Impact of Acetaldehyde Addition on the Sensory Perception of Syrah Red Wines
Abstract
:1. Introduction
- To determine the orthonasal perception threshold of acetaldehyde in two Syrah red wines with different polyphenol contents in order to study the effect of the red wine matrix on the perception of acetaldehyde.
- To measure the free acetaldehyde levels in the Syrah red wines to determine the acetaldehyde combination levels.
- To study the effect of increasing acetaldehyde addition on the sensory descriptors of Syrah red wines by Hierarchical-Check-All-That-Apply (HCATA) analysis.
2. Material and Methods
2.1. Reagents, Solvents, and Standards
2.2. Wine Samples and Preparation
- Syrah 1 (S1): TPI of 41.
- Syrah 2 (S2): TPI of 80.
2.3. Chemical Analysis
2.3.1. Oenological Parameters
2.3.2. Analysis of Free Acetaldehyde in Wines by HS-GC-MS
2.3.3. Determination of Phenolic Composition
Anthocyanins
Flavanols
2.4. Sensory Analysis
2.4.1. Participants
2.4.2. Orthonasal Thresholds (Ot) for Acetaldehyde
2.4.3. HCATA Methodology
3. Results and Discussion
3.1. Chemical Analysis of the Syrah Red Wines
3.1.1. Chemical Characterization of the Red Wines
3.1.2. Quantitative Study of the Free Acetaldehyde of the Syrah Red Wines with Increasing Acetaldehyde Addition
3.2. Influence of Acetaldehyde Concentration on Syrah Sensory Threshold and Descriptors
3.2.1. Orthonasal Threshold of Acetaldehyde
3.2.2. HCATA Analysis of Panel Performance
3.2.3. HCATA Characterization of the Olfactory Sensory Properties of the Syrah Wines Containing Acetaldehyde
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osborne, J.P.; Mira de Orduña, R.; Pilone, G.J.; Liu, S.-Q. Acetaldehyde Metabolism by Wine Lactic Acid Bacteria. FEMS Microbiol. Lett. 2000, 191, 51–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nykänen, L. Formation and Occurrence of Flavor Compounds in Wine and Distilled Alcoholic Beverages. Am. J. Enol. Vitic. 1986, 37, 84–96. [Google Scholar]
- Perestrelo, R.; Silva, C.; Gonçalves, C.; Castillo, M.; Câmara, J.S. An Approach of the Madeira Wine Chemistry. Beverages 2020, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Ribéreau-Gayon, P.; Peynaud, E. Traité d’oenologie: Composition, Transformations et Traitements Des Vins; Librairie Polytechnique Ch Beranger: Paris, France, 1966. [Google Scholar]
- Ochando, T.; Mouret, J.-R.; Humbert-Goffard, A.; Aguera, E.; Sablayrolles, J.-M.; Farines, V. Comprehensive Study of the Dynamic Interaction between SO2 and Acetaldehyde during Alcoholic Fermentation. Food Res. Int. 2020, 136, 109607. [Google Scholar] [CrossRef] [PubMed]
- Wildenradt, H.L.; Singleton, V.L. The Production of Aldehydes as a Result of Oxidation of Polyphenolic Compounds and Its Relation to Wine Aging. Am. J. Enol. Vitic. 1974, 25, 119–126. [Google Scholar]
- Danilewicz, J.C. Review of Reaction Mechanisms of Oxygen and Proposed Intermediate Reduction Products in Wine: Central Role of Iron and Copper. Am. J. Enol. Vitic. 2003, 54, 73–85. [Google Scholar]
- Bueno, M.; Zapata, J.; Ferreira, V. Simultaneous Determination of Free and Bonded Forms of Odor-Active Carbonyls in Wine Using a Headspace Solid Phase Microextraction Strategy. J. Chromatogr. A 2014, 1369, 33–42. [Google Scholar] [CrossRef]
- Burroughs, L.F.; Sparks, A.H. Sulphite-Binding Power of Wines and Ciders. III. Determination of Carbonyl Compounds in a Wine and Calculation of Its Sulphite-Binding Power. J. Sci. Food Agric. 1973, 24, 207–217. [Google Scholar] [CrossRef]
- Liu, S.-Q.; Pilone, G.J. An Overview of Formation and Roles of Acetaldehyde in Winemaking with Emphasis on Microbiological Implications. Int. J. Food Sci. Technol. 2000, 35, 49–61. [Google Scholar] [CrossRef]
- Miyake, T.; Shibamoto, T. Quantitative Analysis of Acetaldehyde in Foods and Beverages. J. Agric. Food Chem. 1993, 41, 1968–1970. [Google Scholar] [CrossRef]
- Fulcrand, H.; Doco, T.; Es-Safi, N.-E.; Cheynier, V.; Moutounet, M. Study of the Acetaldehyde Induced Polymerisation of Flavan-3-Ols by Liquid Chromatography-Ion Spray Mass Spectrometry. J. Chromatogr. A 1996, 752, 85–91. [Google Scholar] [CrossRef]
- Saucier, C.; Guerra, C.; Pianet, I.; Laguerre, M.; Glories, Y. (+)-Catechin—Acetaldehyde Condensation Products in Relation to Wine-Ageing. Phytochemistry 1997, 46, 229–234. [Google Scholar] [CrossRef]
- Atanasova, V.; Fulcrand, H.; Le Guernevé, C.; Cheynier, V.; Moutounet, M. Structure of a New Dimeric Acetaldehyde Malvidin 3-Glucoside Condensation Product. Tetrahedron Lett. 2002, 43, 6151–6153. [Google Scholar] [CrossRef]
- Bakker, J.; Timberlake, C.F. Isolation, Identification, and Characterization of New Color-Stable Anthocyanins Occurring in Some Red Wines. J. Agric. Food Chem. 1997, 45, 35–43. [Google Scholar] [CrossRef]
- de Freitas, V.; Mateus, N. Formation of Pyranoanthocyanins in Red Wines: A New and Diverse Class of Anthocyanin Derivatives. Anal. Bioanal. Chem. 2011, 401, 1463–1473. [Google Scholar] [CrossRef]
- McCloskey, L.P.; Mahaney, P. An Enzymatic Assay for Acetaldehyde in Grape Juice and Wine. Am. J. Enol. Vitic. 1981, 32, 159–162. [Google Scholar]
- Waterhouse, A.; Sacks, G.; Jeffery, D. Understanding Wine Chemistry; Wiley: Chichester, West Sussex, UK, 2016. [Google Scholar]
- Noble, A.C.; Arnold, R.A.; Buechsenstein, J.; Leach, E.J.; Schmidt, J.O.; Stern, P.M. Modification of a Standardized System of Wine Aroma Terminology. Am. J. Enol. Vitic. 1987, 38, 143–146. [Google Scholar]
- Pelonnier-Magimel, E.; Mangiorou, P.; Philippe, D.; De Revel, G.; Jourdes, M.; Marchal, A.; Marchand, S.; Pons, A.; Riquier, L.; Tesseidre, P.-L.; et al. Sensory Characterisation of Bordeaux Red Wines Produced without Added Sulfites. OENO One 2020, 54, 733–743. [Google Scholar] [CrossRef]
- Coetzee, C.; Buica, A.; du Toit, W.J. Research Note: The Use of SO2 to Bind Acetaldehyde in Wine: Sensory Implications. S. Afr. J. Enol. Vitic. 2018, 32, 1–6. [Google Scholar] [CrossRef]
- Zea, L.; Serratosa, M.P.; Mérida, J.; Moyano, L. Acetaldehyde as Key Compound for the Authenticity of Sherry Wines: A Study Covering 5 Decades: Role of Acetaldehyde in Sherries. Compr. Rev. Food Sci. Food Saf. 2015, 14, 681–693. [Google Scholar] [CrossRef]
- Vidal, S.; Francis, L.; Noble, A.; Kwiatkowski, M.; Cheynier, V.; Waters, E. Taste and Mouth-Feel Properties of Different Types of Tannin-like Polyphenolic Compounds and Anthocyanins in Wine. Anal. Chim. Acta 2004, 513, 57–65. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and Sensory Studies of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Coetzee, C.; Brand, J.; Jacobson, D.; Du Toit, W.J. Sensory Effect of Acetaldehyde on the Perception of 3-Mercaptohexan-1-Ol and 3-Isobutyl-2-Methoxypyrazine: Role of Acetaldehyde in Sensory Interactions. Aust. J. Grape Wine Res. 2016, 22, 197–204. [Google Scholar] [CrossRef]
- Zoecklein, B.; Fugelsang, K.; Gump, B.; Nury, F. Wine Analysis and Production; Aspen Publishers: New York, NY, USA, 1999. [Google Scholar]
- Francis, I.L.; Newton, J.L. Determining Wine Aroma from Compositional Data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
- Franco-Luesma, E.; Honoré-Chedozeau, C.; Ballester, J.; Valentin, D. Oxidation in Wine: Does Expertise Influence the Perception? LWT 2019, 116, 108511. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P. Les Dosages Des Composés Phénoliques Totaux Dans Les Vins Rouges. Chim. Anal. 1970, 52, 627–631. [Google Scholar]
- Arias-Pérez, I.; Sáenz-Navajas, M.P.; de-la-Fuente-Blanco, A.; Ferreira, V.; Escudero, A. Insights on the Role of Acetaldehyde and Other Aldehydes in the Odour and Tactile Nasal Perception of Red Wine. Food Chem. 2021, 361, 130081. [Google Scholar] [CrossRef]
- OIV-MA-BS-08; OIV-MA-BS-08—COMPENDIUM OF INTERNATIONAL METHODS OF ANALYSIS OF SPIRITUOUS BEVERAGES OF VITIVINICULTURAL ORIGIN Near Infrared Reflectance Spectroscopy: Office International de la Vigne et du Vin. Recueil des Méthodes Internationales d’Analyse des Vins. OIV: Paris, France, 2009.
- OIV-MA-AS323-04B; OIV-MA-AS323-04B—COMPENDIUM OF INTERNATIONAL METHODS OF ANALYSIS—OIV Sulfur Dioxide: Office International de la Vigne et du Vin. Recueil des Méthodes Internationales d’Analyse des Vins. OIV: Paris, France, 2009.
- OIV-MA-BS-13; OIV-MA-BS-13—COMPENDIUM OF INTERNATIONAL METHODS OF ANALYSIS OF SPIRITUOUS BEVERAGES OF VITIVINICULTURAL ORIGIN Determination of PH: Office International de la Vigne et du Vin. Recueil des Méthodes Internationales d’Analyse des Vins. OIV: Paris, France, 2009.
- Carrascon, V.; Ontañón, I.; Bueno, M.; Ferreira, V. Gas Chromatography-Mass Spectrometry Strategies for the Accurate and Sensitive Speciation of Sulfur Dioxide in Wine. J. Chromatogr. A 2017, 1504, 27–34. [Google Scholar] [CrossRef]
- Benbouguerra, N.; Richard, T.; Saucier, C.; Garcia, F. Voltammetric Behavior, Flavanol and Anthocyanin Contents, and Antioxidant Capacity of Grape Skins and Seeds during Ripening (Vitis vinifera Var. Merlot, Tannat, and Syrah). Antioxidants 2020, 9, 800. [Google Scholar] [CrossRef]
- Carrascón, V.; Vallverdú-Queralt, A.; Meudec, E.; Sommerer, N.; Fernandez-Zurbano, P.; Ferreira, V. The Kinetics of Oxygen and SO2 Consumption by Red Wines. What Do They Tell about Oxidation Mechanisms and about Changes in Wine Composition? Food Chem. 2018, 241, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.A.; Jones, G.P. Analysis of Proanthocyanidin Cleavage Products Following Acid-Catalysis in the Presence of Excess Phloroglucinol. J. Agric. Food Chem. 2001, 49, 1740–1746. [Google Scholar] [CrossRef] [PubMed]
- ISO 8586-2; Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors—Part 2: Experts. Organisation Internationale de Normalization: Geneve, Switzerland, 1994.
- Martins Domingos, A.S. Determination of Orthoand Retronasal Detection and Recognition Thresholds for Off-Flavours in Wine; Universidade de Lisboa: Lisboa, Portugal, 2019. [Google Scholar]
- Chabanet, C. Un Seuil de Détection D’une Population, Détermination par la Méthode du Modèle Linéaire Généralise; Journées Européennes des Agro-Industrie et Méthodes Statistiqyes: Versailles, France, 1997. [Google Scholar]
- ISO 13301; Sensory Analysis—Methodology—General Guidance for Measuring Odour, Flavour and Taste Detection Thresholds by a Three-Alternative Forced-Choice (3-AFC) Procedure. Organisation Internationale de Normalization: Geneve, Switzerland, 2018.
- Koenig, L. Démarche Taxonomique Appliquée à La Structuration Hiérarchique d’un Lexique Aromatique et Application à La Caractérisation Sensorielle Des Vins Par Une Méthode HRATA. Ph.D. Thesis, Ecole Nationale Vétérinaire, Nantes, France, 2020. [Google Scholar]
- Campo, E.; Do, B.V.; Ferreira, V.; Valentin, D. Aroma Properties of Young Spanish Monovarietal White Wines: A Study Using Sorting Task, List of Terms and Frequency of Citation. Aust. J. Grape Wine Res. 2008, 14, 104–115. [Google Scholar] [CrossRef]
- Jackowetz, J.N.; Dierschke, S.; Mira de Orduña, R. Multifactorial Analysis of Acetaldehyde Kinetics during Alcoholic Fermentation by Saccharomyces Cerevisiae. Food Res. Int. 2011, 44, 310–316. [Google Scholar] [CrossRef]
- Bueno, M.; Marrufo-Curtido, A.; Carrascón, V.; Fernández-Zurbano, P.; Escudero, A.; Ferreira, V. Formation and Accumulation of Acetaldehyde and Strecker Aldehydes during Red Wine Oxidation. Front. Chem. 2018, 6, 20. [Google Scholar] [CrossRef]
Family | Subfamily | Descriptors |
---|---|---|
Fruity | Red berries | Blackberry, Blackcurrant, Raspberry, Strawberry |
Stewed fruit | Prune, Jam, Baked apple | |
Dry fruit | Coconut, Hazelnut, Nut, Dried Fig | |
Overripe fruit | Overripe apples | |
Floral | Fresh flowers | Violet, White flowers, Rose |
Dried flowers | Faded roses | |
Vegetal | Fresh plant | Grass, Fresh green apples, Peppers |
Dry plant | Tobacco, Black tea | |
Undergrowth | Humus, Truffle, Mushroom | |
Spicy | Spicy | Licorice, Clove, Black pepper, Nutmeg |
Aromatic plants | Thyme, Laurel, Eucalyptus, Black olive, Mint, Anise | |
Pastry | Pastry | Vanilla, Cinnamon, Brioche, Biscuit, Pastry spices, Praline |
Yeast | Malt | |
Animal | Animal | Leather, Meat juice |
Lactic | Lactic | Fresh butter, Rancid butter, Milk |
Empyreumatic | Empyreumatic | Cocoa, Chocolate, Coffee, Smoked, Burnt, Toasted bread, Caramel |
Chemical | Amylic | Candy, Banana |
Chemical | Nail polish remover, Varnish | |
Oxidized | Oxidized green apple, Sweet wine | |
Sulfur | Tar, Sulfur |
Samples | Grape Variety | Vintage | TPI | Ethanol% (v/v) | Free SO2 (mg/L) | Total SO2 (mg/L) | pH | Flavanols (g/L) | Anthocyanins (mg/L M3G eq) |
---|---|---|---|---|---|---|---|---|---|
S1 | Syrah | 2020 | 41 | 14.1 | 8 | 18 | 3.88 | 0.69 ± 0.013 | 223 ± 1 |
S2 | Syrah | 2020 | 80 | 14.6 | 14 | 25 | 3.95 | 1.28 ± 0.016 | 510 ± 4 |
A. Measured Free Acetaldehyde Concentrations of Spiked Syrah Red Wine Samples for OT | |||||||||||
Acetaldehyde addition (mg/L) | 0 | 5 | 15 | 20 | 25 | 30 | 35 | 40 | |||
Free acetaldehyde concentration (mg/L) | S1_OT | 0.0 ± 0.12 | 0.6 ± 0.09 | 2.5 ± 0.72 | 4.6 ± 0.22 | 6.5 ± 0.24 | 9.6 ± 0.68 | 13.1 ± 1.28 | 21.1 ± 2.06 | ||
S2_OT | 0.0 ± 0.02 | 0.0 ± 0.03 | 0.0 ± 0.16 | 0.0 ± 0.25 | 0.0 ± 0.37 | 0.0 ± 0.12 | 0.0 ± 0.15 | 0.7 ± 0.05 | |||
B. Measured free acetaldehyde concentrations of spiked Syrah red wine samples for HCATA | |||||||||||
Acetaldehyde addition (mg/L) | 0 | 5 | 15 | 25 | 40 | 55 | 70 | 85 | 100 | 120 | |
Free acetaldehyde concentration (mg/L) | S1_HCATA | 0.0 ± 0.13 | 0.0 ± 0.9 | 5.1 ± 0.49 | 9.15 ± 0.22 | 21.3 ± 1.25 | 31.8 ± 3.1 | 41.9 ± 0.6 | 53.1 ± 5.2 | 63.6 ± 3.1 | 74.6 ± 1.1 |
S2_HCATA | 0.0 ± 0.03 | 0.0 ± 0.03 | 0.0 ± 0.07 | 0.0 ± 0.21 | 2.03 ± 0.14 | 8.85 ± 0.4 | 18.0 ± 0.03 | 32.05 ± 0.31 | 39.8 ± 0.3 | 52.4 ± 0.39 |
Syrah 1 | Acetaldehyde addition (mg/L) | 5 | 15 | 20 | 25 | 30 | 35 | Coeff a | Coeff b | OT (mg/L) | |
Free Acetaldehyde concentration (mg/L) | 0.6 | 2.5 | 4.6 | 6.5 | 9.6 | 13.1 | |||||
% correct answers | Rep 1 | 50% | 33% | 67% | 42% | 58% | 50% | −0.14 | 0.023 | 6.1 ± 3.7 | |
% correct answers | Rep 2 | 17% | 17% | 50% | 42% | 67% | 67% | −1.53 | 0.20 | 7.7 ± 3.7 | |
Syrah 2 | Acetaldehyde addition (mg/L) | 5 | 15 | 20 | 25 | 30 | 40 | Coeff a | Coeff b | OT (mg/L) | |
Free Acetaldehyde concentration (mg/L) | 0 | 0 | 0 | 0 | 0 | 0.7 | |||||
% correct answers | Rep 1 | 17% | 17% | 50% | 25% | 25% | 50% | / | / | / | |
% correct answers | Rep 2 | 33% | 50% | 41% | 33% | 25% | 42% | / | / | / |
Attributes | p-Values Syrah 1 | p-Values Syrah 2 | Attributes | p-Values Syrah 1 | p-Values Syrah 2 |
---|---|---|---|---|---|
Fruity | 0.488 | 0.04 ** | Pastry | 0.416 | 0.109 |
Red berries | 0.016 ** | 0.221 | Pastry | 0.940 | 0.109 |
Strawberry | 0.312 | 0.091 * | Vanilla | 0.315 | 0.231 |
Blackberry | 0.250 | 0.521 | Cinnamon | 0.437 | 0.050 * |
Blackcurrant | 0.216 | 0.514 | Brioche | 0.513 | 0.049 ** |
Stewed fruit | 0.502 | 0.395 | Pastry spices | 0.124 | 0.587 |
Baked apple | 0.0001 *** | 0.056 * | Yeast | 0.395 | 0.402 |
Jam | 0.231 | 0.858 | Malt | 0.798 | 0.154 |
Overripe fruit | 0.077 * | 0.388 | Animal | 0.474 | 0.103 |
Overripe apples | 0.007 ** | 0.347 | Animal | 0.740 | 0.064 * |
Dried fruit | 0.369 | 0.996 | Leather | 0.839 | 0.090 * |
Dried figs | 0.547 | 0.028 ** | Meat juice | 0.098 * | 0.193 |
Floral | 0.241 | 0.384 | Lactic | 0.317 | 0.752 |
Fresh flowers | 0.087 * | 0.980 | Lactic | 0.317 | 0.698 |
Dried flowers | 0.700 | 0.884 | Fresh butter | 0.298 | 0.353 |
Vegetal | 0.078 * | 0.070 * | Empyreumatic | 0.861 | 0.592 |
Fresh plants | 0.057 * | 0.094 * | Empyreumatic | 0.861 | 0.267 |
Fresh green apples | 0.112 | 0.533 | Cocoa | 0.279 | 0.098 * |
Dry plants | 0.740 | 0.395 | Burnt | 0.185 | 0.109 |
Undergrowth | 0.388 | 0.822 | Caramel | 0.151 | 0.788 |
Spicy | 0.285 | 0.738 | Chemical | 0.815 | 0.116 |
Spicy | 0.365 | 0.462 | Amylic | 0.131 | 0.678 |
Licorice | 0.141 | 0.320 | Chemical | 0.324 | 0.232 |
Aromatic plants | 0.022 ** | 0.415 | Nail polish remover | 0.204 | 0.677 |
Mint | 0.255 | 0.234 | Oxidized | 0.940 | 0.173 |
Oxidized green apple | 0.746 | 0.009 *** | |||
Sulfur | 0.925 | 0.276 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, L.; Perrin, C.; Nolleau, V.; Godet, T.; Farines, V.; Garcia, F.; Caillé, S.; Saucier, C. Impact of Acetaldehyde Addition on the Sensory Perception of Syrah Red Wines. Foods 2022, 11, 1693. https://doi.org/10.3390/foods11121693
Garcia L, Perrin C, Nolleau V, Godet T, Farines V, Garcia F, Caillé S, Saucier C. Impact of Acetaldehyde Addition on the Sensory Perception of Syrah Red Wines. Foods. 2022; 11(12):1693. https://doi.org/10.3390/foods11121693
Chicago/Turabian StyleGarcia, Luca, Cédrine Perrin, Valérie Nolleau, Teddy Godet, Vincent Farines, François Garcia, Soline Caillé, and Cédric Saucier. 2022. "Impact of Acetaldehyde Addition on the Sensory Perception of Syrah Red Wines" Foods 11, no. 12: 1693. https://doi.org/10.3390/foods11121693
APA StyleGarcia, L., Perrin, C., Nolleau, V., Godet, T., Farines, V., Garcia, F., Caillé, S., & Saucier, C. (2022). Impact of Acetaldehyde Addition on the Sensory Perception of Syrah Red Wines. Foods, 11(12), 1693. https://doi.org/10.3390/foods11121693