Studies on Flavor Compounds and Free Amino Acid Dynamic Characteristics of Fermented Pork Loin Ham with a Complex Starter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Activation and Preparation of Starter
2.2. Technological Process of Fermented Pork Loins
2.3. E-tongue Measurement
2.4. GC-MS Determination
2.5. FAA Determination
2.6. E-nose Determination
2.7. Statistical Analysis
3. Results and Discussion
3.1. E-Nose Analysis
3.2. E-Tongue’s Analysis
3.3. FAA Analysis
3.4. Analysis of Volatile Compounds Obtained by GC-MS
3.5. MFA Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramirez, R.; Cava, R. Volatile profiles of dry-cured meat products from three different Iberian x Duroc genotypes. J. Agric. Food Chem. 2007, 55, 1923–1931. [Google Scholar] [CrossRef] [PubMed]
- Zhong, A.; Chen, W.; Duan, Y.; Li, K.; Tang, X.; Tian, X.; Wu, Z.; Li, Z.; Wang, Y.; Wang, C. The potential correlation between microbial communities and flavors in traditional fermented sour meat. LWT Food Sci. Technol. 2021, 149, 111873. [Google Scholar] [CrossRef]
- Wang, Y.B.; Li, F.; Chen, J.; Sun, Z.H.; Wang, F.F.; Wang, C.; Fu, L.L. High-throughput sequencing-based characterization of the predominant microbial community associated with characteristic flavor formation in Jinhua Ham. Food Microbiol. 2021, 94, 103643. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Y.; Guo, Y.; Yang, F.H.; Zhou, C.Y.; Tang, C.B.; Zhou, G.H. Combined application of high-throughput sequencing and UHPLC-Q/TOF-MS-based metabolomics in the evaluation of microorganisms and metabolites of dry-cured ham of different origins. Int. J. Food Microbiol. 2021, 359, 109422. [Google Scholar] [CrossRef]
- Semedo-Lemsaddek, T.; Carvalho, L.; Tempera, C.; Fernandes, M.H.; Fernandes, M.J.; Elias, M.; Barreto, A.S.; Fraqueza, M.J. Characterization and Technological Features of Autochthonous Coagulase-Negative Staphylococci as Potential Starters for Portuguese Dry Fermented Sausages. J. Food Sci. 2016, 81, M1197–M1202. [Google Scholar] [CrossRef]
- de Almeida, M.A.; Saldana, E.; Pinto, J.S.d.; Palacios, J.; Contreras-Castillo, C.J.; Sentandreu, M.A.; Fadda, S.G. A peptidomic approach of meat protein degradation in a low-sodium fermented sausage model using autochthonous starter cultures. Food Res. Int. 2018, 109, 368–379. [Google Scholar] [CrossRef]
- Laranjo, M.; Potes, M.E.; Elias, M. Role of Starter Cultures on the Safety of Fermented Meat Products. Front. Microbiol. 2019, 10, 853. [Google Scholar] [CrossRef] [Green Version]
- Seong, P.N.; Park, K.M.; Kang, G.H.; Cho, S.H.; Park, B.Y.; Van, B.H. The Impact of Ripening Time on Technological Quality Traits, Chemical Change and Sensory Characteristics of Dry-cured Loin. Asian-Australas. J. Anim. Sci. 2015, 28, 677–685. [Google Scholar] [CrossRef] [Green Version]
- Giovanelli, G.; Buratti, S.; Laureati, M.; Pagliarini, E. Evolution of physicochemical, morphological and aromatic characteristics of Italian PDO dry-cured hams during processing. Eur. Food Res. Technol. 2016, 242, 1117–1127. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Ni, C.; Chen, G.; Liu, Y. A novel data fusion strategy based on multiple intelligent sensory technologies and its application in the quality evaluation of Jinhua dry-cured hams. Sens. Actuators B Chem. 2021, 344, 130324. [Google Scholar] [CrossRef]
- Li, F.; Feng, X.; Zhang, D.; Li, C.; Xu, X.; Zhou, G.; Liu, Y. Physical properties, compositions and volatile profiles of Chinese dry-cured hams from different regions. J. Food Meas. Charact. 2020, 14, 492–504. [Google Scholar] [CrossRef]
- Liu, D.; Bai, L.; Feng, X.; Chen, Y.P.; Zhang, D.; Yao, W.; Zhang, H.; Chen, G.; Liu, Y. Characterization of Jinhua ham aroma profiles in specific to aging time by gas chromatography-ion mobility spectrometry (GC-IMS). Meat Sci. 2020, 168, 108178. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Wang, G.Y.; Xiao, Z.C.; Pu, Y.H.; Ge, C.R.; Liao, G.Z. H-1-NMR-based water-soluble low molecular weight compound characterization and free fatty acid composition of five kinds of Yunnan dry-cured hams. LWT Food Sci. Technol. 2019, 108, 174–182. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, Y.; Chen, C.; Xie, T.; Li, P. Effect of Lactobacillus plantarum and Staphylococcus xylosus on flavour development and bacterial communities in Chinese dry fermented sausages. Food Res. Int. 2020, 135, 410–427. [Google Scholar] [CrossRef] [PubMed]
- Zang, J.; Yu, D.; Zhang, P.; Xu, Y.; Xia, W. The key enzymes and flavor precursors involved in formation of characteristic flavor compounds of low-salt fermented common carp (Cyprinus carpio L.). LWT Food Sci. Technol. 2022, 154, 112806. [Google Scholar] [CrossRef]
- Belloch, C.; Neef, A.; Salafia, C.; Lopez-Diez, J.J.; Flores, M. Microbiota and volatilome of dry-cured pork loins manufactured with paprika and reduced concentration of nitrite and nitrate. Food Res. Int. 2021, 149, 110691. [Google Scholar] [CrossRef]
- Stadnik, J.; Dolatowsici, Z.J. Free Amino Acids and Biogenic Amines Content during Ageing of Dry-cured Pork Loins Inoculated with Lactobacillus casei LOCK 0900 Probiotic Strain. Food Sci. Technol. Res. 2015, 21, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Perea-Sanz, L.; Montero, R.; Belloch, C.; Flores, M. Microbial changes and aroma profile of nitrate reduced dry sausages during vacuum storage. Meat Sci. 2019, 147, 100–107. [Google Scholar] [CrossRef]
- Shi, J.; Nian, Y.; Da, D.; Xu, X.; Zhou, G.; Zhao, D.; Li, C. Characterization of flavor volatile compounds in sauce spareribs by gas chromatography-mass spectrometry and electronic nose. LWT Food Sci. Technol. 2020, 124, 516–523. [Google Scholar] [CrossRef]
- Dong, X.; Gao, L.; Zhang, H.; Wang, J.; Qiu, K.; Qi, G.; Wu, S. Comparison of Sensory Qualities in Eggs from Three Breeds Based on Electronic Sensory Evaluations. Foods 2021, 10, 1984. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Wu, Y.; Li, C.; Li, L.; Yang, X.; Chen, S.; Zhao, Y.; Cen, J.; Yang, S.; et al. Investigation of fermentation-induced changes in the volatile compounds of Trachinotus ovatus (meixiangyu) based on molecular sensory and interpretable machine-learning techniques: Comparison of different fermentation stages. Food Res. Int. 2021, 150, 110739. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Hu, Y.; Wen, R.; Wang, Y.; Qin, L.; Kong, B. Characterisation of the flavour profile of dry fermented sausages with different NaCl substitutes using HS-SPME-GC-MS combined with electronic nose and electronic tongue. Meat Sci. 2021, 172, 108338. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi-Varnamkhasti, M.; Apetrei, C.; Lozano, J.; Anyogu, A. Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends Food Sci. Technol. 2018, 80, 71–92. [Google Scholar] [CrossRef]
- Lipkowitz, J.B.; Ross, C.F.; Diako, C.; Smith, D.M. Discriminating aging and protein-to-fat ratio in Cheddar cheese using sensory analysis and a potentiometric electronic tongue. J. Dairy Sci. 2018, 101, 1990–2004. [Google Scholar] [CrossRef]
- Harada-Padermo, S.d.S.; Dias-Faceto, L.S.; Selani, M.M.; Conti-Silva, A.C.; Vieira, T.M.F.d. Umami Ingredient, a newly developed flavor enhancer from shiitake byproducts, in low-sodium products: A study case of application in corn extruded snacks. LWT Food Sci. Technol. 2021, 138, 110806. [Google Scholar] [CrossRef]
- Zhou, C.Y.; Wang, C.; Tang, C.B.; Dai, C.; Bai, Y.; Yu, X.B.; Li, C.B.; Xu, X.L.; Zhou, G.H.; Cao, J.X. Label-free proteomics reveals the mechanism of bitterness and adhesiveness in Jinhua ham. Food Chem. 2019, 297, 1719–1726. [Google Scholar] [CrossRef]
- Zhao, C.J.; Schieber, A.; Ganzle, M.G. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations—A review. Food Res. Int. 2016, 89, 39–47. [Google Scholar] [CrossRef]
- Larrea, V.; Hernando, I.; Quiles, A.; Lluch, M.A.; Perez-Munuera, I. Changes in proteins during Teruel dry-cured ham processing. Meat Sci. 2006, 74, 586–593. [Google Scholar] [CrossRef]
- Yu, D.; Feng, M.-q.; Sun, J. Influence of mixed starters on the degradation of proteins and the formation of peptides with antioxidant activities in dry fermented sausages. Food Control. 2021, 123, 107743. [Google Scholar] [CrossRef]
- Abellan, A.; Salazar, E.; Vazquez, J.; Cayuela, J.M.; Tejada, L. Changes in proteolysis during the dry-cured processing of refrigerated and frozen loin. LWT Food Sci. Technol. 2018, 96, 507–512. [Google Scholar] [CrossRef]
- Campus, M.; Flores, M.; Martinez, A.; Toldra, F. Effect of high pressure treatment on colour, microbial and chemical characteristics of dry cured loin. Meat Sci. 2008, 80, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Bover-Cid, S.; Schoppen, S.; Izquierdo-Pulido, M.; Vidal-Carou, M.C. Relationship between biogenic amine contents and the size of dry fermented sausages. Meat Sci. 1999, 51, 305–311. [Google Scholar] [CrossRef]
- Shi, Y.; Li, X.; Huang, A. A metabolomics-based approach investigates volatile flavor formation and characteristic compounds of the Dahe black pig dry-cured ham. Meat Sci. 2019, 158, 107904. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zeng, L.; Liao, Y.; Li, J.; Zhou, B.; Yang, Z.; Tang, J. Enzymatic Reaction-Related Protein Degradation and Proteinaceous Amino Acid Metabolism during the Black Tea (Camellia sinensis) Manufacturing Process. Foods 2020, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Fontan, M.C.G.; Franco, I.; Carballo, J. Proteolytic and lipolytic modifications during the manufacture of dry-cured lacon, a Spanish traditional meat product: Effect of some additives. Food Chem. 2008, 110, 137–149. [Google Scholar] [CrossRef]
- Merlo, T.C.; Lorenzo, J.M.; Saldana, E.; Patinho, I.; Oliveira, A.C.; Menegali, B.S.; Selani, M.M.; Dominguez, R.; Contreras-Castillo, C.J. Relationship between volatile organic compounds, free amino acids, and sensory profile of smoked bacon. Meat Sci. 2021, 181, 108596. [Google Scholar] [CrossRef]
- Zhou, C.-Y.; Le, Y.; Zheng, Y.-Y.; Wang, J.-J.; Li, G.; Bai, Y.; Li, C.-B.; Xu, X.-L.; Zhou, G.-H.; Cao, J.-X. Characterizing the effect of free amino acids and volatile compounds on excessive bitterness and sourness in defective dry-cured ham. LWT Food Sci. Technol. 2020, 123, 109071. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, H.; Wu, W.; Chen, H.; Fang, X.; Han, Y.; Mu, H. Effects of fermentation with different microbial species on the umami taste of Shiitake mushroom (Lentinus edodes). LWT Food Sci. Technol. 2021, 141, 110889. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; Martin-Gomez, A.; Jurado-Campos, N.; Garrido-Delgado, R.; Arce, C.; Arce, L. Target vs. spectral fingerprint data analysis of Iberian ham samples for avoiding labelling fraud using headspace-gas chromatography-ion mobility spectrometry. Food Chem. 2018, 246, 65–73. [Google Scholar] [CrossRef]
- Kim, J.-H.; Jang, H.-J.; Lee, H.-J.; Lee, C.-H. Physicochemical and sensory characteristics of dry-cured loin made from pigs fed Allium hookeri added whey powder and sensory trait evaluation using electronic tongue. Anim. Prod. Sci. 2020, 60, 191–200. [Google Scholar] [CrossRef]
- Chen, J.; Tao, L.; Zhang, T.; Zhang, J.; Wu, T.; Luan, D.; Ni, L.; Wang, X.; Zhong, J. Effect of four types of thermal processing methods on the aroma profiles of acidity regulator-treated tilapia muscles using E-nose, HS-SPME-GC-MS & nbsp;and HS-GC-IMS. LWT-Food Sci. Technol. 2021, 147, 111585. [Google Scholar] [CrossRef]
- Bosse, R.; Wirth, M.; Konstanz, A.; Becker, T.; Weiss, J.; Gibis, M. Determination of volatile marker compounds in raw ham using headspace-trap gas chromatography. Food Chem. 2017, 219, 249–259. [Google Scholar] [CrossRef]
- Pham, A.J.; Schilling, M.W.; Mikel, W.B.; Williams, J.B.; Martin, J.M.; Coggins, P.C. Relationships between sensory descriptors, consumer acceptability and volatile flavor compounds of American dry-cured ham. Meat Sci. 2008, 80, 728–737. [Google Scholar] [CrossRef]
- Sabio, E.; Vidal-Aragón, M.C.; Bernalte, M.J.; Gata, J.L. Volatile compounds present in six types of dry-cured ham from south European countries. Food Chem. 1998, 61, 493–503. [Google Scholar] [CrossRef]
- Marusic, N.; Vidacek, S.; Janci, T.; Petrak, T.; Medic, H. Determination of volatile compounds and quality parameters of traditional Istrian dry-cured ham. Meat Sci. 2014, 96, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Marusic, N.; Petrovic, M.; Vidacek, S.; Petrak, T.; Medic, H. Characterization of traditional Istrian dry-cured ham by means of physical and chemical analyses and volatile compounds. Meat Sci. 2011, 88, 786–790. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, D.L.; Tena, N.; Aparicio-Ruiz, R.; Morales, M.T. Relationship between sensory attributes and volatile compounds qualifying dry-cured hams. Meat Sci. 2008, 80, 315–325. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Carballo, J.; Franco, D. Effect of the Inclusion of Chestnut in the Finishing Diet on Volatile Compounds of Dry-Cured Ham from Celta Pig Breed. J. Integr. Agric. 2013, 12, 2002–2012. [Google Scholar] [CrossRef]
- Horchani, H.; Aissa, I.; Ouertani, S.; Zarai, Z.; Gargouri, Y.; Sayari, A. Staphylococcal lipases: Biotechnological applications. J. Mol. Catal. B-Enzym. 2012, 76, 125–132. [Google Scholar] [CrossRef]
- Wang, H.; Guan, H.; Zhang, H.; Liu, H.; Chen, Q.; Kong, B. Elucidation of interaction mechanisms between myofibrillar proteins and ethyl octanoate by SPME-GC-MS, molecular docking and dynamics simulation. LWT Food Sci. Technol. 2022, 154, 112787. [Google Scholar] [CrossRef]
- dos Santos Scholz, M.B.; Kitzberger, C.S.G.; Prudencio, S.H.; da Silva, R.S.d.S.F. The typicity of coffees from different terroirs determined by groups of physico-chemical and sensory variables and multiple factor analysis. Food Res. Int. 2018, 114, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Q.; Chen, Y.P.; Blank, I.; Li, F.Y.; Li, C.B.; Liu, Y. GC × GC-ToF-MS and GC-IMS based volatile profile characterization of the Chinese dry-cured hams from different regions. Food Res. Int. 2021, 142, 110222. [Google Scholar] [CrossRef] [PubMed]
Sensors | Description | 0 d | 7 d | 14 d | 21 d | 28 d | 35 d | 42 d |
---|---|---|---|---|---|---|---|---|
W1C | Sensitive to aromatic ingredients | 4.79 bc | 6.33 a | 5.83 ab | 5.16 b | 4.19 c | 4.14 c | 3.14 d |
W5S | Sensitive to nitrogen oxides | 5.94 c | 12.52 a | 10.84 ab | 9.00 b | 5.94 c | 6.04 c | 3.9 c |
W3C | Sensitive to aromatic ingredients | 1.77 bc | 1.99 a | 1.92 ab | 1.83 b | 1.68 c | 1.68 c | 1.5 d |
W6S | Selective to hydrogen | 1.32 b | 1.47 a | 1.36 b | 1.27 b | 1.17 c | 1.17 c | 1.06 d |
W5C | Sensitive to alkanes and aromatics | 1.22 bc | 1.3 a | 1.28 ab | 1.25 b | 1.19 c | 1.19 c | 1.13 d |
W1S | Sensitive to methane | 25.73 a | 27.56 a | 25.3 ab | 22.47 ab | 18.51 ab | 17.34 b | 13.57 b |
W1W | Sensitive to sulfides | 21.79 bc | 31.73 a | 29.67 ab | 26.35 b | 21.16 c | 21.02 c | 14.95 d |
W2S | Sensitive to ethanol | 12.02 ab | 13.62 a | 11.88 ab | 10.14 b | 8.04 bc | 7.92 bc | 5.79 c |
W2W | Sensitive to organic sulfides | 12.32 c | 18.76 a | 17.53 ab | 15.71 b | 12.47 c | 12.46 c | 8.53 d |
W3S | Sensitive to alkanes | 1.15 a | 1.14 ab | 1.12 b | 1.09 bc | 1.08 c | 1.07 c | 1.05 c |
0 d | 7 d | 14 d | 21 d | 28 d | 35 d | 42 d | |
---|---|---|---|---|---|---|---|
Sourness | −44.33 g | −41.392 f | −40.77 e | −39.486 b | −38.732 a | −38.95 c | −40.06 d |
Bitterness | 8.45 a | 6.816 b | 6.322 c | 6.742 b | 6.26 c | 6.156 c | 6.916 b |
Astringency | −1.25 c | 0.2 b | 0.4 a | 0.476 a | 0.46 a | 0.45 a | 0.312 b |
Aftertaste−B | −1.11 f | −0.436 c | −0.72 e | −0.374 a | −0.654 d | −0.806 e | −0.408 b |
Aftertaste−A | −0.93 e | −0.778 d | −0.748 d | −0.692 b | −0.656 a | −0.692 c | −0.71 c |
Umami | 11.96 b | 15.398 a | 15.558 a | 15.43 a | 15.446 a | 15.772 a | 16.108 a |
Richness | 1.54 b | 2.14 a | 2.286 a | 2.22 a | 2.236 a | 2.318 a | 2.176 a |
Saltiness | 2.5 f | 2.89 e | 3.264 c | 2.848 e | 3.026 d | 3.36 b | 3.496 a |
E-Nose | E-Tongue | FAA | GC-MS | |
---|---|---|---|---|
E-nose | 1.000 | 0.116 | 0.209 | 0.491 |
E-tongue | 0.116 | 1.000 | 0.875 | 0.574 |
FAA | 0.209 | 0.875 | 1.000 | 0.586 |
GC-MS | 0.491 | 0.574 | 0.586 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Z.; Zhu, Q.; Chen, Y.; Zhou, Y.; Hu, K.; Li, H.; Lu, K.; Zhou, J.; Liu, Y.; Chen, X. Studies on Flavor Compounds and Free Amino Acid Dynamic Characteristics of Fermented Pork Loin Ham with a Complex Starter. Foods 2022, 11, 1501. https://doi.org/10.3390/foods11101501
Tian Z, Zhu Q, Chen Y, Zhou Y, Hu K, Li H, Lu K, Zhou J, Liu Y, Chen X. Studies on Flavor Compounds and Free Amino Acid Dynamic Characteristics of Fermented Pork Loin Ham with a Complex Starter. Foods. 2022; 11(10):1501. https://doi.org/10.3390/foods11101501
Chicago/Turabian StyleTian, Zhiqing, Qiujin Zhu, Yuanshan Chen, Ying Zhou, Ke Hu, Hongying Li, Kuan Lu, Jie Zhou, Yuan Liu, and Xi Chen. 2022. "Studies on Flavor Compounds and Free Amino Acid Dynamic Characteristics of Fermented Pork Loin Ham with a Complex Starter" Foods 11, no. 10: 1501. https://doi.org/10.3390/foods11101501
APA StyleTian, Z., Zhu, Q., Chen, Y., Zhou, Y., Hu, K., Li, H., Lu, K., Zhou, J., Liu, Y., & Chen, X. (2022). Studies on Flavor Compounds and Free Amino Acid Dynamic Characteristics of Fermented Pork Loin Ham with a Complex Starter. Foods, 11(10), 1501. https://doi.org/10.3390/foods11101501