Development, Validation and Application of an Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry (UHPLC-MS/MS) Method after QuEChERS Cleanup for Selected Dichloroanilines and Phthalates in Rice Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Samples
2.3. Preparation of Standard Solutions, Calibration Standards and Quality Control Samples (QCs)
2.4. UHPLC-MS/MS Analysis
2.5. Sample Preparation
2.6. Method Validation
2.6.1. Linearity, Limit of Detection, and Limit of Quantification Values
2.6.2. Precision and Accuracy
2.6.3. Extraction Efficiency
2.6.4. Matrix Effect
3. Results
3.1. Optimization of QuEChERS Cleanup
3.2. Method Validation
3.2.1. Linearity and Limit of Detection (LOD) and Limit of Quantification (LOQ)
3.2.2. Precision and Accuracy
3.2.3. Quantification and Matrix Effect
3.3. Analysis of Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer
References
- Liu, L.; Waters, D.L.E.; Rose, T.J.; Bao, J.; King, G.J. Phospholipids in Rice: Significance in Grain Quality and Health Benefits: A Review. Food Chem. 2013, 139, 1133–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jardim, A.N.O.; Caldas, E.D. Brazilian Monitoring Programs for Pesticide Residues in Food—Results from 2001 to 2010. Food Control 2012, 25, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Tsochatzis, E.D.; Tzimou-Tsitouridou, R.; Menkissoglu-Spiroudi, U.; Karpouzas, D.G.; Katsantonis, D. Laboratory and Field Dissipation of Penoxsulam, Tricyclazole and Profoxydim in Rice Paddy Systems. Chemosphere 2013, 91, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Tsochatzis, E.D.; Menkissoglu-Spiroudi, U.; Karpouzas, D.G.; Tzimou-Tsitouridou, R. A Multi-Residue Method for Pesticide Residue Analysis in Rice Grains Using Matrix Solid-Phase Dispersion Extraction and High-Performance Liquid Chromatography–Diode Array Detection. Anal. Bioanal. Chem. 2010, 397, 2181–2190. [Google Scholar] [CrossRef]
- Tsochatzis, E.D.; Tzimou-Tsitouridou, R.; Menkissoglu-Spiroudi, U.; Karpouzas, D.G.; Papageorgiou, M. Development and Validation of an HPLC-DAD Method for the Simultaneous Determination of Most Common Rice Pesticides in Paddy Water Systems. Int. J. Environ. Anal. Chem. 2012, 92, 548–560. [Google Scholar] [CrossRef]
- Lindh, C.H.; Littorin, M.; Amilon, Å.; Jönsson, B.A.G. Analysis of 3,5-Dichloroaniline as a Biomarker of Vinclozolin and Iprodione in Human Urine Using Liquid Chromatography/Triple Quadrupole Mass Spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 536–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Sálamo, J.; Socas-Rodríguez, B.; Hernández-Borges, J. Analytical Methods for the Determination of Phthalates in Food. Curr. Opin. Food Sci. 2018, 22, 122–136. [Google Scholar] [CrossRef]
- Simoneau, C.; Hannaert, P. Stability Testing of Selected Plastics Additives for Food Contact in EU Aqueous, Fatty and Alternative Simulants. Food Addit. Contam. 1999, 16, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Tsochatzis, E.D.; Tzimou-Tsitouridou, R.; Gika, H.G. Analytical Methodologies for the Assessment of Phthalate Exposure in Humans. Crit. Rev. Anal. Chem. 2017, 47, 279–297. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, A.; Zuccarini, M.; Cichelli, A.; Khan, H.; Reale, M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. Int. J. Env. Res. Public Health 2020, 17, 65655. [Google Scholar] [CrossRef] [PubMed]
- European Commission; Joint Research Centre; Institute for Reference Materials and Measurements; Wenzl, T. Methods for the Determination of Phthalates in Food: Outcome of a Survey Conducted among European Food Control Laboratories; Publications Office: Luxembourg, 2009. [Google Scholar]
- Kamrin, M.A. Phthalate Risks, Phthalate Regulation, and Public Health: A Review. J. Toxicol. Environ. Health Part B 2009, 12, 157–174. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Samandar, E.; Preaujr, J.; Reidy, J.; Needham, L.; Calafat, A. Quantification of 22 Phthalate Metabolites in Human Urine. J. Chromatogr. B 2007, 860, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Kannan, K. Challenges Encountered in the Analysis of Phthalate Esters in Foodstuffs and Other Biological Matrices. Anal. Bioanal. Chem. 2012, 404, 2539–2554. [Google Scholar] [CrossRef] [PubMed]
- Diamantidou, D.; Begou, O.; Theodoridis, G.; Gika, H.; Tsochatzis, E.; Kalogiannis, S.; Kataiftsi, N.; Soufleros, E.; Zotou, A. Development and Validation of an Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Phthalate Esters in Greek Grape Marc Spirits. J. Chromatogr. A 2019, 1603, 165–178. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Phthalates: Action Plan 2012; EPA: Washington, DC, USA, 2012. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/phthalates_actionplan_revised_2012-03-14.pdf (accessed on 1 October 2021).
- Net, S.; Semper, R. Occurrence, Fate, Behavior and Ecotoxicological State of Phthalates in Different Environmental Matrices. Environ. Sci. Technol. 2015, 17, 4019–4035. [Google Scholar] [CrossRef]
- Gallart-Ayala, H. Recent Advances in LC-MS Analysis of Food-Packaging Contaminants. Trends Anal. Chem. 2013, 42, 26. [Google Scholar] [CrossRef] [Green Version]
- González-Sálamo, J.; Hernández-Borges, J.; Afonso, M.D.M.; Rodríguez-Delgado, M.Á. Determination of Phthalates in Beverages Using Multiwalled Carbon Nanotubes Dispersive Solid-Phase Extraction before HPLC-MS. J. Sep. Sci. 2018, 41, 2613–2622. [Google Scholar] [CrossRef]
- EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP); Silano, V.; Barat Baviera, J.M.; Bolognesi, C.; Chesson, A.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; Lampi, E.; et al. Update of the Risk Assessment of Di-butylphthalate (DBP), Butyl-benzyl-phthalate (BBP), Bis(2-ethylhexyl)Phthalate (DEHP), Di-isononylphthalate (DINP) and Di-isodecylphthalate (DIDP) for Use in Food Contact Materials. EFSA J. 2019, 17, 5838. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.-L.; Chen, F.; Zhang, M.-Y.; Wang, T.-Q.; Xu, Z.-C.; Zhang, W.; Chu, Q.-C.; Ye, J.-N. Sensitive Determination of Chloroanilines in Water Samples by Hollow Fiber-Based Liquid-Phase Microextraction Prior to Capillary Electrophoresis with Amperometric Detection: CE and CEC. Electrophoresis 2013, 34, 1241–1248. [Google Scholar] [CrossRef]
- Sun, H.; Jiang, F.; Chen, L.; Zheng, J.; Wu, Y.; Liu, M. Determination of Three Phthalate Esters in Environmental Samples by Coal Cinder Extraction and Cyclodextrin Modified Micellar Electrokinetic Chromatography. J. Chromatogr. Sci. 2014, 52, 547–552. [Google Scholar] [CrossRef] [Green Version]
- Tsochatzis, E.; Karayannakidis, P.; Kalogiannis, S. Determination of Selected Dichloroanilines and Phthalates in Lyophilised Mussels Samples with Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry after QuEChERS Clean-Up. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Tsochatzis, E.D.; Alberto Lopes, J.; Hoekstra, E.; Emons, H. Development and Validation of a Multi-Analyte GC-MS Method for the Determination of 84 Substances from Plastic Food Contact Materials. Anal. Bioanal. Chem. 2020, 412, 5419–5434. [Google Scholar] [CrossRef] [PubMed]
- Tsochatzis, E.D.; Lopes, J.A.; Gika, H.; Dalsgaard, T.K.; Theodoridis, G. A Fast SALLE GC–MS/MS Multi-Analyte Method for the Determination of 75 Food Packaging Substances in Food Simulants. Food Chem. 2021, 361, 129998. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, S.; Wei, D.; Wang, M.; Zhang, H.; Gai, P.; Duan, J. Development and Application of a Method for Analysis of Phthalates in Ham Sausages by Solid-Phase Extraction and Gas Chromatography–Mass Spectrometry. Meat Sci. 2010, 84, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Farooq, S.; Wu, H.; Nie, J.; Ahmad, S.; Muhammad, I.; Zeeshan, M.; Khan, R.; Asim, M. Application, Advancement and Green Aspects of Magnetic Molecularly Imprinted Polymers in Pesticide Residue Detection. Sci. Total Environ. 2022, 804, 150293. [Google Scholar] [CrossRef]
- Farooq, S.; Nie, J.; Cheng, Y.; Bacha, S.A.S.; Chang, W. Selective Extraction of Fungicide Carbendazim in Fruits Using Β-cyclodextrin Based Molecularly Imprinted Polymers. J. Sep. Sci. 2020, 43, 1145–1153. [Google Scholar] [CrossRef]
- Li, Y.; Nie, J.; Chang, W.; Xu, G.; Farooq, S.; Liu, M.; Zhang, J. Enantioselective Behavior Analysis of Chiral Fungicide Tetraconazole in Apples with UPLC-MS/MS. Food Control 2020, 116, 107305. [Google Scholar] [CrossRef]
- Kataoka, H.; Ise, M.; Narimatsu, S. Automated On-Line in-Tube Solid-Phase Microextraction Coupled with High Performance Liquid Chromatography for the Analysis of Bisphenol A, Alkylphenols, and Phthalate Esters in Foods Contacted with Plastics. J. Sep. Sci. 2002, 25, 77–85. [Google Scholar] [CrossRef]
- Sannino, A. Development of a Gas Chromatographic/Mass Spectrometric Method for Determination of Phthalates in Oily Foods. J. AOAC Int. 2010, 93, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Perestrelo, R.; Silva, C.L.; Algarra, M.; Câmara, J.S. Evaluation of the Occurrence of Phthalates in Plastic Materials Used in Food Packaging. Appl. Sci. 2021, 11, 2130. [Google Scholar] [CrossRef]
- Guo, D.; Yi, X.; Qu, L. Determination of linuron and its metabolite 3,4-dichloroaniline residues in meat and meat products using liquid chromatography-tandem mass spectrometry. Se Pu 2011, 29, 967–973. [Google Scholar] [PubMed]
- Meghesan-Breja, A.; Cimpoiu, C.; Hosu, A. Identification and Quantification of Some Pesticide Metabolites from Vegetables by GC-TOF-MS and LC-MS-QQQ. Studia Univ. Babes-Bolyai Chem. 2017, 62, 19–34. [Google Scholar] [CrossRef]
- Cordeiro, F.; Karasek, L.; Cizek-Stroh, A.; Charoud-Got, J.; Robouch, P.; Hoekstra, E. Determination of Phthalates in Food Simulant a Solution; European Commission, Joint Research Centre: Brussels, Belgium, 2019; Available online: https://joint-research-centre.ec.europa.eu/eurl-food-contact-materials/eurl-fcm-inter-laboratory-comparisons_lv (accessed on 1 October 2021).
- European Commission Commission Regulation (EU) No 10/2011 on Plastic Materials and Articles Intended to Come into Contact with Food. 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R0010&from=EN (accessed on 1 October 2021).
- European Commission, Directorate General for Health and Food Safety Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. SANTE/11813/2017. 2017. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11813_2017-fin.pdf (accessed on 1 October 2021).
- Food and Drug Administration (FDA). Guidance for Industry—Q2B Validation of Analytical Procedures: Methodology 1997. Available online: https://www.gmp-compliance.org/files/guidemgr/1-12-5.pdf (accessed on 15 March 2021).
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC−MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
- Tsochatzis, E.D.; Alberto Lopes, J.; Kappenstein, O.; Tietz, T.; Hoekstra, E.J. Quantification of PET Cyclic and Linear Oligomers in Teabags by a Validated LC-MS Method—In Silico Toxicity Assessment and Consumer’s Exposure. Food Chem. 2020, 317, 126427. [Google Scholar] [CrossRef] [PubMed]
- Kruve, A.; Leito, I.; Herodes, K. Combating Matrix Effects in LC/ESI/MS: The Extrapolative Dilution Approach. Anal. Chim. Acta 2009, 651, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Tsochatzis, E.D.; Mieth, A.; Alberto Lopes, J.; Simoneau, C. A Salting-out Liquid-Liquid Extraction (SALLE) for the Analysis of Caprolactam and 2,4-Di-Tert Butyl Phenol in Water and Food Simulants. Study of the Salinity Effect to Specific Migration from Food Contact Materials. J. Chromatogr. B 2020, 1156, 122301. [Google Scholar] [CrossRef]
- Yadav, S.; Rai, S.; Srivastava, A.K.; Panchal, S.; Patel, D.K.; Sharma, V.P.; Jain, S.; Srivastava, L.P. Determination of Pesticide and Phthalate Residues in Tea by QuEChERS Method and Their Fate in Processing. Environ. Sci. Pollut. Res. 2017, 24, 3074–3083. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.-L.; Zhao, W.; Dabeka, R. Di-(2-Ethylhexyl) Adipate and 20 Phthalates in Composite Food Samples from the 2013 Canadian Total Diet Study. Food Addit. Contam. Part A 2015, 32, 1893–1901. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency (US EPA) EPA, Method 8061A-Phthalate Esters by Gas Chromatography with Electron Capture Detection (GC/ECD). Available online: https://www.epa.gov/sites/default/files/2015-12/documents/8061a.pdf (accessed on 25 February 2022).
- Milan, M.; Vidotto, F.; Piano, S.; Negre, M.; Ferrero, A. Dissipation of Propanil and 3,4 Dichloroaniline in Three Different Rice Management Systems. J. Environ. Qual. 2012, 41, 1487–1496. [Google Scholar] [CrossRef] [Green Version]
- Škrbić, B.D.; Ji, Y.; Živančev, J.R.; Jovanović, G.G.; Jie, Z. Mycotoxins, Trace Elements, and Phthalates in Marketed Rice of Different Origin and Exposure Assessment. Food Addit. Contam. Part B 2017, 10, 256–267. [Google Scholar] [CrossRef] [PubMed]
Analytes | Molecular Formula | Monoisotopic Mass (Da) | Precursor Ion (m/z) | Qualifier Ion (m/z) | Collision Energy (V) | Tube Lens (V) | Ret. Time (Average Min ± Sd) |
---|---|---|---|---|---|---|---|
3,4-DCA | C6H5Cl2N | 160.979 | 162.046 | 99.781 | 38 | 77 | 5.64 ± 0.09 |
3,5-DCA | C6H5Cl2N | 160.979 | 162.102 | 128.106 | 34 | 99 | 8.83 ± 0.15 |
Dimethyl phthalate (DMP) | C10H10O4 | 194.058 | 195.113 | 163.200 | 19 | 55 | 5.57 ± 0.13 |
Di-n-Butyl phthalate (DnBP) | C16H22O4 | 278.152 | 279.204 | 149.100 | 17 | 39 | 8.73 ± 0.09 |
Benzyl butyl Phthalate (BBP) | C19H20O4 | 312.136 | 313.189 | 91.220 | 23 | 42 | 8.65 ± 0.09 |
Di-n-octyl phthalate (DnOP) | C24H38O4 | 390.277 | 391.398 | 261.220 | 11 | 39 | 10.30 ± 0.10 |
Di-(2-ethyl hexyl) phthalate (DEHP) | C24H38O4 | 390.277 | 391.406 | 279.340 | 16 | 53 | 12.74 ± 0.09 |
Mono-butyl phthalate (mBP) | C12H14O4 | 222.089 | 223.150 | 149.150 | 19 | 55 | 13.44 ± 0.12 |
Target Analyte | LOD (mg/kg) | LOQ (mg/kg) | Upper Linear Range (mg/kg) | R2 | Matrix Effects (%) * |
---|---|---|---|---|---|
DMP | 0.017 | 0.045 | 2.0 | 0.9992 | 0.1 |
DnBP | 0.008 | 0.020 | 2.0 | 0.9992 | 0.2 |
BBP | 0.007 | 0.020 | 2.0 | 0.9990 | 0.3 |
DnOP | 0.014 | 0.036 | 2.0 | 0.9990 | 0.2 |
DEHP | 0.012 | 0.035 | 2.0 | 0.9991 | 0.4 |
mBP | 0.008 | 0.020 | 2.0 | 0.9994 | 1.3 |
3,4-DCA | 0.12 | 0.35 | 15 | 0.9998 | 1.1 |
3,5-DCA | 0.12 | 0.35 | 15 | 0.9998 | 0.5 |
Target Analyte | Added (mg/kg) | Intra-Day (n = 6) | Inter-Day (n = 3 × 3) | ||||
---|---|---|---|---|---|---|---|
Calculated Mean Conc. * mg/kg | Recovery (%) | RSD (%) | Calculated Mean Conc. * mg/kg | Recovery (%) | RSD (%) | ||
DMP | 0.05 | 0.048 | 97.0 | 5.0 | 0.044 | 90.9 | 1.9 |
0.5 | 0.534 | 107 | 4.9 | 0.491 | 92.0 | 7.2 | |
2 | 1.840 | 92.1 | 11.9 | 1.789 | 97.1 | 1.9 | |
DnBP | 0.05 | 0.049 | 97.2 | 6.9 | 0.047 | 93.6 | 8.9 |
0.5 | 0.53 | 106 | 5.1 | 0.51 | 102 | 5.9 | |
2 | 2.010 | 101 | 5.0 | 1.941 | 96.4 | 1.2 | |
BBP | 0.05 | 0.058 | 115 | 14.7 | 0.052 | 90.3 | 2.0 |
0.5 | 0.580 | 115 | 5.9 | 0.543 | 94.1 | 11.4 | |
2 | 2.173 | 109 | 6.9 | 2.125 | 97.8 | 2.4 | |
DnOP | 0.05 | 0.046 | 92.8 | 12.3 | 0.043 | 92.5 | 8.0 |
0.5 | 0.590 | 117 | 8.9 | 0.535 | 90.8 | 12.9 | |
2 | 1.950 | 97.3 | 2.2 | 1.766 | 90.8 | 3.5 | |
DEHP | 0.05 | 0.052 | 104 | 14.9 | 0.047 | 90.2 | 10.5 |
0.5 | 0.542 | 108 | 5.6 | 0.493 | 91.0 | 12.8 | |
2 | 2.050 | 102 | 6.6 | 1.842 | 90.0 | 4.6 | |
mBP | 0.05 | 0.056 | 113 | 9.5 | 0.051 | 90.7 | 8.4 |
0.5 | 0.558 | 112 | 5.9 | 0.504 | 90.3 | 6.6 | |
2 | 2.030 | 101 | 1.3 | 1.896 | 93.5 | 3.6 | |
3,4-DCA | 0.5 | 0.460 | 91.9 | 4.0 | 0.426 | 92.7 | 7.3 |
2 | 1.850 | 92.7 | 3.0 | 1.680 | 90.6 | 4.2 | |
15 | 13.55 | 90.3 | 3.1 | 12.47 | 92.1 | 7.4 | |
3,5-DCA | 0.5 | 0.483 | 96.6 | 10.8 | 0.455 | 94.2 | 11.8 |
2 | 1.955 | 97.8 | 2.0 | 1.838 | 94.0 | 5.4 | |
15 | 13.57 | 90.5 | 7.8 | 12.99 | 95.7 | 9.7 |
Target Analytes | Mass Fraction (mg/kg) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | |
DnBP | nd | 0.15 | nd | nd | 0.11 | nd | 0.07 | nd | nd | nd |
BBP | 0.11 | nd | 0.25 | nd | nd | 0.1 | nd | 0.05 | 0.18 | 0.12 |
DnOP | 0.07 | nd | nd | nd | 0.08 | nd | nd | 0.1 | nd | nd |
DEHP | 0.14 | 0.28 | nd | nd | 0.15 | 0.25 | 0.09 | nd | 0.14 | nd |
mBP | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsochatzis, E.; Begou, O.; Kalogiannis, S.; Gika, H.; Oz, E.; Oz, F.; Theodoridis, G. Development, Validation and Application of an Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry (UHPLC-MS/MS) Method after QuEChERS Cleanup for Selected Dichloroanilines and Phthalates in Rice Samples. Foods 2022, 11, 1482. https://doi.org/10.3390/foods11101482
Tsochatzis E, Begou O, Kalogiannis S, Gika H, Oz E, Oz F, Theodoridis G. Development, Validation and Application of an Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry (UHPLC-MS/MS) Method after QuEChERS Cleanup for Selected Dichloroanilines and Phthalates in Rice Samples. Foods. 2022; 11(10):1482. https://doi.org/10.3390/foods11101482
Chicago/Turabian StyleTsochatzis, Emmanouil, Olga Begou, Stavros Kalogiannis, Helen Gika, Emel Oz, Fatih Oz, and Georgios Theodoridis. 2022. "Development, Validation and Application of an Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry (UHPLC-MS/MS) Method after QuEChERS Cleanup for Selected Dichloroanilines and Phthalates in Rice Samples" Foods 11, no. 10: 1482. https://doi.org/10.3390/foods11101482
APA StyleTsochatzis, E., Begou, O., Kalogiannis, S., Gika, H., Oz, E., Oz, F., & Theodoridis, G. (2022). Development, Validation and Application of an Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry (UHPLC-MS/MS) Method after QuEChERS Cleanup for Selected Dichloroanilines and Phthalates in Rice Samples. Foods, 11(10), 1482. https://doi.org/10.3390/foods11101482