Cascade-Enhanced Lateral Flow Immunoassay for Sensitive Detection of Okadaic Acid in Seawater, Fish, and Seafood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents, Materials, Equipment, and Software
2.2. Synthesis of AuNPs and Their Conjugation with GAMI
2.3. Preparation of Test Strips
2.4. Pretreatment of Seawater and Seafood Samples
2.5. LFIA of OA
2.6. LFIA of OA with Cascade Signal Amplification
2.7. Evaluation of the Assay Results
3. Results and Discussion
3.1. Obtaining the Immunoreagents
3.2. Standard LFIA of OA
3.3. LFIA of OA with Cascade Signal Amplification
3.4. Enhanced LFIA of OA in Seawater, Fish, and Seafood
3.5. Advantages of the Developed Test System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farabegoli, F.; Blanco, L.; Rodriguez, L.P.; Vieites, J.M.; Cabado, A.G. Phycotoxins in marine shellfish: Origin, occurrence and effects on humans. Mar. Drugs 2018, 16, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louzao, M.C.; Vilariño, N.; Vale, C.; Costas, C.; Cao, A.; Raposo-Garcia, S.; Vieytes, M.R.; Botana, L.M. Current trends and new challenges in marine phycotoxins. Mar. Drugs 2022, 20, 198. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, J.; Hoogenboom, R.L.A.P.; Hendriksen, P.J.M.; Bodero, M.; Bovee, T.F.H.; Rietjens, I.M.C.M.; Gerssen, A. Marine biotoxins and associated outbreaks following seafood consumption: Prevention and surveillance in the 21st century. Glob. Food Secur.-Agric. Policy Econ. Environ. 2017, 1, 11–21. [Google Scholar] [CrossRef]
- Neves, R.A.F.; Nascimento, S.M.; Santos, L.N. Harmful algal blooms and shellfish in the marine environment: An overview of the main molluscan responses, toxin dynamics, and risks for human health. Environ. Sci. Pollut. Res. 2021, 28, 55846–55868. [Google Scholar] [CrossRef] [PubMed]
- Corriere, M.; Solino, L.; Costa, P.R. Effects of the marine biotoxins okadaic acid and dinophysistoxins on fish. J. Mar. Sci. Eng. 2021, 9, 293. [Google Scholar] [CrossRef]
- Vilarino, N.; Louzao, M.C.; Abal, P.; Cagide, E.; Carrera, C.; Vieytes, M.R.; Botana, L.M. Human poisoning from marine toxins: Unknowns for optimal consumer protection. Toxins 2018, 10, 324. [Google Scholar] [CrossRef] [Green Version]
- Morabito, S.; Silvestro, S.; Faggio, C. How the marine biotoxins affect human health. Nat. Prod. Res. 2018, 32, 621–631. [Google Scholar] [CrossRef]
- Fu, L.L.; Zhao, X.Y.; Ji, L.D.; Xu, J. Okadaic acid (OA): Toxicity, detection and detoxification. Toxicon 2019, 160, 1–7. [Google Scholar] [CrossRef]
- Valdiglesias, V.; Prego-Faraldo, M.V.; Pasaro, E.; Mendez, J.; Laffon, B. Okadaic acid: More than a diarrheic toxin. Mar. Drugs 2013, 11, 4328–4349. [Google Scholar] [CrossRef] [Green Version]
- Franchini, A.; Malagoli, D.; Ottaviani, E. Targets and effects of yessotoxin, okadaic acid and palytoxin: A differential review. Mar. Drugs 2010, 8, 658–677. [Google Scholar] [CrossRef] [Green Version]
- Marine biotoxins in shellfish—Summary on regulated marine biotoxins. Scientific opinion of the panel on contaminants in the food chain in feed and food. EFSA J. 2009, 1306, 1–23. [CrossRef]
- Daguer, H.; Hoff, R.B.; Molognoni, L.; Kleemann, C.R.; Felizardo, L.V. Outbreaks, toxicology, and analytical methods of marine toxins in seafood. Curr. Opin. Food Sci. 2018, 24, 43–55. [Google Scholar] [CrossRef]
- Rodriguez, I.; Vieytes, M.R.; Alfonso, A. Analytical challenges for regulated marine toxins. Detection methods. Curr. Opin. Food Sci. 2017, 18, 29–36. [Google Scholar] [CrossRef]
- Di Nardo, F.; Chiarello, M.; Cavalera, S.; Baggiani, C.; Anfossi, L. Ten years of lateral flow immunoassay technique applications: Trends, challenges and future perspectives. Sensors 2021, 21, 5185. [Google Scholar] [CrossRef]
- Dillon, M.; Zaczek-Moczydlowska, M.A.; Edwards, C.; Turner, A.D.; Miller, P.I.; Moore, H.; McKinney, A.; Lawton, L.; Campbell, K. Current trends and challenges for rapid smart diagnostics at point-of-site testing for marine toxins. Sensors 2021, 21, 2499. [Google Scholar] [CrossRef]
- Anfossi, L.; Baggiani, C.; Giovannoli, C.; D’Arco, G.; Giraudi, G. Lateral-flow immunoassays for mycotoxins and phycotoxins: A review. Anal. Bioanal. Chem. 2013, 405, 467–480. [Google Scholar] [CrossRef]
- Liu, Y.L.; Zhan, L.; Qin, Z.P.; Sackrison, J.; Bischof, J.C. Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis. ACS Nano 2021, 15, 3593–3611. [Google Scholar] [CrossRef]
- Panferov, V.G.; Safenkova, I.V.; Zherdev, A.V.; Dzantiev, B.B. Methods for increasing sensitivity of immunochromatographic test systems with colorimetric detection (review). Appl. Biochem. Microbiol. 2021, 57, 143–151. [Google Scholar] [CrossRef]
- Shirshahi, V.; Liu, G.Z. Enhancing the analytical performance of paper lateral flow assays: From chemistry to engineering. TrAC-Trends Anal. Chem. 2021, 136, 116200. [Google Scholar] [CrossRef]
- Zherdev, A.V.; Dzantiev, B.B. Ways to reach lower detection limits in lateral flow immunoassays. In Rapid Test—Advances in Design, Format and Diagnostic Applications; Anfossi, L., Ed.; InTechOpen: London, UK, 2018; pp. 9–43. [Google Scholar]
- Hu, L.; Liu, J.; Wang, Q.; Zhang, Y.; Jia, R.; Cai, C.; Wu, W.; Chen, S.-F. Development of an immunochromatographic strip test for the rapid detection of okadaic acid in shellfish sample. J. Appl. Phycol. 2013, 25, 1091–1099. [Google Scholar] [CrossRef]
- Wang, R.; Zeng, L.; Yang, H.; Zhong, Y.; Wang, J.; Ling, S.; Farhan Saeed, A.; Yuan, J.; Wang, S. Detection of okadaic acid (OA) using ELISA and colloidal gold immunoassay based on monoclonal antibody. J. Hazard Mater. 2017, 339, 54–160. [Google Scholar] [CrossRef]
- Liu, B.-H.; Hung, C.-T.; Lu, C.-C.; Chou, H.-N.; Yu, F.-Y. Production of monoclonal antibody for okadaic acid and its utilization in an ultrasensitive enzyme-linked immunosorbent assay and one-step immunochromatographic strip. J. Agric. Food Chem. 2014, 62, 1254–1260. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.-Y.; Lin, C.; Li, Y.-S.; Zhou, Y.; Meng, X.-M.; Yu, S.-Y.; Li, Z.-H.; Li, L.; Ren, H.-L.; Liu, Z.-S. A screening lateral flow immunochromatographic assay for on-site detection of okadaic acid in shellfish products. Anal. Biochem. 2012, 422, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.Q.; Yuan, L.; Zhang, M.; He, Y.F.; Lin, X.C. Sensitive detection of the okadaic acid marine toxin in shellfish by Au@Pt NPs/horseradish peroxidase dual catalysis immunoassay. Anal. Meth. 2022, 14, 1261–1267. [Google Scholar] [CrossRef]
- Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Hermanson, G.T. Bioconjugate Techniques, 3rd ed.; Pierce Biotechnology; Thermo Fisher Scientific: Rockford, IL, USA, 2013. [Google Scholar]
- Hendrickson, O.D.; Zvereva, E.A.; Shanin, I.A.; Zherdev, A.V.; Dzantiev, B.B. Development of a multicomponent immunochromatographic test system for the detection of fluoroquinolone and amphenicol antibiotics in dairy products. J. Sci. Food Agric. 2019, 99, 3834–3842. [Google Scholar] [CrossRef]
- Uhrovcik, J. Strategy for determination of LOD and LOQ values--some basic aspects. Talanta 2014, 119, 178–180. [Google Scholar] [CrossRef]
- Huang, X.; Aguilar, Z.P.; Xu, H.; Lai, W.; Xiong, Y. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review. Biosens. Bioelectron. 2016, 75, 166–180. [Google Scholar] [CrossRef]
- Urusov, A.E.; Petrakova, A.V.; Gubaidullina, M.K.; Zherdev, A.V.; Dzantiev, B.B. Method for Carrying out Highly Sensitive Immunochromatographic Analysis with Cascade Multi-Stage Signal Amplification. Russian Federation Patent Application No. 2015153293, 14 December 2015. [Google Scholar]
- Hackett, J.D.; Anderson, D.M.; Erdner, D.L.; Bhattacharya, D. Dinoflagellates: A remarkable evolutionary experiment. Am. J. Bot. 2004, 91, 1523–1534. [Google Scholar] [CrossRef]
Seawater | ||||||
---|---|---|---|---|---|---|
Added OA, ng/mL | Detected OA ± SD 1 (ng/mL) | Recovery ± SD (%) | ||||
0.5 | 0.45 ± 0.04 | 89.2 ± 8.1 | ||||
0.75 | 0.62 ± 0.04 | 82.0 ± 4.7 | ||||
Fish and Seafood | ||||||
Added OA, ng/mL | Detected OA ± SD (ng/g)/ | Recovery ± SD (%) | Detected OA ± SD (ng/g)/ | Recovery ± SD (%) | Detected OA ± SD (ng/g)/ | Recovery ± SD (%) |
Trout | Shrimps | Scallops | ||||
50 | 38.5 ± 1.0 | 76.9 ± 1.9 | 47.8 ± 5.7 | 95.60 ± 11.4 | 51.9 ± 2.1 | 103.7 ± 4.2 |
100 | 113.9 ± 10 | 113.9 ± 10 | 123 ± 1.2 | 123 ± 1.2 | 126 ± 15 | 126 ± 15 |
LFIA Format | Label | LOD, ng/mL | Cutoff, ng/mL | Detected Real Samples | Reference |
---|---|---|---|---|---|
Direct competitive | Anti-OA MAbs—AuNPs | 10 | 50 | Shellfish | [23] |
Direct competitive | Anti-OA MAbs—AuNPs | 3.12 | 6.25 | Mussels | [20] |
Direct competitive | Anti-OA MAbs—AuNPs | n/p 1 | 5 | Clams, scallops, mussels, and oysters | [22] |
Direct competitive | Anti-OA MAbs—AuNPs | 100 | 1 | Shellfish | [21] |
Catalysis enhancement | Anti-OA MAbs—Au@PtNPs | 0.04 | n/p | Oysters, mussels, and clams | [24] |
Indirect competitive | GAMI–AuNPs | 0.03 | 1 | Seawater, fish (trout), tiger shrimps, and scallops | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hendrickson, O.D.; Zvereva, E.A.; Zherdev, A.V.; Dzantiev, B.B. Cascade-Enhanced Lateral Flow Immunoassay for Sensitive Detection of Okadaic Acid in Seawater, Fish, and Seafood. Foods 2022, 11, 1691. https://doi.org/10.3390/foods11121691
Hendrickson OD, Zvereva EA, Zherdev AV, Dzantiev BB. Cascade-Enhanced Lateral Flow Immunoassay for Sensitive Detection of Okadaic Acid in Seawater, Fish, and Seafood. Foods. 2022; 11(12):1691. https://doi.org/10.3390/foods11121691
Chicago/Turabian StyleHendrickson, Olga D., Elena A. Zvereva, Anatoly V. Zherdev, and Boris B. Dzantiev. 2022. "Cascade-Enhanced Lateral Flow Immunoassay for Sensitive Detection of Okadaic Acid in Seawater, Fish, and Seafood" Foods 11, no. 12: 1691. https://doi.org/10.3390/foods11121691
APA StyleHendrickson, O. D., Zvereva, E. A., Zherdev, A. V., & Dzantiev, B. B. (2022). Cascade-Enhanced Lateral Flow Immunoassay for Sensitive Detection of Okadaic Acid in Seawater, Fish, and Seafood. Foods, 11(12), 1691. https://doi.org/10.3390/foods11121691