Carotenoid Profiling of Yellow-Flesh Peach Fruit
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Materials
2.2. Carotenoid Extraction and Measurement
2.3. Statistical Analysis
3. Results
3.1. Carotenoids in Yellow-Flesh Peach
3.2. Comparison of Carotenoids across Fruit Developmental Periods
3.3. Correlation between Carotenoids and Skin Type
3.4. Comparison of Carotenoids in Yellow-Flesh Peach with Different Flesh Colors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.H.; Zuang, E.J. Chinese Fruit (Peach); China Forestry Publishing House: Beijing, China, 2001. (In Chinese) [Google Scholar]
- Wang, L.R.; Zhu, G.R. Descriptors and Data Standard for Peach (Prunus persica L.); China Agriculture Press: Beijing, China, 2005. (In Chinese) [Google Scholar]
- Britton, G. Structure and properties of carotenoids in relation to function. FASEB J. 1995, 9, 1551–1558. [Google Scholar] [CrossRef]
- Nagao, A. Absorption and function of dietary carotenoids. Forum. Nutr. 2009, 61, 55–63. [Google Scholar] [PubMed]
- Guzman, I.; Hamby, S.; Romero, J.; Bosland, P.W.; O’Connell, M.A. Variability of carotenoid biosynthesis in orange colored Capsicum spp. Plant Sci. 2010, 179, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carolina, R.; Ana, M.P.; Jairol, B.; Fabrice, V. Identification and quantification of carotenoids by HPLC-DAD during the process of peach palm (Bactris gasipaes H.B.K.) flour. Food Res. Int. 2011, 44, 2377–2384. [Google Scholar]
- Maoka, T.; Enjo, F.; Tokuda, H.; Nishino, H. Biological function and cancer prevention by paprika carotenoids. Foods Food Ingr. J. Jpn. 2004, 209, 203–210. [Google Scholar]
- Maeda, H.; Saito, S.; Nakamura, N.; Maoka, T. Paprika pigments attenuate obesity-induced inprika pig in 3T3-L1 adipocytes. ISRN Inices 2013, 2013, 1–9. [Google Scholar]
- Aizawa, K.; Inakuma, T. Dietary capsanthin, themain carotenoid in paprika (Capsicum annuum), alters plasma high-density lipoprotein-cholesterol levels and hepatic gene expression in rats. Br. J. Nutr. 2009, 102, 1760–1766. [Google Scholar] [CrossRef] [Green Version]
- Krinsky, N.I.; Landrum, J.T.; Bone, R.A. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu. Rev. Nutr. 2003, 23, 171–201. [Google Scholar] [CrossRef] [Green Version]
- Nishino, H.; Murakoshi, M.; Tokuda, H.; Satomi, Y. Cancer prevention by carotenoids. Arch. Biochem. Biophys. 2009, 483, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M. Role of carotenoid b-cryptoxanthin in bone homeostasis. J. Biomed. Sci. 2012, 19, 36. [Google Scholar] [CrossRef] [Green Version]
- Ilahy, R.; Tlili, I.; Siddiqui, M.W.; Lenucci, M.S. Inside and beyond colour: Comparative overview of functional quality of tomato and watermelon fruits. Front. Plant Sci. 2019, 10, 769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, J. Carotenoid changes in the Mesocarp of the Redhaven Peach (Prunus persica) during Ripening. Int. J. Plant Physiol. 1979, 94, 461–468. [Google Scholar] [CrossRef]
- Yan, S.B.; Yan, Z.Y.; Ma, R.J.; Yu, M.L. Study the measurement of carotenoids from the peach fruit. J. Fruit Sci. 2012, 29, 1127–1133. (In Chinese) [Google Scholar]
- Yan, J.; Cai, Z.X.; Shen, Z.J.; Zhang, B.B.; Ma, R.J.; Yu, M.L. Extraction and analytical methods of carotenoids in fruit of yellow flesh peach. J. Fruit Sci. 2015, 32, 852–859. (In Chinese) [Google Scholar]
- Zhou, H.J.; Du, J.H.; Su, M.S. Relationship of content changes of pigments and aromatic compounds in pericarp with internal quality of honey peach fruits. Nonwood For. Res. 2019, 37, 1–10. (In Chinese) [Google Scholar]
- Dabbou, S.; Maatallah, S.; Castagna, A.; Guizani, M.; Sghaeir, W.; Hajlaloui, H.; Ranieri, A. Carotenoids, phenolic profile, mineral content and antioxidant properties in flesh and peel of Prunus persica fruits during two maturation stages. Plant Foods Hum. Nutr. 2017, 72, 103–110. [Google Scholar] [CrossRef]
- Yan, S.B.; Yan, Z.Y.; Ma, R.J.; Yu, M.L. Changes of carotenoids composition of yellow peach during fruit development. J. Fruit Sci. 2013, 30, 260–266. (In Chinese) [Google Scholar]
- Ferrer, A.; Remón, S.; Negueruela, A.I.; Rosa, O. Changes during the ripening of the very late season Spanish peach cultivar Calanda Feasibility of using CIELAB coordinates as maturity indices. Sci. Hortic. 2005, 105, 435–446. [Google Scholar] [CrossRef]
- Yan, S.B.; Yan, Z.Y.; Ma, R.J. Effects of paper pouches of different light-transmittance on fruit color and carotenoids composition of bagged red-flesh peaches. Fujian J. Agric. Sci. 2020, 35, 1086–1092. (In Chinese) [Google Scholar]
- Remorini, D.; Tavarini, S.; Degl’Innocenti, E.; Loreti, F.; Massai, R.; Guidi, L. Effect of rootstocks and harvesting time on the nutritional quality of peel and flesh of peach fruits. Food Chem. 2008, 110, 361–367. [Google Scholar] [CrossRef]
- Dong, X.T.; Cao, H.B.; Zhang, F.Y.; Han, Y.; Jia, H.; Li, D.; Zhang, X.Y.; Chen, H.J. Effects of shading fruit with opaque paper bag on carotenogenesis and related gene expression in yellow-flesh peach. Acta Hortic. Sin. 2015, 42, 633–642. (In Chinese) [Google Scholar]
- Puerta-Gomez, A.F.; Cisneros-Zevallos, L. Postharvest studies beyond fresh market eating quality: Phytochemical antioxidant changes in peach and plum fruit during ripening and advanced senescence. Postharvest Biol. Technol. 2011, 60, 220–224. [Google Scholar] [CrossRef]
- Oliveira, A.; Pintado, M.; Almeida, D. Phytochemical composition and antioxidant activity of peach as affected by pasteurization and storage duration. LWT-Food Sci. Technol. 2012, 49, 202–207. [Google Scholar] [CrossRef]
- Lavelli, V.; Pompei, C.; Casadei, M.A. Quality of nectarine and peach nectars as affected by lye-peeling and storage. Food Chem. 2009, 115, 1291–1298. [Google Scholar] [CrossRef]
- Han, Y.; Wang, P.; Brennan, H.; Ping, Q.; Bingxiang, L.; Feiyan, Z.; Hongbo, C.; Haijiang, C. Diversity of carotenoid composition, sequestering structures and gene transcription in mature fruits of four Prunus species. Plant Physiol. Biochem. 2020, 151, 113–123. [Google Scholar]
- Fan, J.Q.; Wu, J.L.; Li, Y. Expression and promoter activity analysis of PpCCD4 closely related to carotenoid synthesis in peach. J. Fruit Sci. 2020, 37, 10. (In Chinese) [Google Scholar]
- Cao, S.; Liang, M.; Shi, L. Accumulation of carotenoids and expression of carotenogenic genes in peach fruit. Food Chem. 2017, 214, 137–146. [Google Scholar] [CrossRef]
- Nowicka, P.; Wojdyło, A.; Laskowski, P. Principal component analysis (PCA) of physicochemical compounds’ content in different cultivars of peach fruits, including qualification and quantification of sugars and organic acids by HPLC. Eur. Food Res. Technol. 2019, 245, 929–938. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.J.; Ming, J.Q.; Zhang, Y.J.; Xu, J. Regulation of carotenoids biosynthesis in horticultural crops. Acta Hortic. Sin. 2015, 42, 1633–1648. (In Chinese) [Google Scholar]
- Kim, J.S.; Ahn, J.Y.; Ha, T.Y.; Rhee, H.C.; Kim, S. Comparison of phytochemical and antioxidant activities in different color stages and varieties of paprika harvested in Korea. Korean J. Food Sci. Technol. 2011, 43, 564–569. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Geon An, C.; Park, J.S.; Lim, Y.P.; Kima, S. Carotenoid profiling from 27 types of paprika (Capsicum annuum L.) with different colors, shapes, and cultivation methods. Food Chem. 2016, 201, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xu, J.; Liu, Y.; Zhao, X.; Deng, X.; Guo, L.; Gu, J. A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). J. Exp. Bot. 2007, 58, 4161–4171. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Escudero-Gilete, M.L.; Vicario, I.M.; Heredia, F.J. Study of the influence of carotenoid structure and individual carotenoids in the qualitative and quantitative attributes of orange juice colour. Food Res. Int. 2010, 43, 1289–1296. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Gómez-Robledo, L.; Melgosa, M.; Vicario, I.M.; Heredia, F.J. Color of orange juices in relation to their carotenoid contents as assessed from different spectroscopic data. J. Food Compos. Anal. 2011, 24, 837–844. [Google Scholar] [CrossRef]
- Xiong, Z.M.; Zhou, C.H.; Tao, J. Changes of carotenoid content in pulp of different loquat types during fruit coloring. Sci. Agric. Sin. 2007, 40, 2910–2914. (In Chinese) [Google Scholar]
- Yang, X.Y.; Cai, Y.B.; Sun, G.M. Relationship between color formation and change in composition of carotenoids in flesh of pineapple fruit. J. Fruit Sci. 2010, 27, 135–139. (In Chinese) [Google Scholar]
- Yan, S.B. Carotenoids Changes in Peach Fruit at Different Development Stages; Nanjing Agricultural University: Nanjing, China, 2012. (In Chinese) [Google Scholar]
- Tao, J.; Zhang, S.L.; An, X.M.; Zhao, Z.Z. Effects of light on carotenoid biosynthesis and color formation of citrus fruit peel. Chin. J. Appl. Ecol. 2003, 14, 1833–1836. (In Chinese) [Google Scholar]
- Curl, A.L. The carotenoids of cling peaches. Food Res. 1959, 24, 413–422. [Google Scholar] [CrossRef]
- Ye, X.F. Reasons for poor coloring and poor sweetness of cantaloupe. Southeast Hortic. 2015, 3, 11. (In Chinese) [Google Scholar]
- Yan, S.B.; Zhou, P.; Zhang, Y.Y.; Ma, R.J.; Yu, M.L.; Jin, G.; Guo, R. Impacts of light quality on color and carotenoid content of red peach. Jiangsu Agric. Sci. 2021, 49, 143–147. (In Chinese) [Google Scholar]
Index | Lutein | Zeaxanthin | β-Cryptoxanthin | α-Carotene | β-Carotene | Total Content |
---|---|---|---|---|---|---|
Mean | 0.26 | 1.69 | 0.41 | 0.44 | 5.69 | 8.55 |
Standard deviation | 0.06 | 1.15 | 0.32 | 0.24 | 2.73 | 3.42 |
Variation amplitude | 0.17–0.46 | 0.15–7.39 | 0.15–2.95 | 0.14–1.75 | 0.93–16.71 | 1.72–20.27 |
Xmax-xmin | 0.29 | 7.23 | 2.80 | 1.61 | 15.79 | 18.56 |
Variable coefficient (%) | 21.24 | 68.09 | 67.78 | 55.29 | 48.01 | 39.96 |
Kolmogorov–Smirnov | 1.53 | 1.74 | 3.01 | 1.38 | 1.48 | 1.07 |
Asymptotic sig. (two-sided) | 0.02 | 0.01 | 0.00 | 0.04 | 0.03 | 0.20 |
Correlation Coefficient | Fruit Development Period | Lutein | Zeaxanthin | β-Cryptoxanthin | α-Carotene | β-Carotene | Total Carotenoids |
---|---|---|---|---|---|---|---|
Fruit development period | 1.000 | ||||||
Lutein | 0.134 | 1.000 | |||||
Zeaxanthin | −0.447 ** | −0.074 | 1.000 | ||||
β-cryptoxanthin | −0.236 ** | 0.051 | 0.529 ** | 1.000 | |||
α-carotene | −0.103 | 0.431 ** | 0.081 | 0.066 | 1.000 | ||
β-carotene Total carotenoids | 0.335 ** −0.071 | −0.110 −0.082 | 0.262 ** 0.600 ** | 0.168 0.211 | 0.154 0.205 | 1.000 0.922** | 1.000 |
Carotenoid | Fruit Development Period (d) | ||
---|---|---|---|
Short | Middle | Long | |
Lutein | 0.25 ± 0.05 a | 0.26 ± 0.05 a | 0.28 ± 0.06 a |
Zeaxanthin | 2.25 ± 1.37 a | 1.81 ± 1.15 ab | 1.10 ± 0.58 b |
β-cryptoxanthin | 0.56 ± 0.46 a | 0.49 ± 0.31 a | 0.38 ± 0.1 b |
α-carotene | 0.45 ± 0.26 a | 0.44 ± 0.28 a | 0.42 ± 0.17 a |
β-carotene | 4.91 ± 1.94 b | 5.78 ± 2.84 a | 6.18 ± 3.01 a |
Total carotenoids | 8.44 ± 2.97 a | 8.76 ± 3.61 a | 8.36 ± 3.53 a |
Carotenoid | Surface Indumentum | |
---|---|---|
Glabrous Skin | Pubescent Skin | |
Lutein | 0.25 ± 0.05 a | 0.27 ± 0.06 a |
Zeaxanthin | 1.83 ± 1.4 a | 1.62 ± 1.01 a |
β-cryptoxanthin | 0.52 ± 0.43 a | 0.45 ± 0.25 a |
α-carotene | 0.41 ± 0.26 a | 0.45 ± 0.23 a |
β-carotene | 4.66 ± 1.44 b | 7.19 ± 2.06 a |
Total carotenoids | 7.67 ± 2.78 b | 9.97 ± 2.62 a |
Carotenoid | Flesh Color | ||
---|---|---|---|
Yellow | Golden | Orange | |
Lutein | 0.26 ± 0.05 a | 0.27 ± 0.06 a | 0.25 ± 0.03 a |
Zeaxanthin | 1.38 ± 0.52 b | 1.79 ± 0.45 a | 1.83 ± 0.57 a |
β-Cryptoxanthin | 0.42 ± 0.21 a | 0.51 ± 0.27 a | 0.45 ± 0.11 a |
α-Carotene | 0.44 ± 0.27 a | 0.43 ± 0.26 a | 0.45 ± 0.16 a |
β-Carotene | 4.35 ± 0.89 c | 5.31 ± 1.21 b | 8.19 ± 2.62 a |
Total carotenoids | 6.45 ± 1.89 c | 8.30 ± 2.20 b | 11.17 ± 3.02 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Sun, M.; Li, J.; Su, Z.; Cai, Z.; Shen, Z.; Ma, R.; Yan, J.; Yu, M. Carotenoid Profiling of Yellow-Flesh Peach Fruit. Foods 2022, 11, 1669. https://doi.org/10.3390/foods11121669
Zhao B, Sun M, Li J, Su Z, Cai Z, Shen Z, Ma R, Yan J, Yu M. Carotenoid Profiling of Yellow-Flesh Peach Fruit. Foods. 2022; 11(12):1669. https://doi.org/10.3390/foods11121669
Chicago/Turabian StyleZhao, Bintao, Meng Sun, Jiyao Li, Ziwen Su, Zhixiang Cai, Zhijun Shen, Ruijuan Ma, Juan Yan, and Mingliang Yu. 2022. "Carotenoid Profiling of Yellow-Flesh Peach Fruit" Foods 11, no. 12: 1669. https://doi.org/10.3390/foods11121669
APA StyleZhao, B., Sun, M., Li, J., Su, Z., Cai, Z., Shen, Z., Ma, R., Yan, J., & Yu, M. (2022). Carotenoid Profiling of Yellow-Flesh Peach Fruit. Foods, 11(12), 1669. https://doi.org/10.3390/foods11121669