Effects of γ-Irradiation on Structure and Functional Properties of Pea Fiber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Prepare
2.3. Determination of Structural Properties of Pea Fiber
2.3.1. Determination of Main Components
2.3.2. Determination of Particle Size and Specific Surface Area
2.3.3. Determination of Microstructure
2.3.4. Determination of Fourier Transform Infrared (FTIR) Spectroscopy
2.3.5. Determination of X-ray Diffraction
2.4. Determination of Functional Properties of Pea Fiber
2.4.1. Determination of Oil-Holding Capacity
2.4.2. Determination of Swelling and Water-Holding Capacity
2.4.3. Determination of Adsorption Properties
Nitrite
Cholesterol
Glucose
2.5. Statistical Analysis
3. Results and Discussion
3.1. Analysis of the Effect of Electron Beam γ-Irradiation on the Physicochemical Properties of Pea Fiber
3.1.1. Analysis of Content of Main Components
3.1.2. Analysis of Particle Size and Specific Surface Area
3.1.3. Analysis of SEM
3.1.4. Analysis of Fourier Transform Infrared Spectroscopy
3.1.5. Analysis of X-ray Diffraction
3.2. Analysis of the Effect of γ-Irradiation on the Functional Properties of Pea Fiber
3.2.1. Analysis of Oil-Holding Capacity
3.2.2. Analysis of Swelling and Water-Holding Capacity
3.2.3. Analysis of Adsorption Properties
Nitrite
Cholesterol
Glucose
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. FAOSTAT Data Base; Food and Agriculture Organization of the United Nations—Statistic Division: New York, NY, USA, 2018. [Google Scholar]
- Che, L.; Chen, H.; Yu, B.; He, J.; Zheng, P.; Mao, X.; Yu, J.; Huang, Z.; Chen, D. Long-Term Intake of Pea Fiber Affects Colonic Barrier Function, Bacterial and Transcriptional Profile in Pig Model. Nutr. Cancer 2014, 66, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Queiroz-Monici, K.D.S.; Costa, G.E.; da Silva, N.; Reis, S.M.; de Oliveira, A.C. Bifidogenic effect of dietary fiber and resistant starch from leguminous on the intestinal microbiota of rats. Nutrition 2005, 21, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Lim, T.; Kim, J.; Hwang, K.T. Physicochemical characteristics and sensory acceptability of crackers containing red ginseng marc. J. Food Sci. Technol. 2022, 59, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Kuan, Y.H.; Bhat, R.; Patras, A.; Karim, A.A. Radiation processing of food proteins—A review on the recent developments. Trends Food Sci. Technol. 2013, 30, 105–120. [Google Scholar] [CrossRef]
- Skovgaard, N. High-dose Irradiation: Wholesomeness of Food Irradiated with Doses above 10 kGy.: Report of a Joint FAO/IAEA/WHO Study Group. Technical report series, No. 890, 1999, vi+197 pages (available in English; French and Spanish in preparation). Paper back; WHO Marketing and Dissemination, 1211 Geneva 27, Switzerland; order no. ISBN 92 4 120890 2; Sw.fr. 42.-/US $37.In developing countries: Sw.fr. 29.20. Int. J. Food Microbiol. 2000, 58, 130–131. [Google Scholar] [CrossRef]
- Chmielewski, A.G.; Haji-Saeid, M.; Ahmed, S. Progress in radiation processing of polymers. Nucl. Instrum. Methods Phys. Res. 2005, 236, 44–54. [Google Scholar] [CrossRef]
- Fei, X.; Jia, W.; Wang, J.; Chen, T.; Ling, Y. Study on enzymatic hydrolysis efficiency and physicochemical properties of cellulose and lignocellulose after pretreatment with electron beam irradiation. Int. J. Biol. Macromol. 2020, 145, 733–739. [Google Scholar] [CrossRef]
- Li, T.; Wang, L.; Chen, Z.; Li, C.; Li, X.; Sun, D. Structural changes and enzymatic hydrolysis yield of rice bran fiber under electron beam irradiation. Food Bioprod. Process. 2020, 122, 62–71. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, B.; Chen, H.; Yu, J.; Yan, H.; Luo, Y.; He, J.; Huang, Z.; Zheng, P.; Mao, X.; et al. Comparisons of the micronization, steam explosion, and gamma irradiation treatment on chemical composition, structure, physicochemical properties, and in vitro digestibility of dietary fiber from soybean hulls. Food Chem. 2021, 366, 130618. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, T.; Shu, S.; Zheng, W.; Gao, M. Compositional and structural changes of corn cob pretreated by electron beam irradiation. ACS Sustain. Chem. Eng. 2017, 5, 420–425. [Google Scholar] [CrossRef]
- Li, X.; Wang, B.; Hu, W.; Chen, H.; Sheng, Z.; Yang, B.; Yu, L. Effect of γ-irradiation on structure, physicochemical property and bioactivity of soluble dietary fiber in navel orange peel. Food Chem. X 2022, 14, 100274. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Teng, F.; Huang, Z.; Lv, B.; Lv, X.; Babich, O.; Yu, W.; Li, Y.; Wang, Z.; Jiang, L. Effects of material characteristics on the structural characteristics and flavor substances retention of meat analogs. Food Hydrocoll. 2020, 105, 105752. [Google Scholar] [CrossRef]
- Yang, W.; Kong, X.; Zheng, Y.; Sun, W.; Chen, S.; Liu, D.; Zhang, H.; Fang, H.; Tian, J.; Ye, X. Controlled ultrasound treatments modify the morphology and physical properties of rice starch rather than the fine structure. Ultrason. Sonochem. 2019, 59, 104709. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, H.; Yi, C.; Quan, K.; Lin, B. Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment. Food Chem. 2021, 342, 128352. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, L.; Sun, X.; Qin, W.; Wu, D.; Hu, B.; Raheem, D.; Dong, H.; Vasanthan, T.; Zhang, Q.; et al. High-speed shearing of soybean flour suspension disintegrates the component cell layers and modifies the hydration properties of okara fibers. LWT 2019, 116, 108505. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Q.; Fang, D.; Zhuang, W.; Chen, C.; Jiang, W.; Zheng, Y. Modification of insoluble dietary fibers from bamboo shoot shell: Structural characterization and functional properties. Int. J. Biol. Macromol. 2018, 120, 1461–1467. [Google Scholar] [CrossRef]
- Gan, J.; Huang, Z.; Yu, Q.; Peng, G.; Chen, Y.; Xie, J.; Nie, S.; Xie, M. Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel. Food Hydrocoll. 2020, 101, 105549. [Google Scholar] [CrossRef]
- Benitez, V.; Rebollo-Hernanz, M.; Hernanz, S.; Chantres, S.; Aguilera, Y.; Martin-Cabrejas, M.A. Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization. Food Res. Int. 2019, 122, 105–113. [Google Scholar] [CrossRef]
- Ma, M.; Mu, T.; Sun, H.; Zhang, M.; Chen, J.; Yan, Z. Optimization of extraction efficiency by shear emulsifying assisted enzymatic hydrolysis and functional properties of dietary fiber from deoiled cumin (Cuminum cyminum L.). Food Chem. 2015, 179, 270–277. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Q.; Wang, L.; Zha, S.; Zhang, L.; Zhao, B. Physicochemical and functional properties of dietary fiber from maca (Lepidium meyenii Walp.) liquor residue. Carbohydr. Polym. 2015, 132, 509–512. [Google Scholar] [CrossRef]
- Sun, S.-N.; Li, M.-F.; Yuan, T.-Q.; Xu, F.; Sun, R.-C. Effect of Ionic Liquid Pretreatment on the Structure of Hemicelluloses from Corncob. J. Agric. Food Chem. 2012, 60, 11120–11127. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Shu, S.; Zhang, W.; Wang, E.; Hao, J. Synergetic Degradation of Corn Cob with Inorganic Salt (or Hydrogen Peroxide) and Electron Beam Irradiation. ACS Sustain. Chem. Eng. 2016, 4, 1099–1105. [Google Scholar] [CrossRef]
- Huang, J.-Y.; Liao, J.-S.; Qi, J.-R.; Jiang, W.-X.; Yang, X.-Q. Structural and physicochemical properties of pectin-rich dietary fiber prepared from citrus peel. Food Hydrocoll. 2020, 110, 106140. [Google Scholar] [CrossRef]
- Al-Sheraji, S.H.; Ismail, A.; Manap, M.Y.; Mustafa, S.; Yusof, R.M.; Hassan, F.A. Purification, characterization and antioxidant activity of polysaccharides extracted from the fibrous pulp of Mangifera pajang fruits. LWT 2012, 48, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.T. Radiation chemistry of food components. In Food Irradiation Research and Technology, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 75–97. [Google Scholar]
- Zhang, Y.; Qi, J.; Zeng, W.; Huang, Y.; Yang, X. Properties of dietary fiber from citrus obtained through alkaline hydrogen peroxide treatment and homogenization treatment. Food Chem. 2020, 311, 125873. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yin, H.; Zheng, Y.; Wang, D.; Liu, Z.; Deng, Y.; Zhao, Y. Structure, physicochemical and bioactive properties of dietary fibers from Akebia trifoliata (Thunb.) Koidz. seeds using ultrasonication/shear emulsifying/microwave-assisted enzymatic extraction. Food Res. Int. 2020, 136, 109348. [Google Scholar] [CrossRef]
- Gu, M.; Fang, H.; Gao, Y.; Su, T.; Niu, Y.; Yu, L. Characterization of enzymatic modified soluble dietary fiber from tomato peels with high release of lycopene. Food Hydrocoll. 2020, 99, 105321. [Google Scholar] [CrossRef]
- Dong, W.; Wang, D.; Hu, R.; Long, Y.; Lv, L. Chemical composition, structural and functional properties of soluble dietary fiber obtained from coffee peel using different extraction methods. Food Res. Int. 2020, 136, 109497. [Google Scholar] [CrossRef]
- Uruakpa, F.; Arntfield, S. Surface hydrophobicity of commercial canola proteins mixed with κ-carrageenan or guar gum. Food Chem. 2006, 95, 255–263. [Google Scholar] [CrossRef]
- Chylińska, M.; Szymańska-Chargot, M.; Kruk, B.; Zdunek, A. Study on dietary fibre by Fourier transform-infrared spectroscopy and chemometric methods. Food Chem. 2016, 196, 114–122. [Google Scholar] [CrossRef]
- Yan, X.; Ye, R.; Chen, Y. Blasting extrusion processing: The increase of soluble dietary fiber content and extraction of soluble-fiber polysaccharides from wheat bran. Food Chem. 2015, 180, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Teng, F.; McClements, D.; Zhang, S.; Li, Y.; Wang, Z. Effect of cavitation jet processing on the physicochemical properties and structural characteristics of okara dietary fiber. Food Res. Int. 2020, 134, 109251. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Niu, M.; Zhang, B.; Zhao, S.; Xiong, S. Structural characteristics and functional properties of rice bran dietary fiber modified by enzymatic and enzyme-micronization treatments. LWT 2017, 75, 344–351. [Google Scholar] [CrossRef]
- Chen, B.; Cai, Y.; Liu, T.; Huang, L.; Deng, X.; Zhao, Q.; Zhao, M. Improvements in physicochemical and emulsifying properties of insoluble soybean fiber by physical-chemical treatments. Food Hydrocoll. 2019, 93, 167–175. [Google Scholar] [CrossRef]
- Jiang, Y.; Yu, L.; Hu, Y.; Zhu, Z.; Zhuang, C.; Zhao, Y.; Zhong, Y. Electrostatic spraying of chitosan coating with different deacetylation degree for strawberry preservation. Int. J. Biol. Macromol. 2019, 139, 1232–1238. [Google Scholar] [CrossRef]
- Karthika, K.; Arun, A.; Rekha, P. Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation. Carbohydr. Polym. 2012, 90, 1038–1045. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Alam, S.A.; Järvinen, J.; Kirjoranta, S.; Jouppila, K.; Poutanen, K.; Sozer, N. Influence of Particle Size Reduction on Structural and Mechanical Properties of Extruded Rye Bran. Food Bioprocess Technol. 2013, 7, 2121–2133. [Google Scholar] [CrossRef]
- Xia, Q.; Gu, M.; Liu, J.; Niu, Y.; Yu, L. Novel composite gels of gelatin and soluble dietary fiber from black bean coats with interpenetrating polymer networks. Food Hydrocoll. 2018, 83, 72–78. [Google Scholar] [CrossRef]
- Fan, X.; Chang, H.; Lin, Y.; Zhao, X.; Zhang, A.; Li, S.; Feng, Z.; Chen, X. Effects of ultrasound-assisted enzyme hy-drolysis on the microstructure and physicochemical properties of okara fibers. Ultrason. Sonochem. 2020, 69, 105247. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N.; Ezekiel, R.; Kaur, A. Effects of gamma-irradiation on the morphological, structural, thermal and rheological properties of potato starches —ScienceDirect. Carbohydr. Polym. 2011, 83, 1521–1528. [Google Scholar] [CrossRef]
- Quist, A.; Inoue-Choi, M.; Weyer, P.J.; Anderson, K.E.; Cantor, K.P.; Krasner, S.; Freeman, L.; Ward, M.H.; Jones, R.R. Ingested nitrate and nitrite, disinfection by-products, and pancreatic cancer risk in postmenopausal women. Int. J. Cancer 2018, 142, 251–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Xu, B.; Shi, P.; Tian, H.; Li, Y.; Wang, X.; Wu, S.; Liang, P. The influences of acetylation, hydroxypropylation, enzymatic hydrolysis and crosslinking on improved adsorption capacities and in vitro hypoglycemic properties of millet bran dietary fibre. Food Chem. 2022, 368, 130883. [Google Scholar] [CrossRef] [PubMed]
- Lyu, B.; Wang, H.; Swallah, M.S.; Fu, H.; Shen, Y.; Guo, Z.; Feng, Z.; Jiang, L. Structure, properties and potential bioactivities of high-purity insoluble fibre from soybean dregs (Okara). Food Chem. 2021, 364, 130402. [Google Scholar] [CrossRef]
- Chu, J.; Zhao, H.; Lu, Z.; Lu, F.; Bie, X.; Zhang, C. Improved physicochemical and functional properties of dietary fiber from millet bran fermented by Bacillus natto. Food Chem. 2019, 294, 79–86. [Google Scholar] [CrossRef]
- Grunberger, G.; Jen, K.L.C.; Artiss, J.D. The benefits of early intervention in obese diabetic patients with FBCx™—A new dietary fibre. Diabetes/Metab. Res. Rev. 2007, 23, 56–62. [Google Scholar] [CrossRef]
- Nsor-Atindana, J.; Zhong, F.; Mothibe, K.J. In vitro hypoglycemic and cholesterol lowering effects of dietary fiber pre-pared from cocoa (Theobroma cacao L.) shells. Food Funct. 2012, 3, 1044–1050. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, R.; Yin, L.; Zhang, N. Novel blasting extrusion processing improved the physicochemical properties of soluble dietary fiber from soybean residue and in vivo evaluation. J. Food Eng. 2014, 120, 1–8. [Google Scholar] [CrossRef]
- Zhu, Y.; Chu, J.; Lu, Z.; Lv, F.; Bie, X.; Zhang, C.; Zhao, H. Physicochemical and functional properties of dietary fiber from foxtail millet (Setaria italic) bran. J. Cereal Sci. 2018, 79, 456–461. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Li, C.Y.; Liu, Y.L. Effect of Mildew and γ-Irradiation on the Physicochemical Property and Structure of Soybean Proteins. Mod. Food Sci. Technol. 2015, 31, 191–196, 282. [Google Scholar]
- Saikia, S.; Mahanta, C.L. In vitro physicochemical, phytochemical and functional properties of fiber rich fractions de-rived from by-products of six fruits. J. Food Sci. Technol. 2015, 53, 1496–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatment Dose (kGy) | Cellulose (%) | Hemicellulose (%) | Lignin (%) |
---|---|---|---|
0 | 37.44 ± 0.18 a | 15.10 ± 0.04 a | 14.27 ± 0.05 a |
0.5 | 37.09 ± 0.23 b | 13.31 ± 0.05 b | 13.81 ± 0.06 b |
1 | 36.23 ± 0.15 c | 12.97 ± 0.06 c | 12.52 ± 0.07 c |
2 | 36.10 ± 0.23 d | 12.54 ± 0.07 d | 12.25 ± 0.05 d |
3 | 36.25 ± 0.18 c | 12.10 ± 0.06 e | 12.11 ± 0.06 e |
5 | 36.31 ± 0.23 d | 11.50 ± 0.06 f | 12.02 ± 0.06 f |
Treatment Dose (kGy) | D10 (μm) | D50 (μm) | D90 (μm) | Volumetric Mean Particle Size (µm) | Specific Surface Area (m2/kg) |
---|---|---|---|---|---|
0 | 46.15 ± 2.03 a | 75.57 ± 2.33 a | 165.47 ± 3.01 a | 135.62 ± 3.14 a | 78.68 ± 1.42 d |
0.5 | 42.35 ± 2.43 a | 73.67 ± 2.06 ab | 163.98 ± 3.14 a | 133.82 ± 2.61 a | 85.36 ± 1.77 c |
1 | 39.98 ± 1.50 b | 70.79 ± 1.99 c | 155.29 ± 2.67 b | 129.38 ± 2.81 ab | 94.78 ± 1.91 ab |
2 | 36.16 ± 1.29 c | 65.47 ± 2.30 d | 153.09 ± 2.93 bc | 118.19 ± 2.01 c | 102.38 ± 2.54 a |
3 | 37.26 ± 1.43 c | 67.19 ± 2.19 cd | 154.48 ± 3.01 b | 124.29 ± 2.14 b | 100.94 ± 2.63 a |
5 | 41.23 ± 1.89 b | 70.65 ± 2.31 c | 154.98 ± 2.60 b | 127.21 ± 1.54 ab | 95.79 ± 1.95 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, T.; Liu, C.; Hu, Z.; Wang, Z.; Guo, Z. Effects of γ-Irradiation on Structure and Functional Properties of Pea Fiber. Foods 2022, 11, 1433. https://doi.org/10.3390/foods11101433
Cheng T, Liu C, Hu Z, Wang Z, Guo Z. Effects of γ-Irradiation on Structure and Functional Properties of Pea Fiber. Foods. 2022; 11(10):1433. https://doi.org/10.3390/foods11101433
Chicago/Turabian StyleCheng, Tianfu, Caihua Liu, Zhaodong Hu, Zhongjiang Wang, and Zengwang Guo. 2022. "Effects of γ-Irradiation on Structure and Functional Properties of Pea Fiber" Foods 11, no. 10: 1433. https://doi.org/10.3390/foods11101433
APA StyleCheng, T., Liu, C., Hu, Z., Wang, Z., & Guo, Z. (2022). Effects of γ-Irradiation on Structure and Functional Properties of Pea Fiber. Foods, 11(10), 1433. https://doi.org/10.3390/foods11101433