Current Advances in Immunoassays for the Detection of β2-Agonists
Abstract
:1. Introduction
2. β2-Agonist Antibody-Based Sample Extraction/Cleanup
2.1. Immunoaffinity Chromatography
2.2. Immunofiltration
2.3. Immunomagnetic Separation
3. Immunological Techniques for Detecting β2-Agonists
3.1. Radioimmunoassay
3.2. ELISA
3.2.1. Direct Competitive ELISA
3.2.2. Indirect Competitive ELISA
3.3. Chemiluminescence Immunoassay
3.4. Lateral Flow Immunoassay
3.4.1. Colorimetric LFIA
Gold Nanoparticles as Tracers
Other Nanoparticles as Tracers
3.4.2. Luminescent LFIA
3.4.3. Other Types of LFIA
3.5. Immunosensors
3.5.1. Surface Plasmon Resonance Sensor
3.5.2. Surface-Enhanced Raman Scattering-Based Immunosensor
3.5.3. Electrochemiluminescence Immunosensor
3.5.4. Electrochemical Immunosensor
Label-Free Electrochemical Immunosensor
Enzyme-Labeled Electrochemical Immunosensors
3.6. Other Types of Immunoassays
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Billington, C.K.; Penn, R.B.; Hall, I.P. β2 agonists. Handb. Exp. Pharmacol. 2017, 237, 23–40. [Google Scholar] [PubMed] [Green Version]
- Sillence, M.N. Technologies for the control of fat and lean deposition in livestock. Vet. J. 2004, 167, 242–257. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, G.; Daniele, C.; Boatto, G.; Manca, G.; Brambilla, G.; Loizzo, A. New beta-adrenergic agonists used illicitly as growth promoters in animal breeding: Chemical and pharmacodynamic studies. Toxicology 2003, 187, 91–99. [Google Scholar] [CrossRef]
- Prezelj, A.; Obreza, A.; Pecar, S. Abuse of clenbuterol and its detection. Curr. Med. Chem. 2003, 10, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Ramos, F.; Baeta, M.L.; Reis, J.; Silveira, M.I. Evaluation of the illegal use of clenbuterol in Portuguese cattle farms from drinking water, urine, hair and feed samples. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2009, 26, 814–820. [Google Scholar] [CrossRef]
- Sakai, N.; Sakai, M.; Mohamad Haron, D.E.; Yoneda, M.; Ali Mohd, M. Beta-agonist residues in cattle, chicken and swine livers at the wet market and the environmental impacts of waste water from livestock farms in Selangor State, Malaysia. Chemosphere 2016, 165, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Navarro, J.F. Food poisoning related to consumption of illicit beta-agonist in liver. Lancet 1990, 336, 1311. [Google Scholar] [CrossRef]
- Brambilla, G.; Loizzo, A.; Fontana, L.; Strozzi, M.; Guarino, A.; Soprano, V. Food poisoning following consumption of clenbuterol-treated veal in Italy. J. Am. Med. Assoc. 1997, 278, 635. [Google Scholar] [CrossRef]
- Sporano, V.; Grasso, L.; Esposito, M.; Oliviero, G.; Brambilla, G.; Loizzo, A. Clenbuterol residues in non-liver containing meat as a cause of collective food poisoning. Vet. Hum. Toxicol. 1998, 40, 141–143. [Google Scholar] [PubMed]
- Brambilla, G.; Cenci, T.; Franconi, F.; Galarini, R.; Macrì, A.; Rondoni, F.; Strozzi, M.; Loizzo, A. Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy. Toxicol. Lett. 2000, 114, 47–53. [Google Scholar] [CrossRef]
- Wu, M.L.; Deng, J.F.; Chen, Y.; Chu, W.L.; Hung, D.Z.; Yang, C.C. Late diagnosis of an outbreak of leanness-enhancing agent-related food poisoning. J. Am. J. Emerg. Med. 2013, 31, 1501–1503. [Google Scholar] [CrossRef] [PubMed]
- Baynes, R.E.; Dedonder, K.; Kissell, L.; Mzyk, D.; Marmulak, T.; Smith, G.; Tell, L.; Gehring, R.; Davis, J.; Riviere, J.E. Health concerns and management of select veterinary drug residues. Food Chem. Toxicol. 2016, 88, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Boyd, D.; O’Keeffe, M.; Smyth, M.R. Methods for the determination of beta-agonists in biological matrices. Rev. Anal. 1996, 121, 1R–10R. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, P.; Su, X. Current advancement in analysis of β-agonists. TrAC Trends Anal. Chem. 2016, 85, 1–16. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X.; Zheng, F.; Liu, J.; Wu, D. Emerging nanosensing technologies for the detection of β-agonists. Food Chem. 2020, 332, 127431. [Google Scholar] [CrossRef] [PubMed]
- Danyi, S.; Degand, G.; Duez, C.; Granier, B.; Maghuin-Rogister, G.; Scippo, M.L. Solubilisation and binding characteristics of a recombinant beta2-adrenergic receptor expressed in the membrane of Escherichia coli for the multianalyte detection of beta-agonists and antagonists residues in food-producing animals. Anal. Chim. Acta 2007, 589, 159–165. [Google Scholar] [CrossRef]
- Cheng, G.; Li, F.; Peng, D.; Huang, L.; Hao, H.; Liu, Z.; Wang, Y.; Yuan, Z. Development of an enzyme-linked-receptor assay based on Syrian hamster β2-adrenergic receptor for detection of β-agonists. Anal. Biochem. 2014, 459, 18–23. [Google Scholar] [CrossRef] [PubMed]
- dos Ramos, F.J. Beta2-agonist extraction procedures for chromatographic analysis. J. Chromatogr. A 2000, 880, 69–83. [Google Scholar] [CrossRef]
- Haasnoot, W.; Ploum, M.E.; Paulussen, R.J.; Schilt, R.; Huf, F.A. Rapid determination of clenbuterol residues in urine by high-performance liquid chromatography with on-line automated sample processing using immunoaffinity chromatography. J. Chromatogr. 1990, 519, 323–335. [Google Scholar] [CrossRef]
- Cai, J.; Henion, J. Quantitative multi-residue determination of beta-agonists in bovine urine using on-line immunoaffinity extraction-coupled column packed capillary liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 1997, 691, 357–370. [Google Scholar] [CrossRef]
- Shelver, W.L.; Smith, D.J. Immunoaffinity column as sample cleanup method for determination of the beta-adrenergic agonist ractopamine and its metabolites. J. AOAC Int. 2002, 85, 1302–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Q.B.; Zhao, X.T.; Song, H.; Pan, Y.L. Immunoaffinity chromatography purification and ultra-high-performance liquid chromatography-tandem mass spectrometry determination of four β-agonists in beef. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Hellenäs, K.-E.; Johansson, M.A.; Elliott, C.T.; Sternesjö, A.; Stenberg, E. EuroResidue IV-Proceedings of the Conference on Residues of Veterinary Drugs in Food; van Ginkel, L.A., Ruiter, A., Eds.; RIVM, Laboratory for Residue Analysis: Bilthoven, The Netherlands, 2000; pp. 542–545. [Google Scholar]
- Haasnoot, W.; Kemmers-Voncken, A.; van Rhijn, H.; Schilt, R. Immunofiltration as al ternative for immunoaffinity chromatography. In EuroResidue IV-Proceedings of the Conference on Residues of Veterinary Drugs in Food; van Ginkel, L.A., Ruiter, A., Eds.; RIVM, Laboratory for Residue Analysis: Bilthoven, The Netherlands, 2000; pp. 496–500. [Google Scholar]
- Haasnoot, W.; Kemmers-Voncken, A.; Samson, D. Immunofiltration as sample cleanup for the immunochemical detection of beta-agonists in urine. Analyst 2002, 127, 87–92. [Google Scholar] [CrossRef]
- Cheng, J.; Su, X.O.; Wang, S.; Zhao, Y. Highly Sensitive detection of clenbuterol in animal urine using immunomagnetic bead treatment and surface-enhanced Raman spectroscopy. Sci. Rep. 2016, 6, 32637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.; Su, X.O.; Han, C.; Wang, S.; Wang, P.; Zhang, S.; Xie, J. Ultrasensitive detection of salbutamol in animal urine by immunomagnetic bead treatment coupling with surface-enhanced Raman spectroscopy. Sens. Actuators B Chem. 2018, 255, 2329–2338. [Google Scholar] [CrossRef]
- Peng, T.; Wang, J.; Zhao, S.; Xie, S.; Yao, K.; Zheng, P.; Wang, S.; Ke, Y.; Jiang, H. A fluorometric clenbuterol immunoassay based on the use of organic/inorganic hybrid nanoflowers modified with gold nanoclusters and artificial antigen. Mikrochim. Acta 2018, 185, 366. [Google Scholar] [CrossRef]
- Huang, Z.; Xiong, Z.; Chen, Y.; Hu, S.; Lai, W. Sensitive and matrix-tolerant lateral flow immunoassay based on fluorescent magnetic nanobeads for the detection of clenbuterol in swine urine. J. Agric. Food Chem. 2019, 67, 3028–3036. [Google Scholar] [CrossRef] [PubMed]
- Loo, J.C.; Beaulieu, N.; Jordan, N.; Brien, R.; McGilveray, I.J. A specific radio-immunoassay (RIA) for salbutamol (albuterol) in human plasma. Res. Commun. Chem. Pathol. Pharmacol. 1987, 55, 283–286. [Google Scholar] [PubMed]
- Rominger, K.L.; Mentrup, A.; Stiasni, M. Radioimmunological determination of fenoterol. Part II: Antiserum and tracer for the determination of fenoterol. Arzneimittelforsch 1990, 40, 887–895. [Google Scholar] [PubMed]
- Adam, A.; Ong, H.; Sondag, D.; Rapaille, A.; Marleau, S.; Bellemare, M.; Raymond, P.; Giroux, D.; Loo, J.K.; Beaulieu, N. Radioimmunoassay for albuterol using a monoclonal antibody: Application for direct quantification in horse urine. J. Immunoass. 1990, 11, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Delahaut, P.; Dubois, M.; Pri-Bar, I.; Buchman, O.; Degand, G.; Ectors, F. Development of a specific radioimmunoassay for the detection of clenbuterol residues in treated cattle. Food Addit. Contam. 1991, 8, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Granja, R.H.; Montes, N.A.M.; Rabone, F.; Montes Niño, R.E.; Cannavan, A.; Salerno, A.G. Validation of radioimmunoassay screening methods for beta-agonists in bovine liver according to Commission Decision 2002/657/EC. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2008, 25, 1475–1481. [Google Scholar] [CrossRef]
- Bui, Q.A.; Vu, T.H.; Ngo, V.K.; Kennedy, I.R.; Lee, N.A.; Allan, R. Development of an ELISA to detect clenbuterol in swine products using a new approach for hapten design. Anal. Bioanal. Chem. 2016, 408, 6045–6052. [Google Scholar] [CrossRef] [PubMed]
- Talib, N.A.A.; Salam, F.; Sulaiman, Y. Development of polyclonal antibody against clenbuterol for immunoassay application. Molecules 2018, 23, 789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Y.C.; Tsai, Y.F.; Tai, Y.T.; Lin, C.Y.; Hsieh, K.H.; Chang, T.H.; Sheu, S.Y.; Kuo, T.F. Development and fast screening of salbutamol residues in swine serum by an enzyme-linked immunosorbent assay in Taiwan. J. Agric. Food Chem. 2008, 56, 5494–5499. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Liu, Z.; Bi, Y.; Wang, X.; Jin, Y.; Sun, L.; Wang, H.; Zhang, C.; Xu, S. Preparation of polyclonal antibodies and development of a direct competitive enzyme-linked immunosorbent assay to detect residues of phenylethanolamine A in urine samples. J. Agric. Food Chem. 2012, 60, 11618–11624. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Zhao, B.; Bold, S.E.; Bu, T.; Yan, L.; Dou, L.; Yang, Q.; Wang, J.; Zhang, D. Immunoassay of clenbuterol with bacteria as natural signal carriers for signal amplification. Sens. Actuators B Chem. 2019, 288, 210–216. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Wang, L.; Wang, Q.; Pei, X.; Jiang, H. Rapid determination of phenylethanolamine A in biological samples by enzyme-linked immunosorbent assay and lateral-flow immunoassay. Anal. Bioanal. Chem. 2015, 407, 7615–7624. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Zhou, T.; Yin, B.; He, P. Gold nanoparticle-based colorimetric ELISA for quantification of ractopamine. Mikrochim. Acta 2018, 185, 210. [Google Scholar] [CrossRef]
- Shelver, W.L.; Smith, D.J. Enzyme-linked immunosorbent assay development for the beta-adrenergic agonist zilpaterol. J. Agric. Food Chem. 2004, 52, 2159–2166. [Google Scholar] [CrossRef]
- Lu, Q.; Hou, Y.Y.; Liu, X.X.; Wang, H.; Hou, J.J.; Wei, J.L.; Zhou, S.S.; Liu, X.Y. Construction, expression and functional analysis of anti-clenbuterol codon-optimized scFv recombinant antibody. Food Chem. Toxicol. 2020, 135, 110973. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, J.; Zhang, A.; Huang, X.A.; Lei, H. Two binding epitopes modulating specificity of immunoassay for β-agonist detection: Quantitative structure-activity relationship. Food Chem. 2022, 371, 131071. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jiang, W.; Shen, X.; Li, X.; Huang, X.A.; Xu, Z.; Sun, Y.; Chan, S.W.; Zeng, L.; Eremin, S.A.; et al. Four hapten spacer sites modulating class specificity: Nondirectional multianalyte immunoassay for 31 β-agonists and analogues. Anal. Chem. 2018, 90, 2716–2724. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Zhang, Y.; Liu, X.; Qiu, J.; Liu, Z.; Kong, F. Development of a highly sensitive time-resolved fluoroimmunoassay for the determination of trace salbutamol in environmental samples. Sci. Total Environ. 2019, 679, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Qian, X.; Zhao, K.; Deng, A.; Li, J. Flow injection chemiluminescent competitive immunoassay for the β-adrenergic agonist salbutamol using carboxylic resin beads and enzymatic amplification. Sens. Actuator B Chem. 2015, 215, 323–329. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Y.; Shi, J.; Zhao, K.; Deng, A.; Li, J. A flow injection chemiluminescent immunosensor for ultrasensitive detection of brombuterol based on resin beads and enzymatic amplification. Food Anal. Methods 2019, 12, 305–312. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Q.; Wei, X.; Wu, J.; Wang, C.; Liu, J.; Zhang, L.; Dong, Y. A competitive luminol chemiluminescence immunosensor based on a microfluidic chip for the determination of ractopamine. Electrophoresis 2017, 38, 368–371. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Wang, M.Z.; Chen, Z.L.; Fang, J.H.; Fang, M.M.; Liu, J.; Yu, X.P. Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of clenbuterol and ractopamine in swine urine. Anal. Bioanal. Chem. 2009, 395, 2591–2599. [Google Scholar] [CrossRef]
- Wu, K.; Guo, L.; Xu, W.; Xu, H.; Aguilar, Z.P.; Xu, G.; Lai, W.; Xiong, Y.; Wan, Y. Sulfonated polystyrene magnetic nanobeads coupled with immunochromatographic strip for clenbuterol determination in pork muscle. Talanta 2014, 129, 431–437. [Google Scholar] [CrossRef]
- Xie, C.H.; Chen, F.J.; Yang, T.B. A high-affinity anti-salbutamol monoclonal antibody: Key to a robust lateral-flow immunochromatographic assay. Anal. Biochem. 2012, 426, 118–125. [Google Scholar] [CrossRef]
- Zvereva, E.A.; Zherdev, A.V.; Xu, C.; Dzantiev, B.B. Highly sensitive immunochromatographic assay for qualitative and quantitative control of beta-agonist salbutamol and its structural analogs in foods. Food Control 2018, 86, 50–58. [Google Scholar] [CrossRef]
- Li, J.H.; Li, C.S.; Wu, M.; Zhang, Y.; Ma, X.F.; Cheng, H.; Yan, J.H. Development of an ultrasensitive immunochromatographic assay (ICA) strip for the rapid detection of phenylethanolamine A in urine and pork samples. J. Food Sci. 2015, 80, 894–899. [Google Scholar]
- Ren, M.L.; Chen, X.L.; Li, C.H.; Xu, B.; Liu, W.J.; Xu, H.Y.; Xiong, Y.H. Lateral flow immunoassay for quantitative detection of ractopamine in swine urine. Biomed. Environ. Sci. 2014, 27, 134–137. [Google Scholar] [PubMed]
- Gu, H.Y.; Liu, L.P.; Song, S.S.; Kuang, H.; Xu, C.L. Development of an immunochromatographic strip assay for ractopamine detection using an ultrasensitive monoclonal antibody. Food Agric. Immunol. 2016, 27, 471–483. [Google Scholar] [CrossRef]
- Zvereva, E.A.; Shpakova, N.A.; Zherdev, A.V.; Xu, C.; Dzantiev, B.B. Highly sensitive immunochromatographic assay for qualitative and quantitative control of beta-agonist ractopamine in Foods. Appl. Biochem. Microbiol. 2018, 54, 436–441. [Google Scholar] [CrossRef]
- Preechakasedkit, P.; Ngamrojanavanich, N.; Khongchareonporn, N.; Chailapakul, O. Novel ractopamine-protein carrier conjugation and its application to the lateral flow strip test for ractopamine detection in animal feed. J. Zhejiang Univ. Sci. B 2019, 20, 193–204. [Google Scholar] [CrossRef]
- Huang, Q.; Bu, T.; Zhang, W.; Yan, L.; Zhang, M.; Yang, Q.; Huang, L.; Yang, B.; Hu, N.; Suo, Y.; et al. An improved clenbuterol detection by immunochromatographic assay with bacteria@Au composite as signal amplifier. Food Chem. 2018, 262, 48–55. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Huang, Y.; Dandapat, A.; Dai, L.; Zhang, G.; Lu, X.; Zhang, J.; Lai, W.; Chen, T. Hollow Au-Ag nanoparticles labeled immunochromatography strip for highly snsitive detection of clenbuterol. Sci. Rep. 2017, 7, 41419. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Huang, Z.; Hu, S.; Zhang, G.; Peng, J.; Xia, J.; Lai, W. Integrated immunochromatographic assay for qualitative and quantitative detection of clenbuterol. Anal. Biochem. 2019, 577, 45–51. [Google Scholar] [CrossRef]
- Zhu, C.J.; Zhao, G.Y.; Dou, W.C. Immunochromatographic assay using brightly colored silica nanoparticles as visible label for point-of-care detection of clenbuterol. Sens. Actuators B 2018, 266, 392–399. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, J.; Zhao, G.; Dou, W. A silica nanoparticle based 2-colorimmunochromatographic assay for simultaneous determination of clenbuterol and ractopamine. Mikrochim. Acta 2019, 186, 421. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Z.; Jing, J.; Ren, Y.G.; Guo, Y.F.; Tao, N.Y.; Zhou, Q.W.; Zhang, H.L.; Ma, Y.F.; Wang, Y.H. Preparation and application of selenium nanoparticles in a lateral flow immunoassay for clenbuterol detection. Mater. Lett. 2019, 234, 212–215. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Q.; Guo, Y.; Hu, H.; Zheng, Z.; Li, S.; Wang, Y.; Ma, Y. Rapid detection of ractopamine and salbutamol in swine urine by immunochromatography based on selenium nanoparticles. Int. J. Nanomed. 2021, 16, 2059–2070. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.X.; Huang, Q.; Dou, L.N.; Bu, T.; Chen, K.; Yang, Q.F.; Yan, L.Z.; Wang, J.L.; Zhang, D.H. Prussian blue nanoparticles based lateral flow assay for high sensitive determination of clenbuterol. Sens. Actuators B 2018, 275, 223–229. [Google Scholar] [CrossRef]
- Liu, J.; Yu, Q.; Zhao, G.; Dou, W. Ultramarine blue nanoparticles as a label for immunochromatographic on-site determination of ractopamine. Mikrochim. Acta 2020, 187, 285. [Google Scholar] [CrossRef]
- Song, C.; Zhi, A.; Liu, Q.; Yang, J.; Jia, G.; Shervin, J.; Tang, L.; Hu, X.; Deng, R.; Xu, C.; et al. Rapid and sensitive detection of β-agonists using a portable fluorescence biosensor based on fluorescent nanosilica and a lateral flow test strip. Biosens. Bioelectron. 2013, 50, 62–65. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Z.; Su, X. A sensitive and quantitative fluorescent multi-component immuno-chromatographic sensor for β-agonist residues. Biosens. Bioelectron. 2015, 64, 511–516. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, W.; Wang, P.; Su, X. A paper-based competitive lateral flow immunoassay for multi β-agonist residues by using a single monoclonal antibody labelled with red fluorescent nanoparticles. Mikrochim. Acta 2018, 185, 191. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.M.; Luo, K.; Xia, J.; Xu, G.M.; Wu, C.H.; Han, J.J.; Zhang, G.G.; Liu, M.; Lai, W.H. Advantages of time-resolved fluorescent nanobeads compared with fluorescent submicrospheres, quantum dots, and colloidal gold as label in lateral flow assays for detection of ractopamine. Biosens. Bioelectron. 2017, 91, 95–103. [Google Scholar] [CrossRef]
- Shi, C.Y.; Deng, N.; Liang, J.J.; Zhou, K.N.; Fu, Q.Q.; Tang, Y. A fluorescent polymer dots positive readout fluorescent quenching lateral flow sensor for ractopamine rapid detection. Anal. Chim. Acta 2015, 854, 202–208. [Google Scholar] [CrossRef]
- Wang, P.; Wang, R.; Zhang, W.; Su, X.; Luo, H. Novel fabrication of immunochromatographic assay based on up conversion phosphors for sensitive detection of clenbuterol. Biosens. Bioelectron. 2016, 77, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Su, X.; Ouyang, H.; Wang, L.; Fu, Z. A novel immunochromatographic assay based on a time-resolved chemiluminescence strategy for the multiplexed detection of ractopamine and clenbuterol. Anal. Chim. Acta 2016, 917, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, L.; Yao, X.; Wang, Z.; Dou, L.; Su, L.; Zhao, M.; Sun, J.; Zhang, D.; Wang, J. Developing a simple immunochromatography assay for clenbuterol with sensitivity by one-step staining. J. Agric. Food Chem. 2020, 68, 15509–15515. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, H.; Li, S.; Zhao, K.; Li, J.; Jiang, D.; Sun, L.; Deng, A. Ultrasensitive and quantitative detection of a new β-agonist phenylethanolamine A by a novel immunochromatographic assay based on surface-enhanced Raman scattering (SERS). J. Agric. Food Chem. 2014, 62, 10896–10902. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Chang, H.F.; Zhao, K.; Li, J.G.; Yang, H.; Mei, L.Y.; Xu, S.M.; Deng, A.P. A novel immunochromatographic assay (ICA) based on surface-enhanced Raman scattering for the sensitive and quantitative determination of clenbuterol. Anal. Methods 2015, 7, 513–520. [Google Scholar] [CrossRef]
- Fu, H.Q.; Chu, Y.X.; Zhao, K.; Li, J.G.; Deng, A.P. Ultrasensitive detection of the β-adrenergic agonist brombuterol by a SERS-based lateral flow immunochromatographic assay using flower-like gold-silver core-shell nanoparticles. Microchim. Acta 2017, 184, 1711–1719. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, C.; Li, H.; Chen, Z.; Yan, M. Strategy of Dimercaptothiol as self-assembled monolayers enhance the sensitivity of SPR immunosensor for detection of salbutamol. Anal. Sci. 2021, 37, 1289–1294. [Google Scholar] [CrossRef]
- Suherman, M.K.; Kawaguchi, T. Highly selective and sensitive detection of β-agonists using a surface plasmon resonance sensor based on an alkanethiol monolayer functionalized on a Au surface. Biosens. Bioelectron. 2015, 67, 356–363. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, S.; Wei, X.; Zhang, S.; Liu, J.; Dong, Y. An improved label-free indirect competitive SPR immunosensor and its comparison with conventional ELISA for ractopamine detection in swine urine. Sensors 2017, 17, 604. [Google Scholar] [CrossRef] [Green Version]
- Kabiraz, D.C.; Morita, K.; Sakamoto, K.; Kawaguchi, T. Mechanism of surface plasmon resonance sensing by indirect competitive inhibition immunoassay using Au nanoparticle labeled antibody. Talanta 2017, 172, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabiraz, D.C.; Morita, K.; Sakamoto, K.; Takahashi, M.; Kawaguchi, T. Highly sensitive detection of clenbuterol in urine sample by using surface plasmon resonance immunosensor. Talanta 2018, 186, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.C.; Hu, Y.J.; Gao, J.; Zhong, L. Highly sensitive detection of clenbuterol using competitive surface-enhanced Raman scattering immunoassay. Anal. Chim. Acta 2011, 697, 61–66. [Google Scholar] [CrossRef]
- Yu, M.; Hu, Y.J.; Liu, J.Z. Simultaneous detection of clenbuterol and ractopamine based on multiplexed competitive surface enhanced Raman scattering (SERS) immunoassay. New J. Chem. 2017, 41, 10407. [Google Scholar] [CrossRef]
- Gu, X.F.; Tian, S.; Chen, Y.Y.; Wang, Y.X.; Gu, D.D.; Guo, E.H.; Liu, Y.; Li, J.G.; Deng, A.P. A SERS-based competitive immunoassay using highly ordered gold cavity arrays as the substrate for simultaneous detection of β-adrenergic agonists. Sens. Actuators B Chem. 2021, 345, 130230. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, C.J.; Xu, M.M.; Yuan, Y.X.; Yao, J.L. Liquid magnetic competitive immunoassay ofclenbuterol based on surface-enhancedRaman spectroscopy. J. Raman Spectrosc. 2017, 48, 1307–1317. [Google Scholar] [CrossRef]
- Yao, D.; Li, C.; Wen, G.; Liang, A.; Jiang, Z. A highly sensitive and accurate SERS/RRS dual-spectroscopic immunosensor for clenbuterol based on nitrogen/silver-codoped carbon dots catalytic amplification. Talanta 2020, 209, 120529. [Google Scholar] [CrossRef]
- Abdussalam, A.; Xu, G. Recent advances in electrochemiluminescence luminophores. Anal. Bioanal. Chem. 2022, 414, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.T.; Tang, Q.H.; Chen, M.; Deng, A.P.; Li, J.G. Ultrasensitive Electrochemiluminescent competitive immunoassay for β-Adrenergic agonist salbutamol based on quantum dots and enzymatic amplification. J. Electrochem. Soc. 2016, 163, 62–67. [Google Scholar] [CrossRef]
- Cai, F.; Wang, N.; Dong, T.; Deng, A.; Li, J. Dual-signal amplified electrochemiluminescence immunoassay for salbutamol based on quantum dots and gold nanoparticle-labeled horseradish peroxidase. Analyst 2015, 140, 5885–5890. [Google Scholar] [CrossRef]
- Yan, Q.N.; Cai, F.D.; Zhao, K.; Wu, K.; Deng, A.P.; Li, J.G. Dual-signal amplified electrochemiluminescent immunosensor for detecting ractopamine using quantum dots and gold nanoparticles-labeled horseradish peroxidase. ECS J. Solid State Sci. Technol. 2017, 6, 56–62. [Google Scholar] [CrossRef]
- Dong, T.T.; Tang, Q.H.; Zhao, K.; Deng, A.P.; Li, J.G. Ultrasensitive electrochemiluminescent salbutamol immunoassay with dual-signal amplification using CdSe@SiO2 as label and gold nanoparticles as substrate. Microchim. Acta 2017, 184, 961–968. [Google Scholar] [CrossRef]
- Dong, T.; Hu, L.; Zhao, K.; Deng, A.; Li, J. Multiple signal amplified electrochemiluminescent immunoassay for brombuterol detection using gold nanoparticles and polyamidoamine dendrimers-silver nanoribbon. Anal. Chim. Acta 2016, 945, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Cai, F.; Zhang, J.; Zhao, K.; Deng, A.; Li, J. Highly sensitive electrochemiluminescent immunosensor based on gold nanoparticles-functionalized zinc oxide nanorod and poly(amidoamine)-graphene for detecting brombuterol. Biosens. Bioelectron. 2016, 86, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Liu, H.X.; Zhang, J.; Wu, K.; Deng, A.P.; Li, J.G. Ultrasensitive QDs based electrochemiluminescent immunosensor for detecting ractopamine using AuNPs and Au nanoparticles@PDDA-graphene as amplifier. Sens. Actuators B 2017, 243, 121–129. [Google Scholar] [CrossRef]
- Li, P.; Ma, G.; Wu, K.; Deng, A.; Li, J. An electrochemiluminescence energy resonance transfer system for highly sensitive detection of brombuterol. Talanta 2021, 223, 121687. [Google Scholar] [CrossRef]
- Lin, C.H.; Lin, M.J.; Huang, J.D.; Chuang, Y.S.; Kuo, Y.F.; Chen, J.C.; Wu, C.C. Label-free impedimetric immunosensors modulated by protein A/bovine serum albumin layer for ultrasensitive detection of salbutamol. Sensors 2020, 20, 771. [Google Scholar] [CrossRef] [Green Version]
- He, L.H.; Guo, C.P.; Song, Y.P.; Zhang, S.; Wang, M.H.; Peng, D.L.; Fang, S.M.; Zhang, Z.H.; Liu, C.S. Chitosan stabilized gold nanoparticle based electrochemical ractopamine immunoassay. Microchim. Acta 2017, 184, 2919–2924. [Google Scholar] [CrossRef]
- Zhan, B.L.; Zhang, Y.T.; Zhao, X. High sensitive sol-gel based electrochemical immunosensor for Clenbuterol Determination. Int. J. Electrochem. Sci. 2021, 16, 211124. [Google Scholar] [CrossRef]
- Cui, Z.T.; Cai, Y.Y.; Wu, D.; Yu, H.Q.; Li, Y.; Mao, K.X.; Wang, H.; Fan, H.X.; Wei, Q.; Du, B. An ultrasensitive electrochemical immunosensor for the detection of salbutamol based on Pd@SBA-15 and ionic liquid. Electrochim. Acta 2012, 69, 79–85. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Li, H.; Du, B.; Ma, H.; Wu, D.; Wei, Q. A silver-palladium alloy nanoparticle-based electrochemical biosensor for simultaneous detection of ractopamine, clenbuterol and salbutamol. Biosens. Bioelectron. 2013, 49, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Ren, P.; Zhang, F.; Zhao, G.; Shen, J.; Zhao, B. Detection of six β-agonists by three multiresidue immunosensors based on an anti-bovine serum albumin-ractopamine-clenbuterol-salbutamol antibody. ACS Omega 2020, 5, 5548–5555. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.D.; Lin, Q.; Zhang, X.M.; He, X.R.; Xing, X.R.; Lian, W.J.; Zuo, M.M.; Zhang, Q.Q. Electrochemical immunosensor based on polyaniline/poly (acrylic acid) and Au-hybrid graphene nanocomposite for sensitivity enhanced detection of salbutamol. Food Res. Int. 2011, 44, 92–97. [Google Scholar] [CrossRef]
- Liu, S.; Lin, Q.; Zhang, X.M.; He, X.R.; Xing, X.R.; Lian, W.J.; Huang, J.D. Electrochemical immunosensor for salbutamol detection based onCS-Fe3O4-PAMAM-GNPs nanocomposites and HRP-MWCNTs-Ab bioconjugates for signal amplification. Sens. Actuators B 2011, 156, 71–78. [Google Scholar] [CrossRef]
- Han, X. Development of electrochemical immunosensor for detecting sSalbutamol by competitive immune strategy. Int. J. Electrochem. Sci. 2020, 15, 7337–7346. [Google Scholar] [CrossRef]
- Regiart, M.; Fernández-Baldo, M.A.; Spotorno, V.G.; Bertolino, F.A.; Raba, J. Ultra sensitive microfluidic immunosensor for determination of clenbuterol in bovine hair samples using electrodeposited gold nanoparticles and magnetic micro particles as bio-affinity platform. Biosens. Bioelectron. 2013, 41, 211–217. [Google Scholar] [CrossRef]
- Talib, N.A.A.; Salam, F.; Sulaiman, Y. Development of Highly sensitive immunosensor for clenbuterol detection by using poly(3,4-ethylenedioxythiophene)/graphene oxide modified screen-printed carbon electrode. Sensors 2018, 18, 4324. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.; Bai, J.; Shi, X.; Zeng, Y.; Xian, Y.; Hou, J.; Jin, L. Graphene oxide as nanocarrier for sensitive electrochemical immunoassay of clenbuterol based on labeling amplification strategy. Talanta 2013, 107, 176–182. [Google Scholar] [CrossRef]
- Dou, Y.Z.; Jiang, Z.N.; Deng, W.P.; Su, J.; Chen, S.X.; Song, H.Y.; Aldalbahi, A.; Zuo, X.L.; Song, X.P.; Shi, J.Y.; et al. Portable detection of clenbuterol using a smartphone-based electrochemical biosensor with electric field-driven acceleration. J. Electroanal. Chem. 2016, 781, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Sano, T.; Smith, C.L.; Cantor, C.R. Immuno-PCR: Very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 1992, 258, 120–122. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Li, X.; Akash, M.S.; Zhou, L.; Tang, X.; Shi, W.; Liu, Z.; Chen, S. Development of analytical method for ultrasensitive detection of salbutamol utilizing DNA labeled-immunoprobe. J. Pharm. Biomed. Anal. 2015, 107, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhou, H.; Sun, T.; Liu, W.; He, H.; Ning, B.; Li, S.; Peng, Y.; Han, D.; Zhao, Z.; et al. Complete antigen-bridged DNA strand displacement amplification immuno-PCR assay for ultrasensitive detection of salbutamol. Sci. Total Environ. 2020, 748, 142330. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, J.; Jiang, W.; Zhang, S.; Shen, J.; Wen, K.; Wang, Z. Development and application of a gel-based immunoassay for the rapid screening of salbutamol and ractopamine residues in pork. J. Agric. Food Chem. 2015, 63, 10556–10561. [Google Scholar] [CrossRef] [PubMed]
- Zvereva, E.A.; Shpakova, N.A.; Zherdev, A.V.; Kiu, L.; Xu, C.; Eremin, S.A.; Dzantiev, B.B. Fluorescence polarization immunoassay of ractopamine. Appl. Biochem. Microbiol. 2016, 52, 673–678. [Google Scholar] [CrossRef]
- Dong, B.; Zhao, S.; Li, H.; Wen, K.; Ke, Y.; Shen, J.; Zhang, S.; Shi, W.; Wang, Z. Design, synthesis and characterization of tracers and development of a fluorescence polarization immunoassay for the rapid detection of ractopamine in pork. Food Chem. 2019, 271, 9–17. [Google Scholar] [CrossRef]
- Zuo, P.; Zhang, Y.; Liu, J.; Ye, B.C. Determination of beta-adrenergic agonists by hapten microarray. Talanta 2010, 82, 61–66. [Google Scholar] [CrossRef]
- Kong, J.; Jiang, L.; Su, X.; Qin, J.; Du, Y.; Lin, B. Integrated microfluidic immunoassay for the rapid determination of clenbuterol. Lab Chip. 2009, 9, 1541–1547. [Google Scholar] [CrossRef]
Methods | Advantages | Disadvantages |
---|---|---|
Immunoaffinity chromatography | Simple, fast; high separation efficiency and reproducibility | Proteases from animal sample may digest protein A or antibody on the immunoaffinity column. The high-affinity binding of antibodies and antigens may complicate the elution of the antigen. |
Immunofiltration | Simple, fast, low cost | Filters are easily clogged by large particles in samples. Contaminating proteins that adhered to the filter will elute with the antigens. |
Immunomagnetic separation | Simple, fast, easy to perform; high separation efficiency and reproducibility | Commercial immunomagnetic particles for β2-agonists extraction are not available. |
Analytical Technologies | Samples | Analyte | Limit of Detection | References |
---|---|---|---|---|
1. Radioimmunoassay | human plasma | salbutamol | 0.5 ng/mL | [30] |
plasma, urine | fenoterol | 10–20 pg/mL | [31] | |
horse urine | albuterol | 28.8 fmol/tube | [32] | |
cattle plasma, urine, feces | clenbuterol | 7.8 pg/tube | [33] | |
bovine liver | clenbuterol, mabuterol, etc. | 0.1 μg/kg | [34] | |
brombuterol, cimbuterol, etc. | 0.3 μg/kg | |||
2. ELISA | ||||
2.1. Direct competitive ELISA | pork | clenbuterol | 0.09 ng/g | [35] |
milk | clenbuterol | 0.045 ng/mL | [36] | |
feed, milk, swine urine, | clenbuterol | 0.03 ng/mL | [39] | |
swine serum | salbutamol | 0.25 ng/mL | [37] | |
swine urine | phenylethanolamine A | 0.5 μg/L | [38] | |
2.2 Indirect competitive ELISA | swine urine, pork | phenylethanolamine A | urine: 0.13 ng/mL, pork: 0.39 ng/g | [40] |
sheep urine | ractopamine | 0.35 ng/mL | [41] | |
swine and bovine urine | zilpaterol | IC50 3.94 ± 0.48 ng/mL | [42] | |
clenbuterol solution | clenbuterol | 0.50 ng/mL | [43] | |
clenbuterol solution | clenbuterol | 0.3 pg/mL | [44] | |
salbutamol solution, urine | salbutamol | 0.04 ng/mL | [45] | |
livestock wastewater | salbutamol | 0.66 ng/L | [46] | |
3. Chemiluminescence immunoassay | pork, liver | salbutamol | 0.15 ng/mL | [47] |
swine meat, feed | brombuterol | 0.33 pg/mL | [48] | |
swine urine | ractopamine | 0.97 ng/mL | [49] | |
4. Lateral flow immunoassay (LFIA) | ||||
4.1. Colorimetric LFIA | ||||
4.1.1. Gold nanoparticle as tracer | swine urine | clenbuterol, ractopamine | 0.1 ± 0.01 ng/mL | [50] |
pork muscle | clenbuterol | 0.10 ng/g | [51] | |
swine urine | salbutamol | 1.0 ng/mL | [52] | |
swine and turkey meat, cow milk | salbutamol | meat: 3.0 ng/g; milk: 4.0 ng/g | [53] | |
swine urine, pork | phenylethanolamine A | 5 ng/mL(g) | [40] | |
urine, pork | phenylethanolamine A | 0.1 ng/mL | [54] | |
swine urine | ractopamine | 0.13 ng/mL | [55] | |
swine urine | ractopamine | 2 ng/mL | [56] | |
turkey meat, beef liver | ractopamine | 0.5 ng/mL | [57] | |
swine feed | ractopamine | 0.1 ng/g | [58] | |
swine urine and feed, milk | clenbuterol | urine: 0.1 ng/mL; feed: 0.2 ng/g; milk: 0.5 ng/mL | [59] | |
clenbuterol solution | clenbuterol | 2 ppb | [60] | |
pork | clenbuterol | 0.04 ng/mL | [61] | |
4.1.2. Other nanoparticles as tracers | swine urine, pork | clenbuterol | urine: 6 ng/mL; pork: 5 ng/mL | [62] |
clenbuterol, ractopamine solution | clenbuterol, ractopamine | clenbuterol: 3 ng/mL; ractopamine: 2 ng/mL | [63] | |
swine urine | clenbuterol | 3 ng/mL | [64] | |
swine urine | ractopamine, salbutamol | ractopamine: 1.0 ng/mL; salbutamol: 3.0 ng/mL | [65] | |
pork, swine kidney and bacon | clenbuterol | pork: 3 ng/g; kidney and bacon: 5 ng/g | [66] | |
swine feed, pork | ractopamine | feed: 2.0 ng/mL; pork: 1.0 ng/mL | [67] | |
4.2. Luminescent LFIA | swine urine | clenbuterol | 0.037 ng/mL | [68] |
swine urine | clenbuterol | 0.22 ng/mL | [29] | |
swine urine, feed, pork | clenbuterol, ractopamine, salbuterol | clenbuterol: 0.10 ng/mL; ractopamine: 0.10 ng/mL; salbuterol: 0.09 ng/mL | [69] | |
swine urine | ractopamine | 7.2 pg/mL | [71] | |
swine urine, muscle | ractopamine | 0.16 ng/mL | [72] | |
pork tissue, urine, feed | clenbuterol | 0.01 ng/mL | [73] | |
swine urine | ractopamine, clenbuterol | ractopamine: 0.17 ng/mL; clenbuterol: 0.067 ng/mL | [74] | |
4.3. Other types of LFIA | milk, swine liver, tenderloin | clenbuterol | 2 ng/mL | [75] |
swine urine | phenylethanolamine A | 0.32 pg/mL | [76] | |
swine urine | clenbuterol | 0.24 pg/mL | [77] | |
swine meat, urine | brombuterol | 0.5 pg/mL | [78] | |
5. Immunosensors | ||||
5.1. Surface plasmon resonance sensors | salbutamol solution | salbutamol | 5 ng/mL | [80] |
ractopamine and salbutamol solution | ractopamine, salbutamol | ractopamine: 10 pg/mL, salbutamol: 5 pg/mL | [81] | |
swine urine | ractopamine | 0.09 ng/mL | [82] | |
clenbuterol solution | clenbuterol | 0.05 pg/mL | [83] | |
bovine urine | clenbuterol | 100 fg/mL | [84] | |
5.2. SERS-based immunosensor | swine urine | clenbuterol | 0.1 pg/mL | [85] |
clenbuterol and ractopamine solution | clenbuterol, ractopamine | 1.0 pg/mL | [86] | |
swine meat and liver, human urine | salbutamol, brombuterol | salbutamol 2.0 pg/mL; brombuterol 1.0.pg/mL | [87] | |
clenbuterol solution | clenbuterol | 0.22 fg/mL | [88] | |
clenbuterol solution | clenbuterol | 0.68 pg/mL | [89] | |
5.3. Electrochemiluminescence immunosensor | pork and liver | salbutamol | 8.4 pg/mL | [91] |
pork and liver | salbutamol | 17 pg/mL | [92] | |
pork and feed | ractopamine | 1.7 pg/mL | [93] | |
pork | salbutamol | 0.17 pg/mL | [94] | |
pork and feed | brombuterol | 1.5 pg/mL | [95] | |
pork | brombuterol | 0.3 pg/mL | [96] | |
pork | ractopamine | 2.6 pg/mL | [97] | |
pork and swine feed extract | brombuterol | 0.31 pg/mL | [98] | |
5.4. Electrochemical immunosensor | porcine serum | salbutamol | 0.2 fg/mL | [99] |
serum | salbutamol | 7 pg/mL | [102] | |
swine urine | ractopamine | 2.3 pg/mL | [100] | |
clenbuterol solution | clenbuterol | 0.12 ng/mL | [101] | |
pork | salbutamol, ractopamine, clenbuterol | salbutamol: 1.44 pg/mL, clenbuterol: 1.38 pg/mL, ractopamine: 1.52 pg/mL | [103] | |
pork, feed | salbutamol | 0.04 ng/mL | [105] | |
salbutamol solution | salbutamol | 0.06 ng/mL | [106] | |
salbutamol solution | salbutamol | 0.03 ng/mL | [107] | |
bovine hair | clenbuterol | 0.008 ng/mL | [108] | |
milk | clenbuterol | 0.196 ng/mL | [109] | |
clenbuterol solution | clenbuterol | 0.076 ng/mL | [111] | |
swine feed | clenbuterol | 0.25 ng/mL | [110] | |
6. Other types of immunoassays | human urine | salbutamol | 28 fg/mL | [113] |
water, urine | salbutamol | 0.65 fmol/ML | [114] | |
pork | salbutamol, ractopamine | sabutamol: 0.051 μg/kg, ractopamine: 0.02 μg/kg | [115] | |
turkey meat | ractopamine | 1 ng/mL | [116] | |
pork | ractopamine | 0.56 μg/kg | [117] | |
clenbuterol, ractopamine and salbutamol solution | clenbuterol, ractopamine, salbutamol | clenbuterol: 0.09 μg/L; ractopamine: 0.50 μg/L; salbutamol: 0.01 μg/L | [118] | |
swine urine | clenbuterol | 0.088 ng/mL | [119] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, S.; Yu, S.; Le, Y. Current Advances in Immunoassays for the Detection of β2-Agonists. Foods 2022, 11, 803. https://doi.org/10.3390/foods11060803
Ouyang S, Yu S, Le Y. Current Advances in Immunoassays for the Detection of β2-Agonists. Foods. 2022; 11(6):803. https://doi.org/10.3390/foods11060803
Chicago/Turabian StyleOuyang, Shuyu, Shuting Yu, and Yingying Le. 2022. "Current Advances in Immunoassays for the Detection of β2-Agonists" Foods 11, no. 6: 803. https://doi.org/10.3390/foods11060803
APA StyleOuyang, S., Yu, S., & Le, Y. (2022). Current Advances in Immunoassays for the Detection of β2-Agonists. Foods, 11(6), 803. https://doi.org/10.3390/foods11060803