg 4 μg/kg |
Avilamycin | Porcine, poultry, rabbit | Muscle Fat Liver Kidney | 50 μg/kg 100 μg/kg 300 μg/kg 200 μg/kg |
Bacitracin | Bovine | Milk | 100μg/kg |
Benzylpenicillin | All food-producing species | Muscle Fat Liver Kidney Milk | 50 μg/kg 50 μg/kg 50 μg/kg 50 μg/kg 4 μg/kg |
Cefacetrile | Bovine | Milk | 125 μg/kg |
Cefapirin | Bovine | Muscle Fat Kidney Milk | 50 μg/kg 50 μg/kg 100 μg/kg 60 μg/kg |
Cefazolin | Bovine, ovine, caprine | Milk | 50 μg/kg |
Chlortetracycline | All food- producing species | Muscle Liver Kidney Milk Eggs | 100 μg/kg 300 μg/kg 600 μg/kg 100 μg/kg 200 μg/kg |
Clavulanic acid | Bovine, porcine | Muscle Fat Liver Kidney | 100 μg/kg 100 μg/kg 200 μg/kg 400 μg/kg |
Cloxacillin | All food-producing species | Muscle Fat Liver Kidney Milk | 300 μg/kg 300 μg/kg 300 μg/kg 300 μg/kg 30 μg/kg |
Colistin | All food-producing species | Muscle Fat Liver Kidney Milk Eggs | 150 μg/kg 150 μg/kg 150 μg/kg 200 μg/kg 50 μg/kg 300 μg/kg |
Cloxacillin | All food-producing species | Muscle Fat Liver Kidney Milk | 300 μg/kg 300 μg/kg 300 μg/kg 300 μg/kg 30 μg/kg |
Dicloxacillin | All food-producing species | Muscle Fat Liver Kidney Milk | 300 μg/kg 300 μg/kg 300 μg/kg 300 μg/kg 30 μg/kg |
Doxycycline | Bovine Porcine, poultry | Muscle Liver Kidney Not for use in animals from which milk is produced for human consumption | 100 μg/kg 300 μg/kg 600 μg/kg |
Muscle Skin and fat Liver Kidney Not for use in animals from which eggs is produced for human consumption | 100 μg/kg 300 μg/kg 300 μg/kg 600 μg/kg | ||
Enrofloxacin | Bovine, ovine | Muscle Fat Liver Kidney Milk | 100 μg/kg 100 μg/kg 300 μg/kg 200 μg/kg 100 μg/kg |
Enrofloxacin | Porcine, rabbit | Muscle Fat Liver Kidney | 100 μg/kg 100 μg/kg 200 μg/kg 300 μg/kg |
Poultry | Muscle Skin and fat Liver Kidney | 100 μg/kg 100 μg/kg 200 μg/kg 300 μg/kg | |
All other food-producing species | Muscle Skin and fat Liver Kidney | 100 μg/kg 100 μg/kg 200 μg/kg 200 μg/kg | |
Erythromycin A | All other food-producing species | Muscle Fat Liver Kidney Milk Eggs | 200 μg/kg 200 μg/kg 200 μg/kg 200 μg/kg 40 μg/kg 150 μg/kg |
Gentamicin | Bovine, porcine | Muscle Fat Liver Kidney Milk | 50 μg/kg 50 μg/kg 200 μg/kg 750 μg/kg 100 μg/kg |
Kanamycin A | All food-producing species except fin fish | Muscle Fat Liver Kidney Milk | 100 μg/kg 100 μg/kg 600 μg/kg 2500 μg/kg 150 μg/kg |
Lincomycin | All food-producing species | Muscle Fat Liver Kidney Milk Eggs | 100 μg/kg 50 μg/kg 500 μg/kg 1500 μg/kg 150 μg/kg 50 μg/kg |
Marbofloxacin | Bovine, porcine | Muscle Fat Liver Kidney | 150 μg/kg 150 μg/kg 50 μg/kg 150 μg/kg |
Neomycin B | All food-producing species | Muscle Fat Liver Kidney Milk Eggs | 500 μg/kg 500 μg/kg 500 μg/kg 5000 μg/kg 1500 μg/kg 500 μg/kg |
Oxacillin | All food-producing species | Muscle Fat Liver Kidney Milk | 300 μg/kg 300 μg/kg 300 μg/kg 300 μg/kg 30 μg/kg |
Oxytetracycline | All food-producing species | Muscle Liver Kidney Milk Eggs | 100 μg/kg 300 μg/kg 600 μg/kg 100 μg/kg 200 μg/kg |
Streptomycin | All ruminants, porcine, rabbit | Muscle Fat Liver Kidney | 500 μg/kg 500 μg/kg 500 μg/kg 1000μg/kg |
Sulfonamides | All food-producing species | Muscle Fat Liver Kidney | 100 μg/kg 100 μg/kg 100 μg/kg 100 μg/kg |
Tylosin A | All food-producing species | Muscle Fat Liver Kidney Milk Egg | 100 μg/kg 100 μg/kg 100 μg/kg 100 μg/kg 50 μg/kg 200 μg/kg |
Group of Antimicrobials | Main Effects | Clinical Signs |
---|---|---|
Sulphonamides | Skin reactions | Mild rash to severe toxidermia are some of the skin reactions following human exposure to sulphonamide |
Hypersensitivity mentioned averse reactions reactions | Contact sensitization confirmed for topical medicinal products | |
Blood dyscrasias | Hemolytic anemia, neutropenia, thrombocytopenia and pancytopenia | |
Carcinogenicity (thyroid) | Sulfamethazine dose-dependent increase in follicular cells adenomas of thyroid gland | |
Penicillins | Hypersensitivity reactions | Association with IgE-mediated allergic anaphylaxis 10% of the human population is believed to be allergic |
Anaphylaxis | Human reaction based on penicilloyated (amoxicilloyated) residues in milk and meat. Amoxicillin (AX), with or without clavulanic acid, is the most common elicitor of allergy. Very low levels (6 μg/L) can cause this reaction; therefore, especially for milk low MRLs (4 μg/kg) were established for the group of penicillins by EMA and JECFA (Codex). USA—zero tolerance for residues in milk | |
Influence of starter cultures in food processing | Sufficient evidence that consumption of beef or pork containing residues of penicillins exceeding MRLs causing anaphylactic reactions | |
Tetracyclines | Possible influence of human intestine microbiome | MRLs set based on the microbiological ADI. In the period of EMA assessment, it was concluded that there is no induction of resistant enterobacteria at the dose 2 mg per person per day—on the other hand, in an in vitro study to assess the impact of tetracycline on the human intestinal microbiome, there was screened the variability of the presence of tet genes after exposure of low concentrations 0.15, 1.5, 15 and 150 μg/mL of tetracycline, after 24 h and 40 days and variable to slight increase of the tetracycline gene copies occurred. |
Antibiotics Class | Example (s) | The Mechanism(s) of Action | Resistance Mechanism(s) |
---|---|---|---|
β-lactams | Cephalosporins, Penicillins, Cefotaxime, Monobactams, Carbapenems | Cell wall biosynthesis inhibition | Cleavage by β-lactamases, ESBLs, Carbapenemases, Cefotaximases, and altered Penicillin-binding proteins |
Aminoglycosides | Gentamicin, streptomycin | Protein synthesis inhibition | Ribosomal mutations, enzymatic modification, 16S rRNA methylation, and efflux pumps |
Phenicols | Chloramphenicol | Inhibition of protein synthesis | Mutation of the 50S ribosomal subunit, reduced membrane permeability, and elaboration of chloramphenicol acetyltransferase |
Macrolides | Erythromycin, azithromycin | Alteration of protein synthesis | Ribosomal methylation |
Tetracyclines | Minocycline, tigecycline | Alteration of translation | Mainly efflux |
Rifamycins | Rifampin | Alteration of transcription | Altered β-subunit of RNA polymerase |
Glycopeptides | Vancomycin, teicoplanin | Alteration of cell wall biosynthesis | Altered cell walls, efflux |
Quinolones | Ciprofloxacin | Alteration of DNA synthesis | Efflux, modification, target mutations |
Streptogramins | Synercid, streptogramin B | Alteration of cell wall biosynthesis | Enzymatic cleavage, modification, efflux |
Oxazolidinones | Linezolid | Alteration of formation of 70S ribosomal complex | Mutations in 23S rRNA genes followed by gene conversion |
Lipopeptides | Daptomycin | Depolarization of cell membrane | Modification of cell wall and cell membrane |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghimpețeanu, O.M.; Pogurschi, E.N.; Popa, D.C.; Dragomir, N.; Drăgotoiu, T.; Mihai, O.D.; Petcu, C.D. Antibiotic Use in Livestock and Residues in Food—A Public Health Threat: A Review. Foods 2022, 11, 1430. https://doi.org/10.3390/foods11101430
Ghimpețeanu OM, Pogurschi EN, Popa DC, Dragomir N, Drăgotoiu T, Mihai OD, Petcu CD. Antibiotic Use in Livestock and Residues in Food—A Public Health Threat: A Review. Foods. 2022; 11(10):1430. https://doi.org/10.3390/foods11101430
Chicago/Turabian StyleGhimpețeanu, Oana Mărgărita, Elena Narcisa Pogurschi, Dana Cătălina Popa, Nela Dragomir, Tomița Drăgotoiu, Oana Diana Mihai, and Carmen Daniela Petcu. 2022. "Antibiotic Use in Livestock and Residues in Food—A Public Health Threat: A Review" Foods 11, no. 10: 1430. https://doi.org/10.3390/foods11101430
APA StyleGhimpețeanu, O. M., Pogurschi, E. N., Popa, D. C., Dragomir, N., Drăgotoiu, T., Mihai, O. D., & Petcu, C. D. (2022). Antibiotic Use in Livestock and Residues in Food—A Public Health Threat: A Review. Foods, 11(10), 1430. https://doi.org/10.3390/foods11101430